SQL*Plus® User’s Guide and
Reference

Release 3.3
Part No. A42562-1

ORACLE"

The Relational Database Management System

SQL*Plus User’s Guide and Reference, Release 3.3

Part No. A42562-1

Copyright © 1986, 1992, 1994, 1995, 1996 Oracle Corporation
All rights reserved. Printed in the U.S.A.

Contributing Authors: Frank Rovitto

Contributors: Larry Baer, Lisa Colston, Roland Kovacs, Karen Denchfield-Mas-
terson, Alison Holloway, Christopher Jones, Anita Lam, Nimish Mehta, Luan
Nim, Bud Osterberg, Richard Rendell, Farokh Shapoorijee, Larry Stevens, Andre
Touma

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227-14, Rights in Data — General, including Alternate 111
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error free.

Oracle, SQL*Plus, SQL*Forms, and Oracle Spatial Data Option are registered
trademarks and Oracle7, Designer/2000, Developer/2000, Oralce Text Server
Option, Oracle Mobile Agents, Oracle Media Obijects, and Oracle Office are
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

Preface

T he SQL*Plus (pronounced “sequel plus’) User’s Guide and Reference
introduces the SQL*Plus program and its uses. It also provides a
detailed description of each SQL*Plus command.

Audience This Guide addresses business and technical professionals who have a
basic understanding of the SQL database language. If you do not have
any familiarity with this database tool, you should refer to the Oracle7
Server SQL Language Reference Manual. If you plan to use the PL/SQL
database language in conjunction with SQL*Plus, refer to the PL/SQL
User’s Guide and Reference for information on using PL/SQL.

Preface i

How to Use this Guide Refer to the following tables for a list of topics covered by this Guide, a
description of each topic, and the number of the chapter that covers the

topic.
PART |
Understanding SQL*Plus
Chapter
Topic Description Number
Introduction Gives an overview of SQL*Plus, instruc- 1
tions on using this Guide, and information
on what you need to run SQL*Plus.
Learning Explains how to start SQL*Plus and enter 2
SQL*Plus Basics and execute commands. You learn by fol-
lowing step-by-step examples using sam-
ple tables.
Manipulating Also through examples, helps you learn to 3
Commands edit commands, save them for later use,
and write interactive commands.
Formatting Explains how you can format columns, 4
Query Results clarify your report with spacing and sum-
mary lines, define page dimensions and
titles, and store and print query results.
Also uses step-by-step examples.
Accessing Tells you how to connect to default and 5
Databases remote databases, and how to copy data

SQL*Plus User’s Guide and Reference

between databases and between tables on
the same database. Includes one example.

PART Il Reference

Chapter

Topic Description Number
Command Gives you a SQL*Plus command sum- 6
Reference mary and detailed descriptions of each

SQL*Plus command in alphabetical

order.
COPY Command Lists copy command error messages, Appendix
Messages and their causes, and appropriate actions A
Codes for error recovery.
Release 3.3 Describes enhancements to SQL*Plus ~ Appendix
Enhancements in Release 3.3. B
SQL*Plus Limits Lists the maximum values for ele- Appendix

ments of SQL*Plus. C
SQL Command Provides a list of major SQL com- Appendix
List mands and clauses. D
Security Explains how to restrict users’ access Appendix

to certain SQL*Plus and SQL com- E

mands.
SQL*Plus Provides information on SQL*Plus Appendix
Commands from commands from earlier Releases. F
Earlier Releases
Glossary Defines technical terms associated Glossary

Related Publications Related documentation includes the following publications:

with Oracle and SQL*Plus.

SQL*Plus Quick Reference

PL/SQL User’s Guide and Reference
SQL*Module User’s Guide and Reference
Oracle7 Server SQL Language Reference Manual
Oracle7 Server Concepts Manual

Oracle7 Server Administrator’s Guide
Oracle7 Server Application Developer’s Guide
Oracle7 Server Distributed Databases Manual
Oracle7 Server Utilities User’s Guide

Oracle7 Server Messages Manual

Oracle7 Server Migration Guide

Oracle7 Server Reference Manual

Preface iii

« Oracle7 Server Tuning Guide

« Oracle7 Parallel Server Manual

« Programmer’s Guide to the Oracle Call Interface

+ Programmer’s Guide to the Oracle Precompilers

« Programmer’s Guide to the Oracle Pro*C Precompiler

« Pro*COBOL Supplement to the Oracle Precompilers Guide

+ Oracle installation and user’s manual(s) provided for your
operating system

Your Comments Are Oracle Corporation values and appreciates your comments as an Oracle

Welcome user and reader of the manuals. As we write, revise, and evaluate, your
opinions are the most important input we receive. At the back of this
manual is a Reader’s Comment Form that we encourage you to use to
tell us both what you like and what you dislike about this (or other)
Oracle manuals. If the form is not at the end of this manual, or if you
would like to contact us, please use the following addresses and phone
numbers.

For documentation questions/comments, contact:

SQL*Plus Documentation Manager
Research & Development

Oracle Systems Australia Pty Ltd
324 St. Kilda Road

Melbourne VIC 3004

Australia

+61 3 9209 1600 (telephone)

+61 3 9699 1259 (fax)

For product questions/comments, contact:

SQL*Plus Product Manager
Research & Development

Oracle Systems Australia Pty Ltd
324 st. Kilda Road

Melbourne VIC 3004

Australia

+61 3 9209 1600 (telephone)

+61 3 9699 1259 (fax)

iv SQL*Plus User’s Guide and Reference

Contents
PART I UNDERSTANDING SQL*PLUS
Chapter 1 Introduction 1-1
Overview of SQL*PIUS 1-2
BasiC CONCEPLS . ..o 1-2
Who CanUse SQL*PIUSo, 1-3
Other Ways of Working with Oracle 1-3
UsingthisGuide i 1-4
Conventions for Command Syntax 1-4
SampleTables i 1-5
What You Needto Run SQL*Plus 1-6
Hardware and Software 1-6
Information Specific to Your Operating System 1-7
Username and Password 1-7
AccesstoSample Tables, 1-7
Chapter 2 Learning SQL*PlusBasics, 2-1
Getting Started ... 2-2
Usingthe Keyboard 2-2
Starting SQL*PIUS 2-3
Leaving SQL*PIUSo i 2-4
Entering and ExecutingCommands 2-5
Running SQLCommandst 2-6
Running PL/SQLBlocks o i 2-9
Running SQL*PlusCommands 2-10

