Using the GNU Privacy Guard

Version 1.9.14
22 December 2004

Werner Koch (wk@gnupg.org)

Copyright (©) 2002, 2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. The text of the license can
be found in the section entitled “Copying”.

Short Contents

Introduction . v v v v v v oo oo oo s ot v eeeeeessosossssnnees 1
I Invoking GPG .o i it it i ittt i i i 3
2 Invoking GPGSM . .o i i i i it ittt ittt i i it enens 5t
3 Invoking GPG-AGENTiiiiiiiiieeennn. 17
4 Invoking the SCDAEMONciiiiinn... 27
5 Helper Tools. o oo v v et eeeeeeeeeooeossonas 33
6 Notes pertaining to certain OSes. + v v v v v v v v v vveeossnn 43
7 How tosolve problems « o v v v v v v v s v v v v eeeeeneeesss 45
A Description of the Assuan protocol. . .. oo v i i, 47
B GNU GENERAL PUBLICLICENSE. . . e v oo v v v v v e nnn 51
Contributors to GnuPG oo oottt i i 57
GlOSSATY ¢ o o v o v v v e oo ettt oo oossssnneoeosssssssssss 59
Option Index + v v v v vttt e e e s e ieeeeeesossssssonas 61

11

Using the GNU Privacy Guard

Table of Contents

Introduction................ 1
1 Imvoking GPG............... ... o v, 3
2 Invoking GPGSM.......................... 5
2.1 Commandsiii 5)

2.1.1 Commands not specific to the function 5

2.1.2 Commands to select the type of operation 5

2.1.3 How to manage the certificate and keys........... 6

2.2 Option SUMMATY oottt e i 7

2.2.1 How to change the configuration................. 7

2.2.2 Certificate related options 8

2.2.3 Input and Output 8

2.2.4 How to change how the CMS is created........... 9

2.2.5 Doing things one usually don’t want to do. 9

2.3 Examples. 11

2.4 Unattended Usage...........coiiiiiiiinna.. 11

2.5 Automated signature checking..................... 11

2.6 The Protocol the Server Mode Uses. 12

2.6.1 Encrypting a Message.......................... 12

2.6.2 Decrypting a messagec.ooovuneenne.... 13

2.6.3 Signing a Messageoviieeiiinna... 13

2.6.4 Verifying a Message.............ooooiiini... 13

2.6.5 Generatinga Key.......... 14

2.6.6 List available keys 14

2.6.7 FExport certificates......... L 14

2.6.8 Import certificates............................. 15

2.6.9 Delete certificates..................... 15

3 Tnvoking GPG-AGENTovuvrnennnnn.. 17
3.1 Commandst 17

3.2 Option SUMmMAaryooeiinneii e 18

3.3 Useofsomesignals. 20

3.4 Examples. 21

3.5 Agent’s Assuan Protocol............... 21

3.5.1 Decrypting a session key 21

3.5.2 SigningaHash................................ 22

3.5.3 Generatinga Key.............................. 23

3.5.4 Importing a Secret Key 24

3.5.5 FExport aSecret Key........................... 24

3.5.6 Importing a Root Certificate 24

3.5.7 Ask for a passphrase........................... 25

iii

iv Using the GNU Privacy Guard

3.5.8 Ask for confirmation........................... 26

3.5.9 Check whether a key is available................ 26

3.5.10 Register a smartcard.......................... 26

3.5.11 Change a Passphrase.......................... 26

4 Invoking the SCDAEMON 27
4.1 Commandsviiii e 27
4.2 Option SUMMATYottt 27
4.3 Description of card applications 29
4.3.1 The OpenPGP card application “openpgp” 29

4.3.2 The Telesec NetKey card “nks” 29

4.3.3 The DINSIG card application “dinsig” 29

4.3.4 The PKCS#15 card application “pl5” 29

4.4 Examples. 30
4.5 Scdaemon’s Assuan Protocol 30
4.5.1 Return the serial number....................... 30

4.5.2 Read all useful information from the card........ 30

4.5.3 Return a certificate 31

4.5.4 Returnapublickey............. 31

4.5.5 Signing data with a Smartcard.................. 31

4.5.6 Decrypting data with a Smartcard 31

4.5.7 Read an attribute’s value....................... 31

4.5.8 Update an attribute’s value..................... 31

4.5.9 Generate a new key on-card..................... 31

4.5.10 Return random bytes generate on-card.......... 31

4.5.11 Change PINs. i 32

4.5.12 Perform a VERIFY operation.................. 32

5 Helper Toolsviiiinnnnn.. 33
5.1 Read logs from asocket............., 33
5.2 Create .gnupg home directories. 33
5.3 Modify .gnupg home directories.......................... 33
5.3.1 Invoking gpgconf 34

5.3.2 Format conventions............................ 34

5.3.3 Listing components 36

5.3.4 Listingoptions o ... 37

5.3.5 Changing options...................ooiii.... 39

5.4 Generate an X.509 certificate request 40
5.5 Put a passphrase into the cache.......................... 40
5.5.1 List of all commands and options................ 40

6 Notes pertaining to certain OSes........... 43

6.1 Microsoft Windows Notes. 43

7 How to solve problems.................... 45

7.1 Debugging Tools o 45
7.1.1 Scrutinizing a keybox file....................... 45
7.2 Commonly Seen Problems 45

Appendix A Description of the Assuan protocol.

.. 47
A01 Goals ... 47
A.0.2 Design criteria............oovviiiiineii. 47
A.0.3 Implementation............................... 47
A.0.4 Server reSPONSES vewnee e 47
A.0.5 Client requests.oovveeeeiiiiiiannna. .. 48
A.0.6 Error Codes.......... ... 49
Appendix B GNU GENERAL PUBLIC

LICENSE, 51
B.0.1 Preamble.......... 51

B.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION.......... 51
How to Apply These Terms to Your New Programs............ 56
Contributors to GnuPG 57
Glossary......oooiiiiiiiiiiiiiinnnnnnnnnnns 59
OptionIndex, 61

vi

Using the GNU Privacy Guard

Introduction 1

Introduction

This manual documents how to use the GNU Privacy Guard system as well as the admin-
istration and the architecture.

Using the GNU Privacy Guard

Chapter 1: Invoking GPG 3

1 Invoking GPG

gpg is the OpenPGP part of GnuPG. The version included in this package is not as matured
as the standard versions (1.2.x or 1.4.x) and thus we strongly suggest to keep on using the
one of the standard versions. Both versions may be installed side by side and should coexists
without problems. To help for that, the gpg from this package gets installed under the name
gpg2. If you really want to use this gpg2 command you should name the configuration file
‘gpg.conf-1.9° to keep it separate from the one used with the standard gpg.

Documentation for the old standard gpg is available in a man page and at See Info file
‘gpg’, node ‘Top’.

Using the GNU Privacy Guard

Chapter 2: Invoking GPGSM)

2 Invoking GPGSM

gpgsm is a tool similar to gpg to provide digital encryption and signing servicesd on X.509
certificates and the CMS protocoll. It is mainly used as a backend for S/MIME mail
processing. gpgsm includes a full features certificate management and complies with all
rules defined for the German Sphinx project.

See [Option Index], page 61, for an index to GPGSM’s commands and options.

2.1 Commands

Commands are not distinguished from options execpt for the fact that only one one com-
mand is allowed.

2.1.1 Commands not specific to the function

--version
Print the program version and licensing information. Not that you can abbre-
viate this command.

--help, -h
Print a usage message summarizing the most usefule command-line options.
Not that you can abbreviate this command.

—--dump-options
Print a list of all available options and commands. Not that you can abbreviate
this command.

2.1.2 Commands to select the type of operation

-—encrypt
Perform an encryption.

--decrypt
Perform a decryption; the type of input is automatically detmerined. It may
either be in binary form or PEM encoded; automatic determination of base-64
encoding is not done.

--sign Create a digital signature. The key used is either the fist one found in the
keybox or thise set with the -u option

--verify Check a signature file for validity. Depending on the arguments a detached
signatrue may also be checked.

--server Run in server mode and wait for commands on the stdin.

--call-dirmngr command [args]
Behave as a Dirmngr client issuing the request command with the optional list of
args. The output of the Dirmngr is printed stdout. Please note that file names
given as arguments should have an absulte file name (i.e. commencing with /

Using the GNU Privacy Guard

because they are passed verbatim to the Dirmngr and the working directory of
the Dirmngr might not be the same as the one of this client. Currently it is not
possible to pass data via stdin to the Dirmngr. command should not contain
spaces.

This is command is required for certain maintaining tasks of the dirmngr where
a dirmngr must be able to call back to gpgsm. See the Dirmngr manual for
details.

--call-protect-tool arguments

Certain maintenance operations are done by an external program call gpg-
protect-tool; this is usually not installed in a directory listed in the PATH
variable. This command provides a simple wrapper to access this tool. ar-
guments are passed verbatim to this command; use ‘--help’ to get a list of
supported operations.

2.1.3 How to manage the certificate and keys

--gen-key

Generate a new key and a certificate request.

--list-keys

-k

List all available certificates stored in the local key database. Note that the
displayed data might be reformatted for better human readability and illegal
characters are replaced by safe substitutes.

--list-secret-keys

-K

List all available certificates for which a corresponding a secret key is available.

--list-external-keys pattern

List certificates matching pattern using an external server. This utilizes the
dirmngr service.

—-—-dump-keys

List all available certificates stored in the local key database using a format
useful mainly for debugging.

--dump-secret-keys

List all available certificates for which a corresponding a secret key is available
using a format useful mainly for debugging.

-—-dump-external-keys pattern

List certificates matching pattern using an external server. This utilizes the
dirmngr service. It uses a format useful mainly for debugging.

--keydb-clear-some-cert-flags

This is a debugging aid to reset certain flags in the key database which are used
to cache certain certificate stati. It is especially useful if a bad CRL or a weird
running OCSP reponder did accidently revoke certificate. There is no security
issue with this command because gpgsm always make sure that the validity of
a certificate is checked right before it is used.

Chapter 2: Invoking GPGSM 7

--delete-keys pattern
Delete the keys matching pattern.

—-—export [pattern]
Export all certificates stored in the Keybox or those specified by the optional
pattern. When using along with the ——armor option a few informational lines
are prepended before each block.

--—export-secret-key-pl2 key-id
Export the private key and the certificate identified by key-id in a PKCS#12
format. When using along with the ——armor option a few informational lines
are prepended to the output. Note, that the PKCS#12 format is higly insecure
and this command is only provided if there is no other way to exchange the
private key.

--learn-card
Read information about the private keys from the smartcard and import the
certificates from there. This command utilizes the GPG-AGENT and in turn the
SCDAEMON.

--passwd user_id
Change the passphrase of the private key belonging to the certificate specified
as user-id. Note, that changing the passphrase/PIN of a smartcard is not yet
supported.

2.2 Option Summary

GPGSM comes features a bunch ofoptions to control the exact behaviour and to change the
default configuration.