Contents Y

Chapter 3

Variables that Affect Running Commands 2-12

Saving Changes to the Database Automatically 2-12
Stopping a Command while It ISRunning 2-13
Collecting Timing Statistics on Commands YouRun 2-14
Running Host Operating System Commands 2-14
Running SQL*FOrmsFOrms, 2-14
GettingHelp ... 2-14
Listing a Table Definition 2-14
Listing PL/SQL Definitions 2-15
Controllingthe Display, 2-15
Interpreting Error Messagesc.covuiiiieinn... 2-15
Manipulating Commands, 3-1
EditingCommands i 3-2
Listingthe BufferContents 3-3
Editingthe CurrentLine 3-3
AddingaNew Line............. i, 3-5
Appending Texttoaline, 3-5
Deleting Lines ...ttt 3-6
Editing Commands with a System Editor 3-6
Saving Commands for LaterUse 3-7
Storing Commands in Command Files 3-7
Placing Commentsin Command Files 3-10
Retrieving Command Files 3-11
Running Command Files 3-12
NestingCommand Files 3-13
Modifying Command Files 3-14
Exiting from a Command File with a Return Code 3-14
Setting Up Your SQL*Plus Environment 3-15
Storing and Restoring SQL*Plus System Variables 3-15
Writing Interactive Commands 3-17
Defining User Variables 3-17
Using Substitution Variables 3-17
Passing Parameters through the START Command 3-22
CommunicatingwiththeUser 3-24
Using Bind Variables i i i 3-26
Creating Bind Variables 3-27
Referencing Bind Variables, 3-27
Displaying Bind Variables 3-27
REFCURSOR Bind Variablest 3-28
Tracing Statements i 3-31
Controllingthe Report oo, 3-31

Vi SQL*Plus User’s Guide and Reference

ExecutionPlan 3-31

StatiStiCS ... 3-32
Tracing Parallel and Distributed Queries 3-34
Chapter 4 Formatting Query Resultsot 4-1
Formatting Columns i 4-3
Changing ColumnHeadings 4-3
Formatting NUMBER Columns 4-5
Formatting CHAR, VARCHAR?2 (VARCHAR), LONG,
DATE, and Trusted Oracle Columns 4-6
Copying Column Display Attributes 4-8
Listing and Resetting Column Display Attributes 4-8

Suppressing and Restoring Column Display Attributes 4-9
Printing a Line of Characters after Wrapped Column

Values ..o 4-9
Clarifying Your Report with Spacing and Summary Lines 4-10
Suppressing Duplicate Values in Break Columns 4-11
Inserting Space when a Break Column’s Value Changes ... 4-12
Inserting Space after EveryRow 4-13
Using Multiple Spacing Techniques 4-13
Listing and Removing Break Definitions 4-15
Computing Summary Lines when a Break Column’s
ValueChanges ... 4-15
Computing Summary Lines at the End of the Report 4-19
Computing Multiple Summary Values and Lines 4-19
Listing and Removing COMPUTE Definitions 4-21
Defining Page and Report Titles and Dimensions 4-22

Setting the Top and Bottom Titles and Headers and Footers 4-22
Displaying the Page Number and other System-

Maintained ValuesinTitles 4-26
Listing, Suppressing, and Restoring Page Title Definitions . 4-28
Displaying Column ValuesinTitles 4-28
Displaying the Current Datein Titles 4-30
Setting Page DiImensions, 4-30
Sending ResultstoaFile 4-33

Storing and PrintingQueryResults 4-33

Sending ResultstoaPrinter 4-34
Chapter 5 Accessing SQL Databasesc.ciiiiiiiiii 5-1
Connecting to the Default Database 5-2
Connecting to a Remote Database 5-2

Connecting to a Remote Database from within SQL*Plus .. 5-3

Contents vii

PART II

Chapter 6

Connecting to a Remote Database as You Start SQL*Plus .. 5-3

Copying Data from One Database to Another 5-4
Understanding COPY Command Syntax 5-4
Controlling Treatment of the Destination Table 5-5
Interpreting the Messages that COPY Displays 5-7
Specifying Another User’'sTable 5-7

Copying Data between Tables on One Database 5-8

REFERENCE

Command Reference i 6-1

SQL*Plus Command Summaryccooviiinnenn.. 6-3

@ (7at” SIgN) . oo 6-6

@@ (double “at”sign) 6-8

Z(slash) .. oo 6-10

ACCEPT .o 6-11

APPEND .. 6-13

BREAK . 6-14

BTITLE .. 6-19

CHANGE 6-20

CLEAR . 6-22

COLUMN 6-23

COMPUTE ..o 6-33

CONNECT ..o 6-39

COPY 6-41

DEFINE . 6-44

DEL .o 6-46

DESCRIBE 6-48

DISCONNECT ..t e 6-50

ED T . 6-51

EXECUTE . . o e e 6-53

N 6-54

GET o 6-56

HELP 6-57

HOST o 6-58

INPUT 6-59

L ST o e 6-61

PAUSE 6-63

PRINT .o 6-64

PROMPT 6-65

REMARK . 6-66

viii SQL*Plus User’s Guide and Reference

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

REPFOOTER e e
REPHEADER
RUN

SPOOL ..

UNDEFINE
VARIABLE
WHENEVER OSERROR
WHENEVERSQLERROR

COPY Command Messages and Codes

Release 3.3 Enhancements

SQL*Plus Limits

SQL Command List

Security

SQL*Plus Commands from Earlier Releases
Glossary

Index

Contents

iX

SQL*Plus User’s Guide and Reference

Understanding
SQL*Plus

Introduction

CHAPTER

T his chapter introduces you to SQL*Plus, covering the following
topics:

+ overview of the SQL*Plus program

- definition of basic concepts

- explanation of who can use SQL*Plus

- description of other programs you can use with Oracle
- command syntax conventions used in this Guide

- sample tables you will use

« equipment, software, and information you need to run SQL*Plus

Introduction 1-1

Overview of SQL*Plus

You can use the SQL*Plus program in conjunction with the SQL
database language and its procedural language extension, PL/SQL. The
SQL database language allows you to store and retrieve data in Oracle.
PL/SQL allows you to link several SQL commands through procedural
logic.

SQL*Plus enables you to manipulate SQL commands and PL/SQL
blocks, and to perform many additional tasks as well. Through
SQL*Plus, you can

« enter, edit, store, retrieve, and run SQL commands and PL/SQL
blocks

- format, perform calculations on, store, and print query results in
the form of reports

« list column definitions for any table
« access and copy data between SQL databases

- send messages to and accept responses from an end user

Basic Concepts The following definitions explain concepts central to SQL*Plus:

command An instruction you give SQL*Plus or Oracle.

block A group of SQL and PL/SQL commands related to
one another through procedural logic.

table The basic unit of storage in Oracle.

query A SQL command (specifically, a SQL SELECT
command) that retrieves information from one or
more tables.

query results The data retrieved by a query.

report Query results formatted by you through SQL*Plus
commands.

1-2 SQL*Plus User’s Guide and Reference

Who Can Use
SQL*Plus

Other Ways of Working
with Oracle

The SQL*Plus, SQL, and PL/SQL command languages are powerful
enough to serve the needs of users with some database experience, yet
straightforward enough for new users who are just learning to work

with Oracle.

The design of the SQL*Plus command language makes it easy to use.
For example, to give a column labelled ENAME in the database the
clearer heading “Employee”, you might enter the following command:

COLUMN ENAME HEADING EMPLOYEE

Similarly, to list the column definitions for a table called EMP, you might

enter this command:
DESCRIBE EMP

Oracle serves as the foundation for a complete set of application
development, and office automation tools. These tools support every
phase of a system’s development and life cycle, from analysis and
design through implementation and maintenance.

Designer/2000
Developer/2000

Discoverer/2000
Programmer/2000
Text Server Option

Spatial Data Option
Mobile Agents
WebServer Option
Gateways

Media Objects

Oracle Office

a set of second generation client/server
design tools

a set of second generation client/server
development tools

a set of end-user query tools
a set of 3GL programming language interfaces

an option to include full text storage and
retrieval in databases

an option to include multi-dimensional
(spatial) data in databases

a tool for applications using mobile and/or
detached clients

a tool which enables database access through
Web browsers and the Internet

a tool which enables access to data in
non-Oracle databases

a development tool for object-oriented
multimedia applications

an electronic messaging (Email), calendar and
scheduling system

Introduction 1-3

Using this Guide

This Guide gives you information on SQL*Plus that applies to all
operating systems. Some aspects of SQL*Plus, however, differ on each
operating system. Such operating-system-specific details are covered in
the Oracle installation and user’s manual(s) provided for your system.
Use these operating-system-specific manuals in conjunction with the
SQL*Plus User’s Guide and Reference.

Throughout this Guide, examples showing how to enter commands use
a common command syntax and a common set of sample tables. Both

are described below. You will find the conventions for command syntax
particularly useful when referring to the reference portion of this Guide.

Conventions for The following two tables describe the notation and conventions for
Command Syntax command syntax used in this Guide.
Feature Example Explanation
uppercase BTITLE Enter text exactly as spelled; it
need not be in uppercase.
lowercase italics column A clause value; substitute an ap-
propriate value.
words with specific ¢ A single character.
meanings
char A CHAR value—a literal in

1-4

single quotes—or an expression
with a CHAR value.

dore A date or an expression with a
DATE value.

expr An unspecified expression.

morn A number or an expression with
a NUMBER value.

text A CHAR constant with or with-

out single quotes.

variable A user variable (unless the text
specifies another variable type).

Table 1 -1 Commands, Terms, and Clauses

Other words are explained where used if their meaning is not explained
by context.

SQL*Plus User’s Guide and Reference

Feature Example Explanation

vertical bar | Separates alternative syntax
elements that may be optional
or mandatory.

brackets [OFF|ON] One or more optional items. If
two items appear separated by
|, enter one of the items sepa-
rated by |. Do not enter the
brackets or |.

braces {OFF|ON} A choice of mandatory items;
enter one of the items sepa-
rated by |. Do not enter the
braces or |.

underlining {QEE|ON} A default value; if you enter
nothing, SQL*Plus assumes
the underlined value.

ellipsis n... Preceding item(s) may be re-
peated any number of times.

Table 1 -2 Punctuation

Enter other punctuation marks (such as parentheses) where shown in
the command syntax.

Sample Tables Many of the concepts and operations in this Guide are illustrated by a
set of sample tables. These tables contain personnel records for a
fictitious company. As you complete the exercises in this Guide, imagine
that you are personnel director for this company.

The exercises make use of the information in two sample tables:

EMP Contains information about the employees of the
sample company.

DEPT Contains information about the departments in the
company.

Figure 1 -1 and Figure 1 — 2 show the information in these tables.

Introduction 1-5

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 30
7788 SCOTT ANALYST 7566 09-DEC-82 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0O 30
7876 ADAMS CLERK 7788 12-JAN-83 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03—-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Figure1-1 EMP Table

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Figure 1 -2 DEPT Table

What You Need to Run SQL*Plus

To run SQL*Plus, you need hardware, software, operating system
specific information, a username and password, and access to one or

more tables.
Hardware and Oracle and SQL*Plus can run on many different kinds of computers.
Software Your computer’s operating system manages the computer’s resources

and mediates between the computer hardware and programs such as
SQL*Plus. Different computers use different operating systems. For
information about your computer’s operating system, see the
documentation provided with the computer.

1-6 SQL*Plus User’s Guide and Reference

Information Specific to
Your Operating System

Username and
Password

Multi-User Systems

Single-User Systems

Access to Sample
Tables

Before you can begin using SQL*Plus, both Oracle and SQL*Plus must
be installed on your computer. Note that in order to take full advantage
of the enhancements in SQL*Plus Release 3.3, you must have Oracle?
Release 7.3. For a list of SQL*Plus Release 3.3 enhancements, see
Appendix B.

If you have multiple users on your computer, your organization should
have a Database Administrator (called a DBA) who supervises the use
of Oracle.

The DBA is responsible for installing Oracle and SQL*Plus on your
system. If you are acting as DBA, see the instructions for installing
Oracle and SQL*Plus in the Oracle installation and user’s manual(s)
provided for your operating system.

A few aspects of Oracle and SQL*Plus differ from one type of host
computer and operating system to another. These topics are discussed in
the Oracle installation and user’s manual(s), published in a separate
version for each host computer and operating system that SQL*Plus
supports.

Keep a copy of your Oracle installation and user’s manual(s) available
for reference as you work through this Guide. When necessary, this
Guide will refer you to your installation and user’s manual(s).

When you start SQL*Plus, you will need a username that identifies you
as an authorized Oracle user and a password that proves you are the
legitimate owner of your username. The demonstration username,
SCOTT, and password, TIGER, may be set up on your system during the
installation procedure. In this case, you can use the Oracle username
SCOTT and password TIGER with the EMP and DEPT tables

(Figure 1 -1 and Figure 1 - 2).

If several people share your computer’s operating system, your DBA
can set up your SQL*Plus username and password. You will also need a
system username and password to gain admittance to the operating
system. These may or may not be the same ones you use with SQL*Plus.

If only one person at a time uses your computer, you may be expected to
perform the DBA’s functions for yourself. In that case, you can use the
Oracle username SCOTT and password TIGER. If you want to define
your own username and password, see the Oracle7 Server SQL Language
Reference Manual.

Each table in the database is “owned” by a particular user. You may

wish to have your own copies of the sample tables to use as you try the
examples in this Guide. To get your own copies of the tables, see your

Introduction 1-7

DBA or run the Oracle-supplied command file named DEMOBLD (you
run this file from your operating system, not from SQL*Plus).

When you have no more use for the sample tables, remove them by
running another Oracle-supplied command file named DEMODROP.
For instructions on how to run DEMOBLD and DEMODROP, see the
Oracle installation and user’s manual(s) provided for your operating
system.

1-8 SQL*Plus User’s Guide and Reference

Learning SQL*Plus
Basics

CHAPTER

T his chapter helps you learn the basics of using SQL*Plus, including
the following topics:

« using the keyboard
. starting and leaving SQL*Plus

« running SQL commands, PL/SQL blocks, and SQL*Plus
commands

-+ understanding variables that affect running commands

+ saving changes to the database automatically

+ stopping a command while it is running

« collecting timing statistics on commands you run

« running host operating system commands and SQL*Forms forms
« listing a table definition

« listing a PL/SQL definition

- controlling the display

« interpreting error messages

Read this chapter while sitting at your computer and try out the
examples shown. Before beginning, make sure you have access to the
sample tables described in Chapter 1.