2.2.1 How to change the configuration

These options are used to change the configuraton and are usually found in the option file.

--options file
Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘gpgsm.conf’ and expected in the
‘.gnupg’ directory directly below the home directory of the user.

--homedir dir
Set the name of the home directory to dir. If his option is not used, the
home directory defaults to ‘“/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on W32 systems) by means on the Registry
entry HKCU\Software\ GNU\ GnuPG:HomeDir.

-V

--verbose
Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpgsm, such as ‘-vv’.

8 Using the GNU Privacy Guard

--policy-file filename
Change the default name of the policy file to filename.

--agent-program file
Specify an agent program to be used for secret key operations. The default value
is the ‘/usr/local/bin/gpg-agent’. This is only used as a fallback when the
envrionment variable GPG_AGENT_INFO is not set or a running agent can’t be
connected.

--dirmngr-program file
Specify a dirmngr program to be used for CRL checks. The default value is
‘/usr/sbin/dirmngr’. This is only used as a fallback when the environment
variable DIRMNGR_INFO is not set or a running dirmngr can’t be connected.

--prefer-system-dirmngr
If a system wide dirmngr is running in daemon mode, first try to connect to
this one. Fallback to a pipe based server if this does not work.

--no-secmem-warning
Don’t print a warning when the so called "secure memory" can’t be used.

--log-file file
When running in server mode, append all logging output to file.

2.2.2 Certificate related options

--enable-policy-checks
--disable-policy-checks
By default policy checks are enabled. These options may be used to change it.

—-—enable-crl-checks

-—disable-crl-checks
By default the CRL checks are enabled and the DirMngr is used to check for
revoked certificates. The disable option is most useful with an off-line network
connection to suppress this check.

-—force-crl-refresh
Tell the dirmngr to reload the CRL for each request. For better performance,
the dirmngr will actually optimize this by suppressing the loading for short
time intervalls (e.g. 30 minutes). This option is useful to make sure that a
fresh CRL is available for certificates hold in the keybox. The suggested way
of doing this is by using it along with the option ‘--with-validation’ for a ke
listing command. This option should not be used in a configuration file.

--enable-ocsp

--disable-ocsp
Be default ocsp checks are disabled. The enable opton may be used to en-
able OCSP checks via Dirmngr. If CRL checks are also enabled, CRLs will be
used as a fallback if for some reason an OCSP request won’t succeed. Note,
that you have to allow OCSP requests in Dirmngr’s configuration too (option
‘-—allow-ocsp’ and configure dirmngr properly. If you don’t do so you will get
the error code ‘Not supported’.

Chapter 2: Invoking GPGSM 9

2.2.3 Input and Output

--armor
-a Create PEM encoded output. Default is binary output.

--base64 Create Base-64 encoded output; i.e. PEM without the header lines.

--assume-armor
Assume the input data is PEM encoded. Default is to autodetect the encoding
but this is may fail.

-—assume-base64
Assume the input data is plain base-64 encoded.

--assume-binary
Assume the input data is binary encoded.

--local-user user_id

-u user_id
Set the user(s) to be used for signing. The default is the first secret key found
in the database.

--with-key-data
Displays extra information with the --1ist-keys commands. Especially a line
tagged grp is printed which tells you the keygrip of a key. This string is for
example used as the file name of the secret key.

-—with-validation
When doing a key listing, do a full validation check for each key and print the
result. This is usually a slow operation because it requires a CRL lookup and
other operations.

When used along with —import, a validation of the certificate to import is
done and only imported if it succeeds the test. Note that this does not affect
an already available cwertificate in the DB. This option is therefore useful to
simply verify a certificate.

--with-md5-fingerprint
For standard key listings, also print the MD5 fingerprint of the certificate.

2.2.4 How to change how the CMS is created.

--include-certs n
Using n of -2 includes all certificate except for the root cert, -1 includes all
certs, 0 does not include any certs, 1 includes only the signers cert (this is the
default) and all other positive values include up to n certificates starting with
the signer cert.

2.2.5 Doing things one usually don’t want to do.

--faked-system-time epoch
This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970.

10 Using the GNU Privacy Guard

--with-ephemeral-keys
Include ephemeral flagged keys in the output of key listings.

--debug-level level
Select the debug level for investigating problems. level may be one of:

none no debugging at all.

basic some basic debug messages

advanced more verbose debug messages

expert even more detailed messages

guru all of the debug messages you can get

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releaes of this program. They are however carefully
selected to best aid in debugging.

--debug flags
This option is only useful for debugging and the behaviour may change at any
time without notice; using --debug-levels is the preferred method to select
the debug verbosity. FLAGS are bit encoded and may be given in usual C-
Syntax. The currently defined bits are:

0 (1) X.509 or OpenPGP protocol related data
1(2) values of big number integers

2 (4) low level crypto operations

5 (32) memory allocation

6 (64) caching

7 (128) show memory statistics.

9 (512) write hashed data to files named dbgmd-000%*

10 (1024) trace Assuan protocol

Note, that all flags set using this option may get overriden by --debug-level.

--debug-all
Same as -—debug=0xffffffff

--debug-allow-core-dump
Usually gpgsm tries to avoid dumping core by well written code and by disabling
core dumps for security reasons. However, bugs are pretty durable beasts and
to squash them it is sometimes useful to have a core dump. This option enables
core dumps unless the Bad Thing happened before the option parsing.

--debug-no-chain-validation
This is actually not a debugging option but only useful as such. It lets gpgsm
bypass all certificate chain validation checks.

--debug-ignore-expiration
This is actually not a debugging option but only useful as such. It lets gpgsm
ignore all notAfter dates, this is used by the regresssion tests.

Chapter 2: Invoking GPGSM 11

--fixed-passphrase string
Supply the passphrase string to the gpg-protect-tool. This option is only use-
ful for the regression tests included with this package and may be revised or
removed at any time without notice.

All the long options may also be given in the configuration file after stripping off the
two leading dashes.

2.3 Examples

$ gpgsm -er goo@bar.net <plaintext >ciphertext

2.4 Unattended Usage

gpgsm is often used as a backend engine by other software. To help with this a machine
interface has been defined to have an unambiguous way to do this. This is most likely used
with the --server command but may also be used in the standard operation mode by using
the --status-£fd option.

2.5 Automated signature checking

It is very important to understand the semantics used with signature verification. Checking
a signature is not as simple as it may sound and so the ooperation si a bit complicated.
In mosted cases it is required to look at several status lines. Here is a table of all cases a
signed message may have:

The signature is valid
This does mean that the signature has been successfully verified, the certificates
are all sane. However there are two subcases with important information: One
of the certificates may have expired or a signature of a message itself as expired.
It is a sound practise to consider such a signature still as valid but additional
information should be displayed. Depending on the subcase gpgsm will issue
these status codes:

signature valid and nothing did expire
GOODSIG, VALIDSIG, TRUST_FULLY

signature valid but at least one certificate has expired
EXPKEYSIG, VALIDSIG, TRUST_FULLY

signature valid but expired
EXPSIG, VALIDSIG, TRUST_FULLY Note, that this case is currently
not implemented.

The signature is invalid
This means that the signature verification failed (this is an indication of af a
transfer error, a programm error or tampering with the message). gpgsm issues
one of these status codes sequences:

12 Using the GNU Privacy Guard

BADSIG
GOODSIG, VALIDSIG TRUST_NEVER

Error verifying a signature
For some reason the signature could not be verified, i.e. it can’t be decided
whether the signature is valid or invalid. A common reason for this is a missing
certificate.

2.6 The Protocol the Server Mode Uses.

Description of the protocol used to access GPGSM. GPGSM does implement the Assuan protocol
and in addition provides a regular command line interface which exhibits a full client to
this protocol (but uses internal linking). To start gpgsm as a server the command line the
option -—server must be used. Additional options are provided to select the communication
method (i.e. the name of the socket).

We assume that the connection has already been established; see the Assuan manual for
details.

2.6.1 Encrypting a Message

Before encrytion can be done the recipient must be set using the command:
RECIPIENT userID

Set the recipient for the encryption. userID should be the internal representation of the
key; the server may accept any other way of specification. If this is a valid and trusted
recipient the server does respond with OK, otherwise the return is an ERR with the reason
why the recipient can’t be used, the encryption will then not be done for this recipient. If
the policy is not to encrypt at all if not all recipients are valid, the client has to take care
of this. All RECIPIENT commands are cumulative until a RESET or an successful ENCRYPT
command.

INPUT FD=n [--armor|--base64|--binary]

Set the file descriptor for the message to be encrypted to n. Obviously the pipe must
be open at that point, the server establishes its own end. If the server returns an error the
client should consider this session failed.

The --armor option may be used to advice the server that the input data is in PEM
format, --base64 advices that a raw base-64 encoding is used, --binary advices of raw
binary input (BER). If none of these options is used, the server tries to figure out the used
encoding, but this may not always be correct.

OUTPUT FD=n [--armor|--base64]

Set the file descriptor to be used for the output (i.e. the encrypted message). Obviously
the pipe must be open at that point, the server establishes its own end. If the server returns
an error he client should consider this session failed.

The option armor encodes the output in PEM format, the --base64 option applies just
a base 64 encoding. No option creates binary output (BER).

The actual encryption is done using the command

Chapter 2: Invoking GPGSM 13

ENCRYPT

It takes the plaintext from the INPUT command, writes to the ciphertext to the file
descriptor set with the OUTPUT command, take the recipients from all the recipients set
so far. If this command fails the clients should try to delete all output currently done or
otherwise mark it as invalid. GPGSM does ensure that there won’t be any security problem
with leftover data on the output in this case.

This command should in general not fail, as all necessary checks have been done while
setting the recipients. The input and output pipes are closed.

2.6.2 Decrypting a message

Input and output FDs are set the same way as in encryption, but INPUT refers to the cipher-
text and output to the plaintext. There is no need to set recipients. GPGSM automatically
strips any S/MIME headers from the input, so it is valid to pass an entire MIME part to the
INPUT pipe.

The encryption is done by using the command

DECRYPT

It performs the decrypt operation after doing some check on the internal state. (e.g.

that all needed data has been set). Because it utilizes the GPG-Agent for the session key

decryption, there is no need to ask the client for a protecting passphrase - GpgAgent takes
care of this by requesting this from the user.

2.6.3 Signing a Message

Signing is usually done with these commands:
INPUT FD=n [--armor|--base64|--binary]
This tells GPGSM to read the data to sign from file descriptor n.
OUTPUT FD=m [--armor|--base64]

Write the output to file descriptor m. If a detached signature is requested, only the
signature is written.

SIGN [--detached]

Sign the data set with the INPUT command and write it to the sink set by OUTPUT.
With --detached, a detached signature is created (surprise).

The key used for signining is the default one or the one specified in the configuration
file. To get finer control over the keys, it is possible to use the command

SIGNER userID

to the signer’s key. userID should be the internal representation of the key; the server
may accept any other way of specification. If this is a valid and trusted recipient the server
does respond with OK, otherwise the return is an ERR with the reason why the key can’t
be used, the signature will then not be created using this key. If the policy is not to sign
at all if not all keys are valid, the client has to take care of this. All SIGNER commands are
cumulative until a RESET is done. Note that a SIGN does not reset this list of signers which
is in contrats to the RECIPIENT command.

14 Using the GNU Privacy Guard

2.6.4 Verifying a Message

To verify a mesage the command:
VERIFY

is used. It does a verify operation on the message send to the input FD. The result is
written out using status lines. If an output FD was given, the signed text will be written
to that. If the signature is a detached one, the server will inquire about the signed material
and the client must provide it.

2.6.5 Generating a Key

This is used to generate a new keypair, store the secret part in the PSE and the public key
in the key database. We will probably add optional commands to allow the client to select
whether a hardware token is used to store the key. Configuration options to GPGSM can be
used to restrict the use of this command.

GENKEY

GPGSM checks whether this command is allowed and then does an INQUIRY to get the
key parameters, the client should then send the key parameters in the native format:

S: INQUIRE KEY_PARAM native
C: D foo:fgfgfg

C: D bar

C: END

Please note that the server may send Status info lines while reading the data lines from
the client. After this the key generation takes place and the server eventually does send an
ERR or OK response. Status lines may be issued as a progress indicator.

2.6.6 List available keys

To list the keys in the internal database or using an external key provider, the command:
LISTKEYS pattern

is used. To allow multiple patterns (which are ORed during the search) quoting is
required: Spaces are to be translated into "+" or into "%20"; in turn this requires that the
usual escape quoting rules are done.

LISTSECRETKEYS pattern
Lists only the keys where a secret key is available.
The list commands commands are affected by the option
OPTION list-mode=mode
where mode may be:
Use default (which is usually the same as 1).

List only the internal keys.
List only the external keys.

w N~ O

List internal and external keys.

Note that options are valid for the entire session.

Chapter 2: Invoking GPGSM 15

2.6.7 Export certificates

To export certificate from the internal key database the command:
EXPORT pattern

is used. To allow multiple patterns (which are ORed) quoting is required: Spaces are to
be translated into "+" or into "%?20"; in turn this requires that the usual escape quoting
rules are done.

The format of the output depends on what was set with the OUTPUT command. When
using PEM encoding a few informational lines are prepended.

2.6.8 Import certificates

To import certificates into the internal key database, the command
IMPORT

is used. The data is expected on the file descriptor set with the INPUT command. Certain
checks are performend on the certificate. Note that the code will also handle PKCS\#12
files and import private keys; a helper program is used for that.

2.6.9 Delete certificates

To delete certificate the command
DELKEYS pattern

is used. To allow multiple patterns (which are ORed) quoting is required: Spaces are to
be translated into "+" or into "%20"; in turn this requires that the usual escape quoting
rules are done.

The certificates must be specified unambiguously otherwise an error is returned.

16

Using the GNU Privacy Guard

Chapter 3: Invoking GPG-AGENT 17

3 Invoking GPG-AGENT

gpg-agent is a daemon to manage secret (private) keys independelty from any protocol. It
is used as a backend for gpg and gpgsm as well as for a couple of other utilities.

The usual way to run the agent is from the ~/.xsession file:
eval ‘gpg-agent --daemon®

If you don’t use an X server, you can also put this into your regular startup file “/.profile
or .bash_profile. It is best not to run multiple instance of the gpg-agent, so you should
make sure that only is running: gpg-agent uses an environment variable to inform clients
about the communication parameters. You can write the content of this environment vari-
able to a file so that you can test for a running agent. This short script may do the job:

if test -f $HOME/.gpg-agent-info && \
kill -0 ‘cut -d: -f 2 $HOME/.gpg-agent-info¢ 2>/dev/null; then
GPG_AGENT_INFO=‘cat $HOME/.gpg-agent-info°
export GPG_AGENT_INFO
else
eval ‘gpg-agent --daemon‘
echo $GPG_AGENT_INFO >$HOME/.gpg-agent-info
fi
You should always add the following lines to your .bashrc or whatever initialization file is
used for all shell invocations:
GPG_TTY="‘tty"
export GPG_TTY
It is important that this environment variable always reflects the output of the tty com-
mand. For W32 systems this option is not required.

Please make sure that a proper pinentry program has been installed under the default
filename (which is system dependant) or use the option pinentry-pgm to specify the full
name of that program. It is often useful to install a symbolic link from the actual used
pinentry (e.g. ‘/usr/bin/pinentry-gtk’) to the expected one (e.g. ‘/usr/bin/pinentry’).

See [Option Index|, page 61, for an index to GPG-AGENT’s commands and options.

3.1 Commands

Commands are not distinguished from options execpt for the fact that only one one com-
mand is allowed.

--version
Print the program version and licensing information. Not that you can abbre-
viate this command.

—-help, -h
Print a usage message summarizing the most usefule command-line options.
Not that you can abbreviate this command.

—-—-dump-options
Print a list of all available options and commands. Not that you can abbreviate
this command.

18 Using the GNU Privacy Guard

--server Run in server mode and wait for commands on the stdin. The default mode
is to create a socket and listen for commands there.

--daemon Run the program in the background. This option is required to prevent it from
being accidently running in the background. A common way to do this is:

$ eval ‘gpg-agent —daemon*

3.2 Option Summary

--options file
Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘gpg-agent .conf’ and expected in
the ‘. gnupg’ directory directly below the home directory of the user.

--homedir dir
Set the name of the home directory to dir. If his option is not used, the
home directory defaults to ‘“/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on W32 systems) by means on the Registry
entry HKCU\Software\ GNU\ GnuPG:HomeDir.

-V

--verbose
Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to GPGSM, such as ‘-vv’.

-q
--quiet Try to be as quiet as possible.
--batch Don’t invoke a pinentry or do any other thing requiring human interaction.

--faked-system-time epoch
This option is only useful for testing; it sets the system time back or forth to
epoch which is the number of seconds elapsed since the year 1970.

--debug-level level
Select the debug level for investigating problems. level may be one of:

none no debugging at all.

basic some basic debug messages

advanced more verbose debug messages

expert even more detailed messages

guru all of the debug messages you can get

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releaes of this program. They are however carefully
selected to best aid in debugging.

Chapter 3: Invoking GPG-AGENT 19

--debug flags
This option is only useful for debugging and the behaviour may change at any
time without notice. FLAGS are bit encoded and may be given in usual C-
Syntax. The currently defined bits are:

0 (1) X.509 or OpenPGP protocol related data
1 (2) values of big number integers

2 (4) low level crypto operations

5 (32) memory allocation

6 (64) caching

7 (128) show memory statistics.

9 (512) write hashed data to files named dbgmd-000%
10 (1024) trace Assuan protocol

12 (4096) bypass all certificate validation

--debug-all
Same as -—debug=0xffffffff

--debug-wait n
When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

-—-no—-detach
Don’t detach the process from the console. This is manly usefule for debugging.

-s

--sh

-C

--csh Format the info output in daemon mode for use with the standard Bourne shell
respective the C-shell . The default ist to guess it based on the environment
variable SHELL which is in almost all cases sufficient.

—--no-grab

Tell the pinentryo not to grab the keyboard and mouse. This option should in
general not be used to avaoid X-sniffing attacks.

--log-file file
Append all logging output to file. This is very helpful in seeing what the agent
actually does.

--disable-pth
Don’t allow multiple connections. This option is in general not very useful.

-—allow-mark-trusted
Allow clients to mark keys as trusted, i.e. put them into the trustlist.txt
file. This is by default not allowed to make it harder for users to inadvertly
accept Root-CA keys.

20 Using the GNU Privacy Guard

--ignore-cache-for-signing
This option will let gpg-agent bypass the passphrase cache for all signing op-
eration. Note that there is also a per-session option to control this behaviour
but this command line option takes precedence.

-—default-cache-ttl n
Set the time a cache entry is valid to n seconds. The default are 600 seconds.

-—-max-cache-ttl n
Set the maximum time a cache entry is valid to n seconds. After this time a
cache entry will get expired even if it has been accessed recently. The default
are 2 hours (7200 seconds).

-—-pinentry-program filename
Use program filename as the PIN entry. The default is installation dependend
and can be shown with the --version command.

--scdaemon-program filename
Use program filename as the Smartcard daemon. The default is installation
dependend and can be shown with the ——version command.

--use-standard-socket

--no-use-standard-socket
By enabling this option gpg-agent will listen on the socket named
‘S.gpg-agent’, located in the home directory, and not create a random socket
below a temporary directory. Tools connecting to gpg-agent should first try
to connect to the socket given in environment variable GPG_AGENT_INFO
and the fall back to this socket. This option may not be used if the home
directory is mounted as a remote file system.

Note, that as of now, W32 systems default to this option.

--display string
--ttyname string
--ttytype string
--lc-type string
--lc-messages string
These options are used with the server mode to pass localization information.

--keep-tty

--keep-display
Ignore requests to change change the current TTY respective the X window
system’s DISPLAY variable. This is useful to lock the pinentry to pop up at the
TTY or display you started the agent.

All the long options may also be given in the configuration file after stripping off the
two leading dashes.

3.3 Use of some signals.

A running gpg-agent may be controlled by signals, i.e. using the kill command to send
a signal to the process.

Chapter 3: Invoking GPG-AGENT 21

Here is a list of supported signals:

SIGHUP This signals flushes all chached passphrases and when the program was started
with a configuration file, the configuration file is read again. Only certain
options are honored: quiet, verbose, debug, debug-all, no-grab, pinentry-
program, default-cache-ttl and ignore-cache-for-signing. scdaemon-
program is also supported but due to the current implementation, which calls
the scdaemon only once, it is not of much use.

SIGTERM Shuts down the process but waits until all current requests are fulfilled. If the
process has received 3 of these signals and requests are still pending, a shutdown
is forced.

SIGINT Shuts down the process immediately.

SIGUSR1
SIGUSR2 These signals are used for internal purposes.

3.4 Examples

$ eval ‘gpg-agent --daemon®

3.5 Agent’s Assuan Protocol

The gpg-agent should be started by the login shell and set an environment variable to tell
clients about the socket to be used. Clients should deny to access an agent with a socket
name which does not match its own configuration. An application may choose to start an
instance of the gpgagent if it does not figure that any has been started; it should not do this
if a gpgagent is running but not usable. Because gpg-agent can only be used in background
mode, no special command line option is required to activate the use of the protocol.

To identify a key we use a thing called keygrip which is the SHA-1 hash of an canoncical
encoded S-Expression of the the public key as used in Libgcrypt. For the purpose of this
interface the keygrip is given as a hex string. The advantage of using this and not the hash
of a certificate is that it will be possible to use the same keypair for different protocols,
thereby saving space on the token used to keep the secret keys.

3.5.1 Decrypting a session key

The client asks the server to decrypt a session key. The encrypted session key should have
all information needed to select the appropriate secret key or to delegate it to a smartcard.