Learning SQL*Plus Basics 2-1

Getting Started

Using the Keyboard

To begin using SQL*Plus, you must first become familiar with the
functions of several keys on your keyboard and understand how to start
and leave SQL*Plus.

Several keys on your keyboard have special meaning in SQL*Plus.
Table 2 — 1 lists these keys.

See your Oracle installation and user’s manual(s) for your operating
system to learn which physical key performs each function on the
keyboard commonly used with your host computer.

Note: A SQL*Plus key may perform different functions when
pressed in other products or the operating system.

Fill in each blank in Table 2 — 1 with the name of the corresponding
keyboard key. Then locate each key on your keyboard.

SQL*Plus Keyboard Key Function

Key Name Name

[Return] End a line of input.

[Backspace] Move cursor left one character to
correct an error.

[Pause] Suspend program operation and
display of output.

[Resume] Resume program operation and
output [Pause].

[Cancel] Halt program operation; return to
the SQL*Plus command prompt.

[Interrupt] Exit SQL*Plus and return to the

host operating system.

Table 2 -1 SQL*Plus Special Keys and their Functions

2-2 SQL*Plus User’s Guide and Reference

Starting SQL*Plus

Example 2-1
Starting SQL*Plus

Now that you have identified important keys on your keyboard, you are
ready to start SQL*Plus.

This example shows you how to start SQL*Plus. Follow the steps
shown.

1. Make sure that Oracle has been installed on your computer.

2. Turn on your computer (if it is off) and log on to the host operating
system (if required). If you are already using your computer, you
need not log off or reset it. Simply exit from the program you are
using (if any).

You should see one or more characters at the left side of the screen.
This is the operating system’s command prompt, which signals that
the operating system is ready to accept a command. In this Guide
the operating system’s prompt will be represented by a dollar sign
($). Your computer’s operating system prompt may be different.

3. Enter the command SQLPLUS and press [Return]. This is an
operating system command that starts SQL*Plus.

Note: Some operating systems expect you to enter commands
in lowercase letters. If your system expects lowercase, enter the
SQLPLUS command in lowercase.

$ SQLPLUS

SQL*Plus displays its version number, the date, and copyright
information, and prompts you for your username (the text
displayed on your system may differ slightly):

SQL*Plus: Version 3.3 — on Fri June 30 09:39:26 1995

Copyright (c) Oracle Corporation 1979, 1994, 1995. All
rights reserved.

Enter user—name:

4. Enter your username and press [Return]. SQL*Plus displays the

prompt “Enter password:”.

5. Enter your password and press [Return] again. For your protection,

your password does not appear on the screen.

The process of entering your username and password is called
logging in. SQL*Plus displays the version of Oracle to which you
connected and the versions of available tools such as PL/SQL.

Learning SQL*Plus Basics 2-3

Shortcuts to Starting
SQL*Plus

Leaving SQL*Plus

2-4

Example 2-2
Exiting SQL*Plus

Next, SQL*Plus displays the SQL*Plus command prompt:
SQL>

The command prompt indicates that SQL*Plus is ready to accept
your commands.

If SQL*Plus does not start, you should see a message meant to help you
correct the problem. For further information, refer to the Oracle7 Server
Messages and Codes manual for Oracle messages, or to your operating
system manual for system messages.

When you start SQL*Plus, you can enter your username and password,
separated by a slash (/), following the command SQLPLUS. For
example, if your username is SCOTT and your password is TIGER, you
can enter

$ SQLPLUS SCOTT/TIGER

and press [Return]. You can also arrange to log in to SQL*Plus
automatically when you log on to your host operating system. See the
Oracle installation and user’s manual(s) provided for your operating
system for details.

When you are done working with SQL*Plus and wish to return to the
operating system, enter the EXIT command at the SQL*Plus command
prompt.

To leave SQL*Plus, enter the EXIT command at the SQL*Plus command
prompt:

SQL> EXIT

SQL*Plus displays the version of Oracle from which you disconnected
and the versions of tools available through SQL*Plus. After a moment
you will see the operating system prompt.

Before continuing with this chapter, follow steps 3, 4, and 5 of Example
2-1 to start SQL*Plus again. Alternatively, log in using the shortcut
shown under “Shortcuts to Starting SQL*Plus” above.

SQL*Plus User’s Guide and Reference

Entering and Executing Commands

Entering Commands

Getting Help

Executing Commands

Your computer’s cursor, or pointer (typically an underline, a rectangular
block, or a slash), appears after the command prompt. The cursor
indicates the place where the next character you type will appear on
your screen.

To tell SQL*Plus what to do, simply type the command you wish to
enter. Usually, you separate the words in a command from each other by
a space or tab. You can use additional spaces or tabs between words, if
you wish, to make your commands more readable.

Note: You will see examples of spacing and indentation
throughout this Guide. When you enter the commands in the
exercises, you do not have to space them as shown, but you may
find them clearer to read if you do.

You can enter commands in capitals or lowercase. For the sake of clarity,
all table names, column names, and commands in this Guide appear in
capital letters.

You can enter three kinds of commands at the command prompt:
+ SQL commands, for working with information in the database

+ PL/SQL blocks, also for working with information in the
database

« SQL*Plus commands, for formatting query results, setting
options, and editing and storing SQL commands and PL/SQL
blocks

The manner in which you continue a command on additional lines, end
a command, or execute a command differs depending on the type of
command you wish to enter and run. Examples of how to run and
execute these types of commands are found on the following pages.

To get online help for SQL*PLUS commands, type HELP at the
command prompt followed by the name of the command. For example:

SQL>HELP ACCEPT

If you get a response indicating that help is not available, consult your
database administrator. For more details about the help system, see the
HELP command in Chapter 6.

After you enter the command and direct SQL*Plus to execute it,

SQL*Plus processes the command and redisplays the command prompt,
indicating that you can enter another command.

Learning SQL*Plus Basics 2-5

Running SQL
Commands

Example 2-3
Entering a SQL
Command

The SQL command language enables you to manipulate data in the
database. See your Oracle7 Server SQL Language Reference Manual for
information on individual SQL commands.

In this example, you will enter and execute a SQL command to display
the employee number, name, job, and salary of each employee in the
sample table EMP.

1.

At the command prompt, enter the first line of the command:
SQL> SELECT EMPNO, ENAME, JOB, SAL

If you make a mistake, use [Backspace] to erase it and re-enter.
When you are done, press [Return] to move to the next line.