SETKEY <keyGrip>

Tell the server about the key to be used for decryption. If this is not used, gpg-agent
may try to figure out the key by trying to decrypt the message with each key available.

PKDECRYPT

The agent checks whether this command is allowed and then does an INQUIRY to get
the ciphertext the client should then send the cipher text.

22 Using the GNU Privacy Guard

S: INQUIRE CIPHERTEXT
C: D (xxxxxXX
C: D xXxXX)
C: END

Please note that the server may send status info lines while reading the data lines from
the client. The data send is a SPKI like S-Exp with this structure:

(enc-val
(<algo>
(<param_namel> <mpi>)

(<param_namen> <mpi>)))

Where algo is a string with the name of the algorithm; see the libgcrypt documentation
for a list of valid algorithms. The number and names of the parameters depend on the
algorithm. The agent does return an error if there is an inconsistency.

If the decryption was successful the decrypted data is returned by means of "D" lines.
Here is an example session:

PKDECRYPT

INQUIRE CIPHERTEXT

D (enc-val elg (a 349324324)
D (b 3F444677CA)))

END

session key follows

D 1234567890ABCDEFO

OK descryption successful

N nnwn

3.5.2 Signing a Hash

The client ask the agent to sign a given hash value. A default key will be chosen if no key
has been set. To set a key a client first uses:

SIGKEY <keyGrip>

This can be used multiple times to create multiple signature, the list of keys is reset with
the next PKSIGN command or a RESET. The server test whether the key is a valid key to
sign something and responds with okay.

SETHASH <hexstring>

The client can use this command to tell the server about the data (which usually is a
hash) to be signed.

The actual signing is done using
PKSIGN <options>

Options are not yet defined, but my later be used to choosen among different algorithms
(e.g. pkes 1.5)

The agent does then some checks, asks for the passphrase and if SETHASH has not been
used asks the client for the data to sign:

Chapter 3: Invoking GPG-AGENT 23

S: INQUIRE HASHVAL
C: D ABCDEF012345678901234
C: END

As a result the server returns the signature as an SPKI like S-Exp in "D" lines:
(sig-val
(<algo>
(<param_namel> <mpi>)

(<param_namen> <mpi>)))
The operation is affected by the option
OPTION use-cache-for-signing=0|1

The default of 1 uses the cache. Setting this option to 0 will lead gpg-agent to ignore
the passphrase cache. Note, that there is also a global command line option for gpg-agent
to globally disable the caching.

Here is an example session:

SIGKEY <keyGrip>

0K key available

SIGKEY <keyGrip>

0K key available

PKSIGN

I did ask the user whether he really wants to sign
I did ask the user for the passphrase
INQUIRE HASHVAL

D ABCDEF012345678901234

END

signature follows

D (sig-val rsa (s 45435453654612121212))
0K

N nnohnnonunwn Q n Q

3.5.3 Generating a Key

This is used to create a new keypair and store the secret key inside the active PSE -w which
is in most cases a Soft-PSE. An not yet defined option allows to choose the storage location.
To get the secret key out of the PSE, a special export tool has to be used.

GENKEY

Invokes the key generation process and the server will then inquire on the generation
parameters, like:
S: INQUIRE KEYPARM
C: D (genkey (rsa (nbits 1024)))
C: END
The format of the key parameters which depends on the algorithm is of the form:
(genkey
(algo
(parameter_name_1)

24 Using the GNU Privacy Guard

(parameter_name_n)))

If everything succeeds, the server returns the *public key* in a SPKI like S-Expression
like this:
(public-key
(rsa
(n <mpi>)
(e <mpi>)))
Here is an example session:

GENKEY

INQUIRE KEYPARM

D (genkey (rsa (nbits 1024)))

END

D (public-key

D (rsa (n 326487324683264) (e 10001)))
OK key created

N nNnn Qwn Q

3.5.4 Importing a Secret Key

This operation is not yet supportted by GpgAgent. Specialized tools are to be used for this.

There is no actual need because we can expect that secret keys created by a 3rd party
are stored on a smartcard. If we have generated the key ourself, we do not need to import
it.

3.5.5 Export a Secret Key

Not implemented.

Should be done by an extra tool.

3.5.6 Importing a Root Certificate

Actually we do not import a Root Cert but provide a way to validate any piece of data by
storing its Hash along with a description and an identifier in the PSE. Here is the interface
desription:

ISTRUSTED <fingerprint>

Check whether the OpenPGP primary key or the X.509 certificate with the given finger-
print is an ultimately trusted key or a trusted Root CA certificate. The fingerprint should
be given as a hexstring (without any blanks or colons or whatever in between) and may be
left padded with 00 in case of an MD5 fingerprint. GPGAgent will answer with:

OK

The key is in the table of trusted keys.
ERR 304 (Not Trusted)

The key is not in this table.

Chapter 3: Invoking GPG-AGENT 25

Gpg needs the entire list of trusted keys to maintain the web of trust; the following
command is therefore quite helpful:

LISTTRUSTED
GpgAgent returns a list of trusted keys line by line:

S: D 000000001234454556565656677878AF2F1ECCFF P

S: D 340387563485634856435645634856438576457A P

S: D FEDC6532453745367FD83474357495743757435D S

S: 0K

The first item on a line is the hexified fingerprint where MD5 ingerprints are 00 padded

to the left and the second item is a flag to indicate the type of key (so that gpg is able to
only take care of PGP keys). P = OpenPGP, S = S/MIME. A client should ignore the rest
of the line, so that we can extend the format in the future.

Finally a client should be able to mark a key as trusted:
MARKTRUSTED fingerprint "P"|"S"
The server will then pop up a window to ask the user whether she really trusts this key.
For this it will probably ask for a text to be displayed like this:

INQUIRE TRUSTDESC

D Do you trust the key with the fingerprint QFPRQ
D bla fasel blurb.

END

0K

Known sequences with the pattern @foo@ are replaced according to this table:

naaaawn

@FPR16@ Format the fingerprint according to gpg rules for a v3 keys.
@FPR20@ Format the fingerprint according to gpg rules for a v4 keys.
QFPRG@ Choose an appropriate format to format the fingerprint.

@@ Replaced by a single @

3.5.7 Ask for a passphrase

This function is usually used to ask for a passphrase to be used for conventional encryp-
tion, but may also be used by programs which need special handling of passphrases. This
command uses a syntax which helps clients to use the agent with minimum effort.

GET_PASSPHRASE cache_id [error_message prompt description]

cache_id is expected to be a hex string used for caching a passphrase. Use a X to bypass
the cache. With no other arguments the agent returns a cached passphrase or an error.

error_message is either a single X for no error message or a string to be shown as an
error message like (e.g. "invalid passphrase"). Blanks must be percent escaped or replaced
by +°.

prompt is either a single X for a default prompt or the text to be shown as the prompt.
Blanks must be percent escaped or replaced by +.

description is a text shown above the entry field. Blanks must be percent escaped or
replaced by +.

26 Using the GNU Privacy Guard

The agent either returns with an error or with a OK followed by the hex encoded
passphrase. Note that the length of the strings is implicitly limited by the maximum length
of a command.

CLEAR_PASSPHRASE cache_id

may be used to invalidate the cache entry for a passphrase. The function returns with
OK even when there is no cached passphrase.

3.5.8 Ask for confirmation

This command may be used to ask for a simple confirmation by presenting a text and 2
bottonts: Okay and Cancel.

GET_CONFIRMATION description

descriptionis displayed along with a Okay and Cancel button. Blanks must be percent
escaped or replaced by +. A X may be used to display confirmation dialog with a default
text.

The agent either returns with an error or with a OK. Note, that the length of description
is implicitly limited by the maximum length of a command.

3.5.9 Check whether a key is available

This can be used to see whether a secret key is available. It does not return any information
on whether the key is somehow protected.

HAVEKEY keygrip

The Agent answers either with OK or No_Secret_Key (208). The caller may want to
check for other error codes as well.

3.5.10 Register a smartcard

LEARN [--send]

This command is used to register a smartcard. With the —send option given the certifi-
cates are send back.

3.5.11 Change a Passphrase

PASSWD keygrip

This command is used to interactively change the passphrase of the key indentified by
the hex string keygrip.

Chapter 4: Invoking the SCDAEMON 27

4 Invoking the SCDAEMON

The scdaemon is a daemon to manage smartcards. It is usually invoked by gpg-agent and
in general not used directly.

See [Option Index], page 61, for an index to GPG-AGENTS’s commands and options.

4.1 Commands

Commands are not distinguished from options execpt for the fact that only one one com-
mand is allowed.

--version
Print the program version and licensing information. Not that you can abbre-
viate this command.

--help, -h
Print a usage message summarizing the most usefule command-line options.
Not that you can abbreviate this command.

—--dump-options
Print a list of all available options and commands. Not that you can abbreviate
this command.

--server Run in server mode and wait for commands on the stdin. This is default mode
is to create a socket and listen for commands there.

--daemon Run the program in the background. This option is required to prevent it from
being accidently running in the background.

--print-atr
This is mainly a debugging command, used to print the ATR (Answer-To-Reset)
of a card and exit immediately.

4.2 Option Summary

--options file
Reads configuration from file instead of from the default per-user configuration
file. The default configuration file is named ‘scdaemon.conf’ and expected in
the ‘. gnupg’ directory directly below the home directory of the user.

--homedir dir
Set the name of the home directory to dir. If his option is not used, the
home directory defaults to ‘~/.gnupg’. It is only recognized when given on
the command line. It also overrides any home directory stated through the
environment variable GNUPGHOME or (on W32 systems) by means on the Registry
entry HKCU\Software\ GNU\ GnuPG:HomeDir.

-V

28 Using the GNU Privacy Guard

--verbose
Outputs additional information while running. You can increase the verbosity
by giving several verbose commands to gpgsm, such as ‘-vv’.

—--debug-level level
Select the debug level for investigating problems. level may be one of:

none no debugging at all.

basic some basic debug messages

advanced more verbose debug messages

expert even more detailed messages

guru all of the debug messages you can get

How these messages are mapped to the actual debugging flags is not specified
and may change with newer releaes of this program. They are however carefully
selected to best aid in debugging.

--debug flags
This option is only useful for debugging and the behaviour may change at any
time without notice. FLAGS are bit encoded and may be given in usual C-
Syntax. The currently defined bits are:

0 (1) X.509 or OpenPGP protocol related data
1 (2) values of big number integers

2 (4) low level crypto operations

5 (32) memory allocation

6 (64) caching

7 (128) show memory statistics.

9 (512) write hashed data to files named dbgmd-000%*
10 (1024) trace Assuan protocol

12 (4096) bypass all certificate validation

--debug-all
Same as ——debug=0xffffffff

--debug-wait n
When running in server mode, wait n seconds before entering the actual pro-
cessing loop and print the pid. This gives time to attach a debugger.

--debug-sc n
Set the debug level of the OpenSC library to n.

--no-detach
Don’t detach the process from the console. This is manly usefule for debugging.