SQL*Plus will display a “2”, the prompt for the second line. Enter
the second line of the command:

2 FROM EMP WHERE SAL < 2500;
The semicolon(;) means that this is the end of the command. Press

[Return]. SQL*Plus processes the command and displays the results
on the screen:

EMPNO ENAME JOB SAL
7369 SMITH CLERK 800
7499 ALLEN SALESMAN 1600
7521 WARD SALESMAN 1250
7654 MARTIN SALESMAN 1250
7782 CLARK MANAGER 2450
7844 TURNER SALESMAN 1500
7876 ADAMS CLERK 1100
7900 JAMES CLERK 800
7934 MILLER CLERK 1300

9 rows selected
SQL>

After displaying the results and the number of rows retrieved,
SQL*Plus displays the command prompt again. If you made a
mistake and therefore did not get the results shown above, simply
re-enter the command.

The headings may be repeated in your output, depending on the
setting of a system variable called PAGESIZE. Whether you see the
message concerning the number of records retrieved depends on the
setting of a system variable called FEEDBACK. You will learn more
about system variables later in this chapter in the section “Variables

2-6 SQL*Plus User’s Guide and Reference

Understanding SQL
Command Syntax

that Affect Running Commands”. To save space, the number of
records selected will not be shown in the rest of the examples in this
Guide.

Just as spoken language has syntax rules that govern the way we
assemble words into sentences, SQL*Plus has syntax rules that govern
how you assemble words into commands. You must follow these rules if
you want SQL*Plus to accept and execute your commands.

Dividing a SQL Command into Separate Lines You can divide your
SQL command into separate lines at any points you wish, as long as
individual words are not split between lines. Thus, you can enter the
query you entered in Example 2-3 on one line:

SQL> SELECT EMPNO, ENAME, JOB, SAL FROM EMP WHERE SAL < 2500;
You can also enter the query on several lines:

SQL> SELECT
2 EMPNO, ENAME, JOB, SAL
3 FROM EMP
4 WHERE SAL < 2500;

In this Guide, you will find most SQL commands divided into clauses,
one clause on each line. In Example 2-3, for instance, the SELECT and
FROM clauses were placed on separate lines. Many people find this
most convenient, but you may choose whatever line division makes
your command most readable to you.

Ending a SQL Command You can end a SQL command in one of three
ways:

« with a semicolon (;)

- with aslash (/) on a line by itself

+ with a blank line

A semicolon (;) tells SQL*Plus that you want to run the command. Type
the semicolon at the end of the last line of the command, as shown in
Example 2-3, and press [Return]. SQL*Plus will process the command
and store it in the SQL buffer (see “The SQL Buffer” below for details). If
you mistakenly press [Return] before typing the semicolon, SQL*Plus
will prompt you with a line number for the next line of your command.
Type the semicolon and press [Return] again to run the command.

Note: You cannot enter a comment (/* */) on the same line on
which you enter a semicolon.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the
command. Press [Return] at the end of the last line of the command.

Learning SQL*Plus Basics 2-7

2-8

SQL*Plus prompts you with another line number. Type a slash and press
[Return] again. SQL*Plus will execute the command and store it in the
buffer (see “The SQL Buffer” below for details).

A blank line tells SQL*Plus that you have finished entering the
command, but do not want to run it yet. Press [Return] at the end of the
last line of the command. SQL*Plus prompts you with another line
number.

Press [Return] again; SQL*Plus now prompts you with the SQL*Plus
command prompt. SQL*Plus does not execute the command, but stores
it in the SQL buffer (see “The SQL Buffer” below for details). If you
subsequently enter another SQL command, SQL*Plus overwrites the
previous command in the buffer.

Creating Stored Procedures Stored procedures are PL/SQL functions,
packages, or procedures. To create stored procedures, you use SQL
CREATE commands. The following SQL CREATE commands are used
to create stored procedures:

+ CREATE FUNCTION

« CREATE PACKAGE

- CREATE PACKAGE BODY
+ CREATE PROCEDURE

- CREATE TRIGGER

Entering any of these commands places you in PL/SQL mode, where
you can enter your PL/SQL subprogram (see also “Running PL/SQL
Blocks™ in this chapter). When you are done typing your PL/SQL
subprogram, enter a period (.) on a line by itself to terminate PL/SQL
mode. To run the SQL command and create the stored procedure, you
must enter RUN or slash (/). A semicolon (;) will not execute these
CREATE commands.

When you use CREATE to create a stored procedure, a message appears
if there are compilation errors. To view these errors, you use SHOW
ERRORS. For example:

SQL> SHOW ERRORS PROCEDURE ASSIGNVL

See Chapter 6 for a description of the SHOW command.

SQL*Plus User’s Guide and Reference

The SQL Buffer

Executing the Current
SQL Command or
PL/SQL Block from the
Command Prompt

Running PL/SQL
Blocks

To execute a PL/SQL statement that references a stored procedure, you
can use the EXECUTE command. EXECUTE runs the PL/SQL statement
that you enter immediately after the command. For example:

SQL> EXECUTE :ID := EMP_MANAGEMENT.GET_ID('BLAKE’)
See Chapter 6 for a description of the EXECUTE command.

The area where SQL*Plus stores your most recently entered SQL
command or PL/SQL block is called the SQL buffer. The command or
block remains there until you enter another. Thus, if you want to edit or
rerun the current SQL command or PL/SQL block, you may do so
without re-entering it. See Chapter 3 for details about editing or
rerunning a command or block stored in the buffer.

SQL*Plus does not store the semicolon or the slash you type to execute a
command in the SQL buffer.

Note: SQL*Plus commands are not stored in the SQL buffer.

You can run (or rerun) the current SQL command or PL/SQL block by
entering the RUN command or the slash (/) command at the command
prompt. The RUN command lists the SQL command or PL/SQL block
in the buffer before executing the command or block; the slash (/)
command simply runs the SQL command or PL/SQL block.

You can also use PL/SQL subprograms (called blocks) to manipulate
data in the database. See your PL/SQL User’s Guide and Reference for
information on individual PL/SQL statements.

To enter a PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL
mode. You are placed in PL/SQL mode when

« You type DECLARE or BEGIN at the SQL*Plus command
prompt. After you enter PL/SQL mode in this way, type the
remainder of your PL/SQL subprogram.

+ You type a SQL command (such as CREATE FUNCTION) that
creates a stored procedure. After you enter PL/SQL mode in this
way, type the stored procedure you want to create.

SQL*Plus treats PL/SQL subprograms in the same manner as SQL
commands, except that a semicolon (;) or a blank line does not terminate
and execute a block. Terminate PL/SQL subprograms by entering a
period (.) by itself on a new line.

Learning SQL*Plus Basics 2-9

Running SQL*Plus
Commands

SQL*Plus stores the subprograms you enter at the SQL*Plus command
prompt in the SQL buffer. Execute the current subprogram by issuing a
RUN or slash (/) command. Likewise, to execute a SQL CREATE
command that creates a stored procedure, you must also enter RUN or
slash (/). A semicolon (;) will not execute these SQL commands as it
does other SQL commands.

SQL*Plus sends the complete PL/SQL subprogram to Oracle for
processing (as it does SQL commands). See your PL/SQL User’s Guide
and Reference for more information.