——log-file file
Append all logging output to file. This is very helpful in seeing what the agent
actually does.

Chapter 4: Invoking the SCDAEMON 29

—--reader-port number
When the program has been build without OpenSC support, this option must
be used to specify the port of the card terminal. A value of 0 refers to the first
serial device; add 32768 to access USB devices. The default is 32768 (first USB
device).

—--ctapi-driver library
Use library to access the smartcard reader. The current default is
libtowitoko.so. Note that the use of this interface is deprecated; it may be
removed in future releases.

-—allow-admin

--deny-admin
This enables the use of Admin class commands for card applications where this
is supported. Currently we support it for the OpenPGP card. Deny is the
default. This commands is useful to inhibit accidental access to admin class
command which could ultimately lock the card through worng PIN numbers.

--disable-application name
This option disables the use of the card application named name. This is mainly
useful for debugging or if a application with lower priority should be used by
default.

All the long options may also be given in the configuration file after stripping off the
two leading dashes.

4.3 Description of card applications
scdaemon supports the card applications as described below.
4.3.1 The OpenPGP card application “openpgp”

This application is currently only used by gpg but may in future also be useful with gpgsm.
The specification for such a card is available at http://g10code.com/docs/openpgp-card-1.0.pdf.}i

4.3.2 The Telesec NetKey card “nks”

This is the main application of the Telesec cards as available in Germany. It is a superset
of the German DINSIG card. The card is used by gpgsm.

4.3.3 The DINSIG card application “dinsig”

This is an application as described in the German draft standard DIN V 66291-1. 1t is
intended to be used by cards supporteing the German signature law and its bylaws (SigG
and SigV).

http://g10code.com/docs/openpgp-card-1.0.pdf

30 Using the GNU Privacy Guard

4.3.4 The PKCS#15 card application “p15”

This is common fraqmework for smart card applications; support is only available if compiled
with support for the OpenSC library. It is used by gpgsm.

4.4 Examples

$ scdaemon --server -v

4.5 Scdaemon’s Assuan Protocol

The SC-Daemon should be started by the system to provide access to external tokens. Using
Smartcards on a multi-user system does not make much sense expcet for system services,
but in this case no regular user accounts are hosted on the machine.

A client connects to the SC-Daemon by connecting to the socket named
‘/var/run/scdaemon/socket’, configuration information is read from /etc/scdaemon.conf

Each connection acts as one session, SC-Daemon takes care of syncronizing access to a
token between sessions.

4.5.1 Return the serial number

This command should be used to check for the presence of a card. It is special in that it can
be used to reset the card. Most other commands will return an error when a card change
has been detected and the use of this function is therefore required.

Background: We want to keep the client clear of handling card changes between oper-
ations; i.e. the client can assume that all operations are done on the same card unless he
call this function.

SERTALNO
Return the serial number of the card using a status reponse like:
S SERIALNO D27600000000000000000000 0O

The trailing 0 should be ignored for now, it is reserved for a future extension. The serial
number is the hex encoded value identified by the 0x5A tag in the GDO file (FIX=0x2F02).

4.5.2 Read all useful information from the card

LEARN [--force]

Learn all useful information of the currently inserted card. When used without the force
options, the command might do an INQUIRE like this:

INQUIRE KNOWNCARDP <hexstring_with_serialNumber> <timestamp>

The client should just send an END if the processing should go on or a CANCEL to force
the function to terminate with a cancel error message. The response of this command is a
list of status lines formatted as this:

Chapter 4: Invoking the SCDAEMON 31

S KEYPAIRINFO hexstring with_keygrip hexstring with_id

If there is no certificate yet stored on the card a single "X" is returned in
hexstring_with_keygrip.

4.5.3 Return a certificate

READCERT hexified_certid
This function is used to read a certificate identified by hexified_certid from the card.

4.5.4 Return a public key

READKEY hexified_certid
Return the public key for the given cert or key ID as an standard S-Expression.

4.5.5 Signing data with a Smartcard

To sign some data the caller should use the command
SETDATA hexstring

to tell scdaemon about the data to be signed. The data must be given in hex notation.
The actual signing is done using the command

PKSIGN keyid

where keyid is the hexified ID of the key to be used. The key id may have been retrieved
using the command LEARN.

4.5.6 Decrypting data with a Smartcard

To decrypt some data the caller should use the command
SETDATA hexstring

to tell scdaemon about the data to be decrypted. The data must be given in hex notation.
The actual decryption is then done using the command

PKDECRYPT keyid
where keyid is the hexified ID of the key to be used.

4.5.7 Read an attribute’s value.

TO BE WRITTEN.

4.5.8 Update an attribute’s value.

TO BE WRITTEN.

4.5.9 Generate a new key on-card.

TO BE WRITTEN.

32 Using the GNU Privacy Guard

4.5.10 Return random bytes generate on-card.

TO BE WRITTEN.

4.5.11 Change PINs.

TO BE WRITTEN.

4.5.12 Perform a VERIFY operation.

TO BE WRITTEN.

Chapter 5: Helper Tools 33

5 Helper Tools

GnuPG comes with a couple of smaller tools:

5.1 Read logs from a socket

Most of the main utilities are able to write there log files to a Unix Domain socket if
configured that way. watchgnupg is a simple listener for such a socket. It ameliorates the
output with a time stamp and makes sure that long lines are not interspersed with log
output from other utilities.

watchgnupg is commonly invoked as
‘watchgnupg --force ~/.gnupg/S.log’
This starts it on the current terminal for listening on the socket ‘*~/.gnupg/S.1log’.

watchgnupg understands these options:
--force Delete an already existing socket file.

--verbose
Enable extra informational output.

--version
print version of the program and exit

--help Display a brief help page and exit

5.2 Create .gnupg home directories.

If GnuPG is installed on a system with existing user accounts, it is sometimes required to
populate the GnuPG home directory with existing files. Especially a ‘trustlist.txt’ and
a keybox with some initial certificates are often desired. This scripts help to do this by
copying all files from ‘/etc/skel/.gnupg’ to the home directories of the accounts given on
the command line. It takes care not to overwrite existing GnuPG home directories.

addgnupghome is invoked by root as:

‘addgnupghome accountl account2 ... accountn’

5.3 Modify .gnupg home directories.

The gpgconf is a utility to automatically and reasonable safely query and modify config-
uration files in the ‘.gnupg’ home directory. It is designed not to be invoked manually by
the user, but automatically by graphical user interfaces (GUI).!

gpgconf provides access to the configuration of one or more components of the GnuPG
system. These components correspond more or less to the programs that exist in the

I Please note that currently no locking is done, so concurrent access should be avoided. There are some
precautions to avoid corruption with concurrent usage, but results may be inconsistent and some changes
may get lost. The stateless design makes it difficult to provide more guarantees.

34 Using the GNU Privacy Guard

GnuPG framework, like GnuPG, GPGSM, DirMngr, etc. But this is not a strict one-to-one
relationship. Not all configuration options are available through gpgconf. gpgconf provides
a generic and abstract method to access the most important configuration options that can
feasibly be controlled via such a mechanism.

gpgconf can be used to gather and change the options available in each component, and
can also provide their default values. gpgconf will give detailed type information that can
be used to restrict the user’s input without making an attempt to commit the changes.

gpgecont provides the backend of a configuration editor. The configuration editor would
usually be a graphical user interface program, that allows to display the current options,
their default values, and allows the user to make changes to the options. These changes can
then be made active with gpgconf again. Such a program that uses gpgconf in this way
will be called GUI throughout this section.

5.3.1 Invoking gpgconf

One of the following commands must be given:

--list-components
List all components. This is the default command used if none is specified.

--list-options component
List all options of the component component.

-—change-options component
Change the options of the component component.

The following options may be used:

-v
--verbose
Outputs additional information while running. Specifically, this extends nu-
merical field values by human-readable descriptions.

-r
--runtime
Only used together with --change-options. If one of the modified options can
be changed in a running daemon process, signal the running daemon to ask it
to reparse its configuration file after changing.

This means that the changes will take effect at run-time, as far as this is possible.
Otherwise, they will take effect at the next start of the respective backend
programs.

5.3.2 Format conventions

Some lines in the output of gpgconf contain a list of colon-separated fields. The following
conventions apply:

e The GUI program is required to strip off trailing newline and/or carriage return char-
acters from the output.

Chapter 5: Helper Tools 35

e gpgconf will never leave out fields. If a certain version provides a certain field, this
field will always be present in all gpgconf versions from that time on.

e Future versions of gpgconf might append fields to the list. New fields will always
be separated from the previously last field by a colon separator. The GUI should be
prepared to parse the last field it knows about up until a colon or end of line.

e Not all fields are defined under all conditions. You are required to ignore the content
of undefined fields.

There are several standard types for the content of a field:

verbatim

Some fields contain strings that are not escaped in any way. Such fields are
described to be used wverbatim. These fields will never contain a colon character
(for obvious reasons). No de-escaping or other formatting is required to use the
field content. This is for easy parsing of the output, when it is known that the
content can never contain any special characters.

percent-escaped

localised

Some fields contain strings that are described to be percent-escaped. Such strings
need to be de-escaped before their content can be presented to the user. A
percent-escaped string is de-escaped by replacing all occurences of %XY by the
byte that has the hexadecimal value XY. X and Y are from the set 0-9a-f.

Some fields contain strings that are described to be localised. Such strings are
translated to the active language and formatted in the active character set.

unsigned number

Some fields contain an unsigned number. This number will always fit into a 32-
bit unsigned integer variable. The number may be followed by a space, followed
by a human readable description of that value (if the verbose option is used).
You should ignore everything in the field that follows the number.

signed number

option

Some fields contain a signed number. This number will always fit into a 32-bit
signed integer variable. The number may be followed by a space, followed by a
human readable description of that value (if the verbose option is used). You
should ignore everything in the field that follows the number.

Some fields contain an option argument. The format of an option argument
depends on the type of the option and on some flags:

no argument
The simplest case is that the option does not take an argument
at all (type 0). Then the option argument is an unsigned number
that specifies how often the option occurs. If the list flag is not
set, then the only valid number is 1. Options that do not take an
argument never have the default or optional arg flag set.

number If the option takes a number argument (alt-type is 2 or 3), and it
can only occur once (1list flag is not set), then the option argument
is either empty (only allowed if the argument is optional), or it is a
number. A number is a string that begins with an optional minus

36 Using the GNU Privacy Guard

character, followed by one or more digits. The number must fit into
an integer variable (unsigned or signed, depending on alt-type).

number list
If the option takes a number argument and it can occur more than
once, then the option argument is either empty, or it is a comma-
separated list of numbers as described above.

string If the option takes a string argument (alt-type is 1), and it can only
occur once (1list flag is not set) then the option argument is either
empty (only allowed if the argument is optional), or it starts with
a double quote character (") followed by a percent-escaped string
that is the argument value. Note that there is only a leading double
quote character, no trailing one. The double quote character is only
needed to be able to differentiate between no value and the empty
string as value.

string list If the option takes a number argument and it can occur more than
once, then the option argument is either empty, or it is a comma-
separated list of string arguments as described above.

The active language and character set are currently determined from the locale environ-
ment of the gpgconf program.

5.3.3 Listing components

The command --list-components will list all components that can be configured with
gpgconf. Usually, one component will correspond to one GnuPG-related program and
contain the options of that programs configuration file that can be modified using gpgconf.
However, this is not necessarily the case. A component might also be a group of selected
options from several programs, or contain entirely virtual options that have a special effect
rather than changing exactly one option in one configuration file.

A component is a set of configuration options that semantically belong together. Fur-
thermore, several changes to a component can be made in an atomic way with a single
operation. The GUI could for example provide a menu with one entry for each component,
or a window with one tabulator sheet per component.

The command argument --1ist-components lists all available components, one per line.
The format of each line is:

name :description

name This field contains a name tag of the component. The name tag is used to
specify the component in all communication with gpgconf. The name tag is to
be used wverbatim. It is thus not in any escaped format.

description
The string in this field contains a human-readable description of the component.
It can be displayed to the user of the GUI for informational purposes. It is
percent-escaped and localized.

Example:

Chapter 5: Helper Tools 37

$ gpgconf --list-components
gpg:GPG for OpenPGP
gpg-agent :GPG Agent
scdaemon:Smartcard Daemon
gpgsm:GPG for S/MIME
dirmngr:Directory Manager

5.3.4 Listing options

Every component contains one or more options. Options may be gathered into option
groups to allow the GUI to give visual hints to the user about which options are related.

The command argument --list-options component lists all options (and the groups
they belong to) in the component component, one per line. component must be the string
in the field name in the output of the ——~list-components command.

There is one line for each option and each group. First come all options that are not in
any group. Then comes a line describing a group. Then come all options that belong into
each group. Then comes the next group and so on. There does not need to be any group
(and in this case the output will stop after the last non-grouped option).

The format of each line is:

name :flags :level :description:type:alt-type:argname :default :argdef : valuel}

name This field contains a name tag for the group or option. The name tag is used
to specify the group or option in all communication with gpgconf. The name
tag is to be used wverbatim. It is thus not in any escaped format.

flags The flags field contains an unsigned number. Its value is the OR~wise combina-
tion of the following flag values:

group (1) If this flag is set, this is a line describing a group and not an option.

The following flag values are only defined for options (that is, if the group flag
is not used).

optional arg (2)
If this flag is set, the argument is optional. This is never set for
type 0 (none) options.

list (4) If this flag is set, the option can be given multiple times.

runtime (8)
If this flag is set, the option can be changed at runtime.

default (16)
If this flag is set, a default value is available.

default desc (32)
If this flag is set, a (runtime) default is available. This and the
default flag are mutually exclusive.

no arg desc (64)
If this flag is set, and the optional arg flag is set, then the option
has a special meaning if no argument is given.

38

level

description

type

Using the GNU Privacy Guard

This field is defined for options and for groups. It contains an unsigned number
that specifies the expert level under which this group or option should be dis-
played. The following expert levels are defined for options (they have analogous
meaning for groups):

basic (0) This option should always be offered to the user.

advanced (1)
This option may be offered to advanced users.

expert (2)
This option should only be offered to expert users.

invisible (3)
This option should normally never be displayed, not even to expert
users.

internal (4)
This option is for internal use only. Ignore it.

The level of a group will always be the lowest level of all options it contains.

This field is defined for options and groups. The string in this field contains a
human-readable description of the option or group. It can be displayed to the
user of the GUI for informational purposes. It is percent-escaped and localized.

This field is only defined for options. It contains an wunsigned number that
specifies the type of the option’s argument, if any. The following types are
defined:

Basic types:
none (0) No argument allowed.

string (1)
An unformatted string.

int32 (2) A signed number.

uint32 (3)
An unsigned number.

Complex types:

pathname (32)
A string that describes the pathname of a file. The file does not
necessarily need to exist.

ldap server (33)
A string that describes an LDAP server in the format:
hostname : port :username : password : base_dn

More types will be added in the future. Please see the alt-type field for infor-
mation on how to cope with unknown types.

Chapter 5:

alt-type

argname

default

argdef

value

Helper Tools 39

This field is identical to type, except that only the types 0 to 31 are allowed.
The GUI is expected to present the user the option in the format specified
by type. But if the argument type type is not supported by the GUI, it can
still display the option in the more generic basic type alt-type. The GUI must
support all the defined basic types to be able to display all options. More basic
types may be added in future versions. If the GUI encounters a basic type it
doesn’t support, it should report an error and abort the operation.

This field is only defined for options with an argument type type that is not 0.
In this case it may contain a percent-escaped and localised string that gives a
short name for the argument. The field may also be empty, though, in which
case a short name is not known.

This field is defined only for options. Its format is that of an option argument
(See Section 5.3.2 [Format conventions|, page 34, for details). If the default
value is empty, then no default is known. Otherwise, the value specifies the
default value for this option. Note that this field is also meaningful if the
option itself does not take a real argument.

This field is defined only for options for which the optional arg flag is set. If
the no arg desc flag is not set, its format is that of an option argument (See
Section 5.3.2 [Format conventions|, page 34, for details). If the default value
is empty, then no default is known. Otherwise, the value specifies the default
value for this option. If the no arg desc flag is set, the field is either empty
or contains a description of the effect of this option if no argument is given.
Note that this field is also meaningful if the option itself does not take a real
argument.

This field is defined only for options. Its format is that of an option argument.
If it is empty, then the option is not explicitely set in the current configuration,
and the default applies (if any). Otherwise, it contains the current value of the
option. Note that this field is also meaningful if the option itself does not take
a real argument.

5.3.5 Changing options

The command --change-options component will attempt to change the options of the
component component to the specified values. component must be the string in the field
name in the output of the ——list-components command. You have to provide the options
that shall be changed in the following format on standard input:

name : flags :new-value

name

flags

This is the name of the option to change. name must be the string in the field
name in the output of the --list-options command.

The flags field contains an unsigned number. Its value is the OR~wise combina-
tion of the following flag values:

default (16)
If this flag is set, the option is deleted and the default value is used
instead (if applicable).

40 Using the GNU Privacy Guard

new-value The new value for the option. This field is only defined if the default flag is
not set. The format is that of an option argument. If it is empty (or the field is
omitted), the default argument is used (only allowed if the argument is optional
for this option). Otherwise, the option will be set to the specified value.
Examples:
To set the force option, which is of basic type none (0):
$ echo ’force:0:1° | gpgconf --change-options dirmngr
To delete the force option:
$ echo ’force:16:’ | gpgconf --change-options dirmngr

The --runtime option can influence when the changes take effect.

5.4 Generate an X.509 certificate request

This is a simple tool to interactivly generate a certificate request whicl will be printed to
stdout.

gpgsm-gencert.sh is invoked as:

‘gpgsm-cencert.sh’

5.5 Put a passphrase into the cache.

The gpg-preset-passphrase is a utility to seed the internal cache of a running gpg-agent
with passphrases. It is mainly useful for unattended machines, where the usual pinentry
tool may not be used and the passphrases for the to be used keys are given at machine
startup.

4

Passphrases set with this utility don’t expire unless the ‘--forget’ option is used to
explicitly clear them from the cache — or gpg-agent is either restarted or reloaded (by
sending a SIGHUP to it). It is necessary to allow this passphrase presetting by starting
gpg-agent with the ‘~-allow-preset-passphrase’.

5.5.1 List of all commands and options.

gpg-preset-passphrase is invoked this way:
gpg-preset-passphrase [options] [command] keygrip

keygrip is a 40 character string of hexadecimal characters identifying the key for which
the passphrase should be set or cleared. This keygrip is listed along with the key when
running the command: gpgsm --dump-secret-keys. One of the following command options
must be given:

--preset Preset a passphrase. This is what you usually will use. gpg-preset-
passphrase will then read the passphrase from stdin.

—-—forget Flush the passphrase for the given keygrip from the cache.

The following additional options may be used:

Chapter 5: Helper Tools 41

-v
--verbose
Output additional information while running.

-P string

--passphrase string
Instead of reading the passphrase from stdin, use the supplied string as
passphrase. Note that this makes the passphrase visible for other users.

42

Using the GNU Privacy Guard

Chapter 6: Notes pertaining to certain OSes. 43

6 Notes pertaining to certain OSes.

GnuPG has been developed on GNU/Linux systems and is know to work on almost all
Free OSes. All modern POSIX systems should be supproted right now, however there are
probably a lot of smaller glitches we need to fix first. The major problem areas are:

e For logging to sockets and other internal operations the fopencookie function (funopen
under *BSD) is used. This is a very convient function which makes it possible to create
outputs in a structures and easy maintainable way. The drawback however is that most
proprietary OSes don’t support this function. At gl0 Code we have looked into several
ways on how to overcome this limitation but no sufficiently easy and maintainable way
has been found. Porting glibc to a general POSIX system is of course an option and
would make writing portable software much easier; this it has not yet been done and
the system administrator wouldneed to cope with the GNU specific admin things in
addition to the generic ones of his system.

We have now settled to use explicit stdio wrappers with a functionality similar to
funopen. Although the code for this has already been written (libestream), we have
not yet changed GnuPG to use it.

This means that on systems not supporting either funopen or fopencookie, logging to
a socket won’t work, prompts are not formatted as pretty as theyshould be and gpgsm’s
LISTKEYS Assuan command does not work.

e We are planning to use file descriptor passing for interprocess communication. This
will allow us save a lot of resources and improve performance of certain operations a
lot. Systems not supporting this won’t gain these benefits but we try to keep them
working the satndard way as it is done today.

e We require more or less full POSIX compatibility. This has been arround for 15 years
now and thus we don’t believe it makes sense to support non POSIX systems anymore.
WEell, we of course the usual workarounds for near POSIX systems well be applied.

There is one exception of this rule: Systems based the Microsoft Windows API (called
here W32) will be supported to some extend.

6.1 Microsoft Windows Notes

The port to Microsoft Windows based OSes is pretty new and has some limitations we might
remove over time. Note, that we have not yet done any security audit and you should not
use any valuable private key. In particular, using it on a box with more than one user,
might lead to a key compromise.

Current limitations are:

e The LISTKEYS Assuan command of gpgsm is not supported. Using the command line
options ‘--list-keys’ or ‘--list-secret-keys’ does however work.

e No support for CRL checks. By default the option ‘--disable-crl-checks’ has been
turned on and the log will show an appropriate warning message. The reason for this
is that the separate CRL checking daemin (dirmngr) has not been ported to W32.

e gpgconf does not create backup files, so in case of trouble your configuration file might
get lost.

44

Using the GNU Privacy Guard

watchgnupg is not available. Logging to sockets is not possible.
The periodical smartcard status checking done by scdaemon is not yet supported.

Detached running of the gpg-agent is not directly supported. It needs to be started in
a console and left alone then.