You might enter and execute a PL/SQL subprogram as follows:

SQL> DECLARE
2 x NUMBER :=100;

3 BEGIN

4 FORIiIN1..10LOOP

5 IF MOD (i, 2) =0 THEN —iis even

6 INSERT INTO temp VALUES (i, X, 'i is even’);
7 ELSE

8 INSERT INTO temp VALUES (i, X, 'i is odd’);
9 END IF;

10 X :=x + 100;
11 END LOOP;
12 END;

13 .

SQL>/

PL/SQL procedure successfully completed.

When you run a subprogram, the SQL commands within the
subprogram may behave somewhat differently than they would outside
of the subprogram. See your PL/SQL User’s Guide and Reference for
detailed information on the PL/SQL language.

You can use SQL*Plus commands to manipulate SQL commands and
PL/SQL blocks and to format and print query results. SQL*Plus treats
SQL*Plus commands differently than SQL commands or PL/SQL
blocks. For information on individual SQL*Plus commands, refer to the
following chapters of this Guide.

To speed up command entry, you can abbreviate many SQL*Plus
commands to one or a few letters. Abbreviations for some SQL*Plus
commands are described along with the commands in Chapters 3, 4, and
5. For abbreviations of all SQL*Plus commands, refer to the command
descriptions in Chapter 6.

2-10 SQL*Plus User’s Guide and Reference

Example 2-4
Entering a SQL*Plus
Command

Understanding SQL*Plus
Command Syntax

This example shows how you might enter a SQL*Plus command to
change the format used to display the column SAL of the sample table
EMP.

1. Onthe command line, enter this SQL*Plus command:
SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY

If you make a mistake, use [Backspace] to erase it and re-enter.
When you have entered the line, press [Return]. SQL*Plus notes the
new format and displays the SQL*Plus command prompt again,
ready for a new command.

2. Enter the RUN command to re-run the most recent query (from
Example 2-3). SQL*Plus reprocesses the query and displays the
results:

SQL> RUN

1 SELECT EMPNO, ENAME, JOB, SAL
2* FROM EMP WHERE SAL < 2500

EMPNO ENAME JOB SALARY
7369 SMITH CLERK $800
7499 ALLEN SALESMAN $1,600
7521 WARD SALESMAN $1,250
7654 MARTIN SALESMAN $1,250
7782 CLARK MANAGER $2,450
7844 TURNER SALESMAN $1,500
7876 ADAMS CLERK $1,100
7900 JAMES CLERK $800
7934 MILLER CLERK $1,300

The COLUMN command formatted the column SAL with a dollar sign
(%) and a comma (,) and gave it a new heading. The RUN command then
reran the query of Example 2-3, which was stored in the buffer.
SQL*Plus does not store SQL*Plus commands in the SQL buffer.

SQL*Plus commands have a different syntax from SQL commands or
PL/SQL blocks.

Continuing a Long SQL*Plus Command on Additional Lines You
can continue a long SQL*Plus command by typing a hyphen at the end
of the line and pressing [Return]. If you wish, you can type a space
before typing the hyphen. SQL*Plus displays a right angle-bracket (>) as
a prompt for each additional line. For example:

SQL> COLUMN SAL FORMAT $99,999 —
> HEADING SALARY

Learning SQL*Plus Basics 2-11

Variables that Affect
Running Commands

Saving Changes to the
Database
Automatically

Ending a SQL*Plus Command You do not need to end a SQL*Plus
command with a semicolon. When you finish entering the command,
you can just press [Return]. If you wish, however, you can enter a
semicolon at the end of a SQL*Plus command.

The SQL*Plus command SET controls many variables—called system
variables—the settings of which affect the way SQL*Plus runs your
commands. System variables control a variety of conditions within
SQL*Plus, including default column widths for your output, whether
SQL*Plus displays the number of records selected by a command, and
your page size. System variables are also called SET command variables.

The examples in this Guide are based on running SQL*Plus with the
system variables at their default settings. Depending on the settings of
your system variables, your output may appear slightly different than
the output shown in the examples. (Your settings might differ from the
default settings if you have a SQL*Plus LOGIN file on your computer.)

For more information on system variables and their default settings, see
the SET command in Chapter 6. For details on the SQL*Plus LOGIN file,
refer to the section “Setting Up Your SQL*Plus Environment” under
“Saving Commands for Later Use” in Chapter 3 and to the SQLPLUS
command in Chapter 6.

To list the current setting of a SET command variable, enter SHOW
followed by the variable name at the command prompt. See the SHOW
command in Chapter 6 for information on other items you can list with
SHOW.

Through the SQL DML commands UPDATE, INSERT, and
DELETE—which can be used independently or within a PL/SQL
block—specify changes you wish to make to the information stored in
the database. These changes are not made permanent until you enter a
SQL COMMIT command or a SQL DCL or DDL command (such as
CREATE TABLE), or use the autocommit feature. The SQL*Plus
autocommit feature causes pending changes to be committed after a
specified number of successful SQL DML transactions. (A SQL DML
transaction is either an UPDATE, INSERT, or DELETE command, or a
PL/SQL block.)

You control the autocommit feature with the SQL*Plus SET command’s
AUTOCOMMIT variable. It has these forms:

SET AUTOCOMMIT ON Turns autocommit on.
SET AUTOCOMMIT OFF Turns autocommit off (the default).

SET AUTOCOMMITn Commits changes after n SQL commands or
PL/SQL blocks.

2-12 SQL*Plus User’s Guide and Reference

Example 2-5
Turning Autocommit
On

Stopping a Command
while It Is Running

To turn the autocommit feature on, enter
SQL> SET AUTOCOMMIT ON

Until you change the setting of AUTOCOMMIT, SQL*Plus will
automatically commit changes from each SQL command or PL/SQL
block that specifies changes to the database. After each autocommit,
SQL*Plus displays the following message:

commit complete

When the autocommit feature is turned on, you cannot roll back changes
to the database.

To commit changes to the database after a number of SQL DML
commands or PL/SQL blocks, for example, ten, enter

SQL> SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands and PL/SQL blocks as they are
executed and commits the changes after the tenth SQL DML command
or PL/SQL block.

Note: For this feature, a PL/SQL block is regarded as one
transaction, regardless of the actual number of SQL commands
contained within it.

To turn the autocommit feature off again, enter the following command:
SQL> SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following
SHOW command:

SQL> SHOW AUTOCOMMIT
autocommit OFF

For more information, see the AUTOCOMMIT variable of the SET
command in Chapter 6.

Suppose you have displayed the first page of a 50 page report and
decide you do not need to see the rest of it. Press [Cancel]. (Refer to
Table 2 — 1 at the beginning of this chapter to see how [Cancel] is
labelled on your keyboard.) SQL*Plus will stop the display and return to
the command prompt.

Note: Pressing [Cancel] will not stop the printing of a file that
you have sent to a printer with the OUT clause of the SQL*Plus
SPOOL command. (You will learn about printing query results
in Chapter 4.) You can stop the printing of a file through your
operating system; see your operating system manuals for
information.