Chapter 7: How to solve problems 45

7 How to solve problems

Everyone knows that software often does not do what it should do and thus there is a need
to track down problems. We call this debugging in a reminiscent to the moth jamming a
relay in a Mark II box back in 1947.

Most of the probelsm a merely configuration and user problems but nevertheless there are
the most annoying ones and reposnible for may gray hairs. We try to give some guidelines
here on how to identify and solve the problem at hand.

7.1 Debugging Tools

The GnuPG distribution comes with a couple of tools, useful to help find and solving
problems.

7.1.1 Scrutinizing a keybox file

A keybox is a file fomat used to store public keys along with meta information and indices.
The commonly used one is the file ‘pubring.kbx’ in the ‘.gnupg’ directory. It contains all
X.509 certificates as well as OpenPGP keys! .

When called the standard way, e.g.:

‘kbxutil ~/.gnupg/pubring.kbx’
it lists all records (called BLOBS) with there meta-information in a human readable format.
To see statistics on the keybox in question, run it using

‘kbxutil --stats ~/.gnupg/pubring.kbx’

and you get an output like:

Total number of blobs: 99
header: 1

empty: 0

openpgp: 0

x509: 98

non flagged: 81

secret flagged: 0
ephemeral flagged: 17

In this example you see that the keybox does not have any OpenPGP keys but contains
98 X.509 cerificates and a total of 17 keys or certificates are flagges as ephemeral, meaning
that they are only temporary stored (cached) in the keybox and won’t get listed using the
usual commands provided by gpgsm or gpg. 81 certifcates are stored in a standard way and
directly available from gpgsm.

L Well, OpenPGP keys are not implemented, gpg still used the keyring file ‘pubring.gpg’

46 Using the GNU Privacy Guard

7.2 Commonly Seen Problems

e FError code ‘Not supported’ from Dirmngr

Most likely the option ‘enable-ocsp’ is active for gpgsm but Dirmngr’s OCSP feature
has not been enabled using ‘allow-ocsp’ in ‘dirmngr.conf’.

e The Curses based Pinentry does not work

The far most common reason for this is that the environment variable GPG_TTY has not
been set correctly. Make sure that it has been set to a real tty devce and not just to
‘/dev/tty’; i.e. ‘GPG_TTY=tty’ is plainly wrong; what you want is ‘GPG_TTY=‘tty‘’ —
note the back ticks. Also make sure that this environment variable gets exported, that
is you should follow up the setting with an ‘export GPG_TTY’ (assuming a Bourne style
shell). Even for GUI based Pinentries; you should have set GPG_TTY. See the section
on installing the gpg-agent on how to do it.

Appendix A: Description of the Assuan protocol. 47

Appendix A Description of the Assuan protocol.

The architecture of the modular GnuPG system is based on a couple of highly specialized
modules which make up a network of client server communication. A common framework
for intermodule communication is therefore needed and should be implemented in a library.

A.0.1 Goals

e Common framework for module communication
e FEasy debugging

e FEasy module testing

e Extendible

e Optional authentication and encryption facility

e Usable to access external hardware

A.0.2 Design criteria

e Client Server with back channel

e Use a mainly text based protocol

e Escape certain control characters

e Allow indefinite data length

e Request confidentiality for parts of the communication

e Dummy module should allow direct linking of client and server.
e Inline data or descriptor passing for bulk data

e No protection against DoS needed

e Subliminal channels are not an issue
A.0.3 Implementation

The implementation is line based with a maximum line size of 1000 octects. The default IPC
mechanism are Unix Domain Sockets.

On a connect request the server responds either with an okay or an error status. For
authentication check the server may send an Inquiry Response prior to the first Okay, it
may also issue Status messages. The server must check that the client is allowed to connect,
this is done by requesting the credentials for the peer and comparing them to those of the
server. This avoids attacks based on wrong socket permissions.

It may choose to delay the first response in case of an error. The server never closes the
connection - however the lower protocol may do so after some time of inactivity or when
the connection is in an error state.

All textual messages are assumed to be in UTF-8 unless otherwise noted.

48 Using the GNU Privacy Guard

A.0.4 Server responses

0K [<arbitary debugging information>]
Request was successful.

ERR errorcode [<human readable error description>]
Request could not be fulfilled. The error codes are mostly application specific
except for a few common ones.

S keyword <status information depending on keyword>
Informational output by the server, still processing the request.

<string>
Comment line issued only for debugging purposes. Totally ignored.

D <raw data>
Raw data returned to client. There must be exactly one space after the 'D’.
The values for '%’, CR and LF must be percent escaped; this is encoded as
%25, %0D and %0A. Only uppercase letters should be used in the hexadecimal
representation. Other characters may be percent escaped for easier debugging.
All these Data lines are considered one data stream up to the OK or ERR
response. Status and Inquiry Responses may be mixed with the Data lines.

INQUIRE keyword> <parameters>
Server needs further information from the client. The client should answer with
a command which is allowed after an inquiry. Note that the server does not
confirm that client command but either continues processing or ends processing
with an error status. Not all commands are allowed.

A client should only check the first letter of each line and then skip over to the next
token (except for data lines where the raw data starts exactly after 2 bytes). Lines larger
than 1000 bytes should be treated as a communication error. (The rationale for having a
line length limit is to allow for easier multiplexing of multiple channels).

A.0.5 Client requests

The server waits for client requests after he sent an Okay or Error. The client should not
issue a request in other cases with the exception of the CANCEL command.

command <parameters>

command is a one word string without preceding white space. Parameters are command
specific, CR, LF and the percent signs should be percent escaped as described above. To
send a backslash as the last character it should also be percent escaped. Percent escaping
is allowed anywhere in the parameters but not in the command. The line ends with a CR,
LF or just a LF.

Not yet implemented feature: If there is a need for a parameter list longer than the line
length limit (1000 characters including command and CR, LF), the last character of the line
(right before the CR/LF or LF) must be a non-escape encoded backslash. The following
line is then expected to be a continuation of the line with the backslash replaced by a blank
and the line ending removed.

Appendix A: Description of the Assuan protocol. 49

D <raw data>

Raw data to the server. There must be exactly one space after the 'D’. The values for
'%’, CR and LF must be percent escaped; this is encoded as %25, %0D and %0A. Only
uppercase letters should be used in the hexadecimal representation. Other characters may
be percent escaped for easier debugging. All these Data lines are considered one data stream
up to the OKAY or ERROR response. Status and Inquiry Responses may be mixed with
the Data lines.

END

Lines beginning with a # or empty lines are ignored. This is useful to comment test
scripts.

Although the commands are application specific, some of them are used by all protocols
and partly directly supported by the Assuan library:

CANCEL his is the one special command which aborts the current request. it can be sent
at any time and the server will stop its operation right before it would send the
next response line (of any type).

BYE Close the connect, the server will reply with an 0K.

AUTH Not yet specified as we don’t implement it in the first phase. See my mail
to gpa-dev on 2001-10-25 about the rationale for measurements against local
attacks.

RESET Reset the connection but not any existing authentication. The server should

release all resources associated with the connection.

END Used by a client to mark the end of raw data. The server may send END to
indicate a partial end of data.

A.0.6 Error Codes

Here we keep a list of error codes used in any Assuan based protocol. The format is the
string ERR, white space, the error number, white space, a textual description of the error.

100 Unknown Command

101 Not Implemented

301 certificate has been revoked [DirMngr]

302 no CRL known for this certificate [DirMngr]

303 CRL is too old and a new one could not be retrieved [DirMngr]

50

Using the GNU Privacy Guard

Appendix B: GNU GENERAL PUBLIC LICENSE ol

Appendix B GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place — Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

B.0.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

52

Using the GNU Privacy Guard

B.0.2 TERMS AND CONDITIONS FOR COPYING,

1.

2.

3.

DISTRIBUTION AND MODIFICATION

This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

Appendix B: GNU GENERAL PUBLIC LICENSE 93

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

54

10.

Using the GNU Privacy Guard

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Fach version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

Appendix B: GNU GENERAL PUBLIC LICENSE 95

11.

12.

13.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

56 Using the GNU Privacy Guard

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Contributors to GnuPG 57

Contributors to GnuPG

The GnuPG project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact the maintainer if you have been left out or some of your
contributions are not listed.

David Shaw, Matthew Skala, Michael Roth, Niklas Hernaeus, Nils Ellmenreich, Rmi
Guyomarch, Stefan Bellon, Timo Schulz and Werner Koch wrote the code. Birger Langk-
jer, Daniel Resare, Dokianakis Theofanis, Edmund GRIMLEY EVANS, Gal Quri, Gre-
gory Steuck, Nagy Ferenc Lszl, Ivo Timmermans, Jacobo Tarri’o Barreiro, Janusz Alek-
sander Urbanowicz, Jedi Lin, Jouni Hiltunen, Laurentiu Buzdugan, Magda Procha’zkova’,
Michael Anckaert, Michal Majer, Marco d’Itri, Nilgun Belma Buguner, Pedro Morais, Tedi
Heriyanto, Thiago Jung Bauermann, Rafael Caetano dos Santos, Toomas Soome, Urko
Lusa, Walter Koch, Yosiaki IIDA did the official translations. Mike Ashley wrote and
maintains the GNU Privacy Handbook. David Scribner is the current FAQ editor. Lorenzo
Cappelletti maintains the web site.

The new modularized architecture of gnupg 1.9 as well as the X.509/CMS part has
been developed as part of the gypten project. Direct contributors to this project are:
Bernhard Herzog, who did extensive testing and tracked down a lot of bugs. Bernhard
Reiter, who made sure that we met the specifications and the deadlines. He did extensive
testing and came up with a lot of suggestions. Jan-Oliver Wagner made sure that we met
the specifications and the deadlines. He also did extensive testing and came up with a lot
of suggestions. Karl-Heinz Zimmer and Marc Mutz had to struggle with all the bugs and
misconceptions while working on KDE integration. Marcus Brinkman extended GPGME,
cleaned up the Assuan code and fixed bugs all over the place. Moritz Schulte took over
Libgerypt maintenance and developed it into a stable an useful library. Steffen Hansen had
a hard time to write the dirmngr due to underspecified interfaces. Thomas Koester did
extensive testing and tracked down a lot of bugs. Werner Koch designed the system and
wrote most of the code.