Learning SQL*Plus Basics 2-13

Collecting Timing
Statistics on
Commands You Run

Running Host
Operating System
Commands

Running SQL*Forms
Forms

Getting Help

Listing a Table
Definition

Example 2-6
Using the DESCRIBE
Command

Use the SQL*Plus command TIMING to collect and display data on the
amount of computer resources used to run one or more commands or
blocks. TIMING collects data for an elapsed period of time, saving the
data on commands run during the period in a timer. See TIMING in
Chapter 6 and the Oracle installation and user’s manuals provided for
your operating system for more information.

To delete all timers, enter CLEAR TIMING at the command prompt.

You can execute a host operating system command from the SQL*Plus
command prompt. This is useful when you want to perform a task such
as listing existing host operating system files.

To run a host operating system command, enter the SQL*Plus command
HOST followed by the host operating system command. For example,
this SQL*Plus command runs a host command, DIRECTORY *.SQL.:

SQL> HOST DIRECTORY *.SQL

When the host command finishes running, the SQL*Plus command
prompt appears again.

If the RUNFORM option was enabled during SQL*Plus installation, you
can also run a SQL*Forms form from the SQL*Plus command prompt.
To run a form, enter the SQL*Plus command RUNFORM followed by
the form name:

SQL> RUNFORM myform

While you use SQL*Plus, you may find that you need to list column
definitions for a table, or start and stop the display that scrolls by. You
may also need to interpret error messages you receive when you enter a
command incorrectly or when there is a problem with Oracle or
SQL*Plus. The following sections describe how to get help for those
situations.

To see the definitions of each column in a given table, use the SQL*Plus
DESCRIBE command.

To list the column definitions of the three columns in the sample table
DEPT, enter

SQL> DESCRIBE DEPT

2-14 SQL*Plus User’s Guide and Reference

The following output results:

Name Null? Type

DEPTNO NOT NULL NUMBER(2)
DNAME CHAR(14)

LOC CHAR(13)

Note: DESCRIBE accesses information in the Oracle data
dictionary. You can also use SQL SELECT commands to access
this and other information in the database. See your Oracle7
Server SQL Language Reference Manual for details.

Listing PL/SQL To see the definition of a function or procedure, use the SQL*Plus
Definitions DESCRIBE command.

Example 2-7 To list the definition of a function called AFUNC, enter
Using the DESCRIBE o1, | heqcRiBE afunc

Command
The following output results:
FUNCTION afunc RETURNS NUMBER
Argument Name Type In/Out Default?
F1 CHAR IN
F2 NUMBER IN
Controlling the Suppose that you wish to stop and examine the contents of the screen
Display while displaying a long report or the definition of a table with many
columns. Press [Pause]. (Refer to Table 2 — 1 to see how [Pause] is
labelled on your keyboard.) The display will pause while you examine
it. To continue, press [Resume].
If you wish, you can use the PAUSE variable of the SQL*Plus SET
command to have SQL*Plus pause after displaying each screen of a
query or report. Refer to SET in Chapter 6 for details.
Interpreting Error If SQL*Plus detects an error in a command, it will try to help you out by
Messages displaying an error message.

Example 2-8 For example, if you misspell the name of a table while entering a
Interpreting an Error ~ command, an error message will tell you that the table or view does not
Message exist:

SQL> DESCRIBE DPT
Object does not exist.

Learning SQL*Plus Basics 2-15

2-16

You will often be able to figure out how to correct the problem from the
message alone. If you need further explanation, take one of the
following steps to determine the cause of the problem and how to
correct it:

« If the error is a numbered error for the SQL*Plus COPY
command, look up the message in Appendix A of this Guide.

- If the error is a numbered error beginning with the letters “ORA”,
look up the message in the Oracle7 Server Messages and Codes
manual or in the Oracle installation and user’s manual(s)
provided for your operating system to determine the cause of the
problem and how to correct it.

« If the error is unnumbered, look up correct syntax for the
command that generated the error in Chapter 6 of this Guide for a
SQL*Plus command, in the Oracle7 Server SQL Language Reference
Manual for a SQL command, or in the PL/SQL User’s Guide and
Reference for a PL/SQL block. Otherwise, contact your DBA.

SQL*Plus User’s Guide and Reference

Manipulating
Commands

CHAPTER

T his chapter helps you learn to manipulate SQL*Plus commands,
SQL commands, and PL/SQL blocks. It covers the following topics:

. editing a SQL*Plus command

« using SQL*Plus commands to list and modify the command
currently stored in the buffer

- editing commands with a system editor

. creating and modifying command files to hold commands for
later use

« retrieving and running command files
« saving SQL*Plus environment settings

« writing interactive commands that include user variables and
substitution variables

« passing parameters to a command file
- using bind variables and REFCURSOR variables
« tracing SQL statements

Read this chapter while sitting at your computer and try out the
examples shown. Before beginning, make sure you have access to the
sample tables described in Chapter 1.

Manipulating Commands 3-1

Editing Commands

Because SQL*Plus does not store SQL*Plus commands in the buffer, you
edit a SQL*Plus command entered directly to the command prompt by
using [Backspace] or by re-entering the command.

You can use a number of SQL*Plus commands to edit the SQL command
or PL/SQL block currently stored in the buffer. Alternatively, you can
use a host operating system editor to edit the buffer contents.

Table 3 — 1 shows several SQL*Plus commands that allow you to
examine or change the command in the buffer without re-entering the

command.

Command Abbreviation Purpose

APPEND text A text adds text at the end of a line
CHANGE /old/new C/ old / new changesold to new in a line
CHANGE /text C/ text deletes text from a line

CLEAR BUFFER CL BUFF deletes all lines

DEL (none) deletes the current line

DELn (none) deletes line n

DEL * (none) deletes the current line

DEL LAST (none) deletes the last line

DELmn (none) deletes a range of lines (m to n)
INPUT I adds one or more lines

INPUT text | text adds a line consisting of text
LIST L lists all lines in the SQL buffer
LIST n Ln or n lists line n

LIST * L* lists the current line

LIST LAST L LAST lists the last line

LIST mn Lmn lists a range of lines (m to n)

Table 3-1 SQL*Plus Editing Commands

You will find these commands useful if you mistype a command or wish
to modify a command you have entered.

3-2 SQL*Plus User’s Guide a

nd Reference

Listing the Buffer
Contents

Example 3-1
Listing the Buffer
Contents

Editing the Current
Line

Example 3-2
Making an Error in
Command Entry

Any editing command other than LIST and DEL affects only a single
line in the buffer. This line is called the current line. It is marked with an
asterisk when you list the current command or block.

Suppose you want to list the current command. Use the LIST command
as shown below. (If you have EXITed SQL*Plus or entered another SQL
command or PL/SQL block since following the steps in Example 2-3,
perform the steps in that example again before continuing.)

SQL> LIST
1 SELECT EMPNO, ENAME, JOB, SAL
2* FROM EMP WHERE SAL < 2500

Notice that the semicolon you entered at the end of the SELECT
command is not listed. This semicolon is necessary to mark the end of
the command when you enter it, but SQL*Plus does not store it in the
SQL buffer. This makes editing more convenient, since it means you can
add a new line to the end of the buffer without removing a semicolon
from the line that was previously the last.