The following people helped greatly by suggesting improvements, testing, fixing bugs,
providing resources and doing other important tasks: Adam Mitchell, Albert Chin, Alec
Habig, Allan Clark, Anand Kumria, Andreas Haumer, Anthony Mulcahy, Ariel T Glenn,
Bob Mathews, Bodo Moeller, Brendan O’Dea, Brenno de Winter, Brian M. Carlson, Brian
Moore, Brian Warner, Bryan Fullerton, Caskey L. Dickson, Cees van de Griend, Charles
Levert, Chip Salzenberg, Chris Adams, Christian Biere, Christian Kurz, Christian von
Roques, Christopher Oliver, Christian Recktenwald, Dan Winship, Daniel Eisenbud, Daniel
Koening, Dave Dykstra, David C Niemi, David Champion, David Ellement, David Hallinan,
David Hollenberg, David Mathog, David R. Bergstein, Detlef Lannert, Dimitri, Dirk Lat-
termann, Dirk Meyer, Disastry, Douglas Calvert, Ed Boraas, Edmund GRIMLEY EVANS,
Edwin Woudt, Enzo Michelangeli, Ernst Molitor, Fabio Coatti, Felix von Leitner, fish
stiqz, Florian Weimer, Francesco Potorti, Frank Donahoe, Frank Heckenbach, Frank Sta-
jano, Frank Tobin, Gabriel Rosenkoetter, Gal Quri, Gene Carter, Geoff Keating, Georg
Schwarz, Giampaolo Tomassoni, Gilbert Fernandes, Greg Louis, Greg Troxel, Gregory
Steuck, Gregery Barton, Harald Denker, Holger Baust, Hendrik Buschkamp, Holger Schurig,
Holger Smolinski, Holger Trapp, Hugh Daniel, Huy Le, Ian McKellar, Ivo Timmermans,
Jan Krueger, Jan Niehusmann, Janusz A. Urbanowicz, James Troup, Jean-loup Gailly, Jeff

58 Using the GNU Privacy Guard

Long, Jeffery Von Ronne, Jens Bachem, Jeroen C. van Gelderen, J Horacio MG, J. Michael
Ashley, Jim Bauer, Jim Small, Joachim Backes, Joe Rhett, John A. Martin, Johnny Teveen,
Jrg Schilling, Jos Backus, Joseph Walton, Juan F. Codagnone, Jun Kuriyama, Kahil D.
Jallad, Karl Fogel, Karsten Thygesen, Katsuhiro Kondou, Kazu Yamamoto, Keith Clay-
ton, Kevin Ryde, Klaus Singvogel, Kurt Garloff, Lars Kellogg-Stedman, L. Sassaman, M
Taylor, Marcel Waldvogel, Marco d’Itri, Marco Parrone, Marcus Brinkmann, Mark Adler,
Mark Elbrecht, Mark Pettit, Markus Friedl, Martin Kahlert, Martin Hamilton, Martin
Schulte, Matt Kraai, Matthew Skala, Matthew Wilcox, Matthias Urlichs, Max Valian-
skiy, Michael Engels, Michael Fischer v. Mollard, Michael Roth, Michael Sobolev, Michael
Tokarev, Nicolas Graner, Mike McEwan, Neal H Walfield, Nelson H. F. Beebe, NIIBE Yu-
taka, Niklas Hernaeus, Nimrod Zimerman, N J Doye, Oliver Haakert, Oskari Jskelinen,
Pascal Scheffers, Paul D. Smith, Per Cederqvist, Phil Blundell, Philippe Laliberte, Peter
Fales, Peter Gutmann, Peter Marschall, Peter Valchev, Piotr Krukowiecki, QingLong, Ralph
Gillen, Rat, Reinhard Wobst, Rmi Guyomarch, Reuben Sumner, Richard Outerbridge,
Robert Joop, Roddy Strachan, Roger Sondermann, Roland Rosenfeld, Roman Pavlik, Ross
Golder, Ryan Malayter, Sam Roberts, Sami Tolvanen, Sean MacLennan, Sebastian Klemke,
Serge Munhoven, SL Baur, Stefan Bellon, Dr.Stefan.Dalibor, Stefan Karrmann, Stefan
Keller, Steffen Ullrich, Steffen Zahn, Steven Bakker, Steven Murdoch, Susanne Schultz,
Ted Cabeen, Thiago Jung Bauermann, Thijmen Klok, Thomas Roessler, Tim Mooney,
Timo Schulz, Todd Vierling, TOGAWA Satoshi, Tom Spindler, Tom Zerucha, Tomas Fasth,
Tommi Komulainen, Thomas Klausner, Tomasz Kozlowski, Thomas Mikkelsen, Ulf Mller,
Urko Lusa, Vincent P. Broman, Volker Quetschke, W Lewis, Walter Hofmann, Walter Koch,
Wayne Chapeskie, Wim Vandeputte, Winona Brown, Yosiaki ITDA, Yoshihiro Kajiki and
Gerlinde Klaes.

This software has been made possible by the previous work of Chris Wedgwood, Jean-
loup Gailly, Jon Callas, Mark Adler, Martin Hellmann Paul Kendall, Philip R. Zimmer-
mann, Peter Gutmann, Philip A. Nelson, Taher ElGamal, Torbjorn Granlund, Whitfield
Diffie, some unknown NSA mathematicians and all the folks who have worked hard to create
complete and free operating systems.

And finally we’d like to thank everyone who uses these tools, submits bug reports and
generally reminds us why we’re doing this work in the first place.

Glossary 59

Glossary

‘ARL’ The Authority Revocation List is technical identical to a CRL but used for CAs
and not for end user certificates.

‘CRL’ The Certificate Revocation List is a list containing certificates revoked by the
issuer.

‘Keygrip’ This term is used by GnuPG to describe a 20 byte hash value used to identify
a certain key without referencing to a concrete protocol. It is used internally
to access a private key. Usually it is shown and entered as a 40 character
hexadecimal formatted string.

‘OCSP’ The Online Certificate Status Protocol is used as an alternative to a CRL. It is
described in RFC 2560.

60

Using the GNU Privacy Guard

Option Index

Option Index

F= S 9
L 9

agent-program..................iiiia... 8
allow—admincoviivnnnennnnn., 29
allow-mark-trusted......................... 19
=g 11T s P 9
ASSUME—AYMOYL . o vt et e ee e et e et e e eeeeens 9
assume-baseb4 9
assume-binary 9

B

C o 19
call-dirmngr 5
call-protect-tool........................... 6
csh. . 19

daemon 18, 27
debug............. ...l 10, 19, 28
debug-all............................ 10, 19, 28
debug-allow-core-dump 10
debug-ignore-expiration 10
debug-level 10, 18, 28
debug-no-chain-validation................. 10
debug-sc........... ... 28
debug-wait Ll 19, 28
deCTypt. ..o 5
default-cache-ttl.......................... 20
delete-keyso 7
deny-admin 29
dirmnr-program..................... ..., 8
disable-application........................ 29
disable-crl-checks.......................... 8
disable-oCSpiiiii 8
disable-policy-checks....................... 8
disable-pth........... 19
display.......c.cooiiiiiiiii 20
dump-external-keys.......................... 6
AUMP-KEYS. ..ot 6
dump-options 5, 17, 27

dump-secret-keys............... 6

61
enable-crl-checks........................... 8
eNable—0CSPoouuiei i 8
enable-policy-checks........................ 8
eNCTYPL ..ot 5
@XPOTL . oottt 7
faked-system-time 9, 18
fixed-passphrase........................... 11
force...... 33
force-crl-refresh........................... 8
gen-—Key 6
help......... ... i 5,17, 27, 33
homedir................. 7,18, 27
ignore-cache-for-signing 20
keep-displayc.oiiiiiiiiiiii 20
keep—tty........ 20
keydb-clear-some-cert-flags 6
1C-MeSSAZES ..o it 20
1C=tyPe . .o 20
learn-card ...t 7
1iSt-KeYS. .ot 6
list-secret-keys............................ 6
10Cal-USeT ...ttt 9
log-file......... 8, 19, 28
max-cache-ttl.............................. 20
no-detach............ 19, 28
no-grab............. i 19
no-secmem-warning........................... 8
no-use-standard-socket 20

62

@)

options............ Ll 7,18, 27

P

passphrase 41
PasSWd 7
pinentry-program........................... 20
policy-file 8
prefer-system-dirmngr....................... 8
print-atr 27
Q

Lo 18
quiet ... 18

S 19
scdaemon-program.un..... 20
SEIVETL .ottt et 5, 18, 27

Sh . 19

Using the GNU Privacy Guard

R 2 PP 7, 18, 28
verboseii... 7,18, 28, 33, 41
verify..... ... 5
Versioniiiiiii. 5, 17, 27, 33

W

with-ephemeral-keys........................ 10
with-key-data................. 9
with-validation.......................... ... 9

Index

Index

A

Assuan, IPC 47
C

command options.................... 3,5, 17, 27
contributors........ L i il 57
G

GPG command options 3
GPG-AGENT command options.............. 17
GPGSM command options 5
GPL, GNU General Public License............ 51

I

63
introduction........... 1
O
options, GPG command 3
options, GPG-AGENT command 17
options, GPGSM command 5
options, SCDAEMON command 27
S
SCDAEMON command options. 27
SIGHUP ... 21
SIGINT . ..o 21
SIGTERM ... 21
SIGUSRI ..o 21
SIGUSR2 ... 21

64

Using the GNU Privacy Guard

	Introduction
	Invoking GPG
	Invoking GPGSM
	Commands
	Commands not specific to the function
	Commands to select the type of operation
	How to manage the certificate and keys

	Option Summary
	How to change the configuration
	Certificate related options
	Input and Output
	How to change how the CMS is created.
	Doing things one usually don't want to do.

	Examples
	Unattended Usage
	Automated signature checking
	The Protocol the Server Mode Uses.
	Encrypting a Message
	Decrypting a message
	Signing a Message
	Verifying a Message
	Generating a Key
	List available keys
	Export certificates
	Import certificates
	Delete certificates

	Invoking GPG-AGENT
	Commands
	Option Summary
	Use of some signals.
	Examples
	Agent's Assuan Protocol
	Decrypting a session key
	Signing a Hash
	Generating a Key
	Importing a Secret Key
	Export a Secret Key
	Importing a Root Certificate
	Ask for a passphrase
	Ask for confirmation
	Check whether a key is available
	Register a smartcard
	Change a Passphrase

	Invoking the SCDAEMON
	Commands
	Option Summary
	Description of card applications
	The OpenPGP card application ``openpgp''
	The Telesec NetKey card ``nks''
	The DINSIG card application ``dinsig''
	The PKCS#15 card application ``p15''

	Examples
	Scdaemon's Assuan Protocol
	Return the serial number
	Read all useful information from the card
	Return a certificate
	Return a public key
	Signing data with a Smartcard
	Decrypting data with a Smartcard
	Read an attribute's value.
	Update an attribute's value.
	Generate a new key on-card.
	Return random bytes generate on-card.
	Change PINs.
	Perform a VERIFY operation.

	Helper Tools
	Read logs from a socket
	Create .gnupg home directories.
	Modify .gnupg home directories.
	Invoking gpgconf
	Format conventions
	Listing components
	Listing options
	Changing options

	Generate an X.509 certificate request
	Put a passphrase into the cache.
	List of all commands and options.

	Notes pertaining to certain OSes.
	Microsoft Windows Notes

	How to solve problems
	Debugging Tools
	Scrutinizing a keybox file

	Commonly Seen Problems
	Description of the Assuan protocol.

	Goals
	Design criteria
	Implementation
	Server responses
	Client requests
	Error Codes
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Contributors to GnuPG
	Glossary
	Option Index
	Index