The SQL*Plus CHANGE command allows you to edit the current line.
Various actions determine which line is the current line:

+ LIST a given line to make it the current line.

+ When you LIST or RUN the command in the buffer, the last line
of the command becomes the current line. (Using the slash (/)
command to run the command in the buffer does not affect the
current line, however.)

- If you get an error message, the line containing the error
automatically becomes the current line.

Suppose you try to select the DEPTNO column but mistakenly enter it
as DPTNO. Enter the following command, purposely misspelling
DEPTNO in the first line:

SQL> SELECT DPTNO, ENAME, SAL
2 FROM EMP
3 WHERE DEPTNO = 10;

You see this message on your screen:
SELECT DPTNO, ENAME, SAL

*

ERROR at line 1:
ORA-0904: invalid column name

Manipulating Commands 3-3

3-4

Example 3-3
Correcting the Error

Examine the error message; it indicates an invalid column name in line 1
of the query. The asterisk shows the point of error—the mistyped
column DPTNO.

Instead of re-entering the entire command, you can correct the mistake
by editing the command in the buffer. The line containing the error is
now the current line. Use the CHANGE command to correct the
mistake. This command has three parts, separated by slashes or any
other non-alphanumeric character:

+ the word CHANGE or the letter C
« the sequence of characters you want to change
- the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of
the character sequence to be changed and changes it to the new
sequence. If you wish to re-enter an entire line, you do not need to use
the CHANGE command: re-enter the line by typing the line number
followed by a space and the new text and pressing [Return].

To change DPTNO to DEPTNO, change the line with the CHANGE
command:
SQL> CHANGE /DPTNO/DEPTNO

The corrected line appears on your screen:
1* SELECT DEPTNO, ENAME, SAL

Now that you have corrected the error, you can use the RUN command
to run the command again:

SQL> RUN

SQL*Plus lists the command, and then runs it:

1 SELECT DEPTNO, ENAME, SAL
2 FROM EMP

3* WHERE DEPTNO =10
DEPTNO ENAME SALARY

10 CLARK $2,450
10 KING $5,000
10 MILLER $1,300

Note that the column SAL retains the format you gave it in Example 2-4.
(If you have left SQL*Plus and started again since performing Example
2-4, the column has reverted to its original format.)

SQL*Plus User’s Guide and Reference

Adding a New Line

Example 3-4
Adding a Line

Appending Text to a
Line

Example 3-5
Appending Text to a
Line

For information about the significance of case in a CHANGE command
and on using wildcards to specify blocks of text ina CHANGE
command, refer to CHANGE in Chapter 6.

To insert a new line after the current line, use the INPUT command.

To insert a line before line 1, enter a zero (“0”) and follow the zero with
text. SQL*Plus inserts the line at the beginning of the buffer and that line
becomes line 1.

SQL> 0 SELECT EMPNO

Suppose you want to add a fourth line to the SQL command you
modified in Example 3-3. Since line 3 is already the current line, enter
INPUT (which may be abbreviated to 1) and press [Return]. SQL*Plus
prompts you for the new line:

SQL> INPUT
4

Enter the new line. Then press [Return]. SQL*Plus prompts you again
for a new line:

4 ORDER BY SAL
5

Press [Return] again to indicate that you will not enter any more lines,
and then use RUN to verify and rerun the query.

To add text to the end of a line in the buffer, use the APPEND command:

1. Use the LIST command (or just the line number) to list the line you
want to change.

2. Enter APPEND followed by the text you want to add. If the text you
want to add begins with a blank, separate the word APPEND from
the first character of the text by two blanks: one to separate
APPEND from the text, and one to go into the buffer with the text.

To append a space and the clause DESC to line 4 of the current query,
first list line 4:

SQL> LIST 4
4* ORDER BY SAL

Next, enter the following command (be sure to type two spaces between
APPEND and DESC):

SQL> APPEND DESC
4* ORDER BY SAL DESC

Manipulating Commands 3-5

Deleting Lines

Editing Commands
with a System Editor

Use RUN to verify and rerun the query.

To delete lines in the buffer, use the DEL command:

1. Use the LIST command (or just the line numbers) to list the lines
you want to delete.

2. Enter DEL with an optional clause.

Suppose you want to delete the current line to the last line inclusive. Use
the DEL command as shown below.

SQL> DEL * LAST
DEL makes the following line of the buffer (if any) the current line.

For more information, see DEL in Chapter 6.

Your host computer’s operating system has one or more text editors that
you can use to create and edit host system files. Text editors perform the
same general functions as the SQL*Plus editing commands, but you may
find them more familiar.

You can run your host operating system’s default text editor without
leaving SQL*Plus by entering the EDIT command:

SQL> EDIT

EDIT loads the contents of the buffer into your system’s default text
editor. You can then edit the text with the text editor’s commands. When
you tell the text editor to save edited text and then exit, the text is loaded
back into the buffer.

To load the buffer contents into a text editor other than the default, use
the SQL*Plus DEFINE command to define a variable, EDITOR, to hold
the name of the editor. For example, to define the editor to be used by
EDIT as EDT, enter the following command:

SQL> DEFINE _EDITOR = EDT

You can also define the editor to be used by EDIT in your user or site
profile. See “Setting Up Your SQL*Plus Environment” in Chapter 3 and
DEFINE and EDIT in Chapter 6 for more information.

3-6 SQL*Plus User’s Guide and Reference

Saving Commands for

Storing Commands in
Command Files

Creating a Command File
by Saving the Buffer

Contents
Example 3-6
Saving the Current
Command

Later Use

Through SQL*Plus, you can store one or more commands in a file, called
a command file. After you create a command file, you can retrieve, edit,
and run it. Use command files to save commands for use over time,
especially complex commands or PL/SQL blocks.

You can store one or more SQL commands, PL/SQL blocks, and
SQL*Plus commands in command files. You create a command file
within SQL*Plus in one of three ways:

- enter a command and save the contents of the buffer
- use INPUT to enter commands and then save the buffer contents

-+ use EDIT to create the file from scratch using a host system text
editor

Because SQL*Plus commands are not stored in the buffer, you must use
one of the latter two methods to save SQL*Plus commands.

To save the current SQL command or PL/SQL block for later use, enter
the SAVE command. Follow the command with a file name;

SQL> SAVE file_name

SQL*Plus adds the extension SQL to the filename to identify it as a SQL
query file. If you wish to save the command or block under a name with
a different file extension, type a period at the end of the filename,
followed by the extension you wish to use.

Note that within SQL*Plus, you separate the extension from the
filename with a period. Your operating system may use a different
character or a space to separate the filename and the extension.

First, LIST the buffer contents to see your current command:

SQL> LIST
1 SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3 WHERE DEPTNO = 10
4* ORDER BY SAL DESC

If the query shown is not in your buffer, re-enter the query now. Next,
enter the SAVE command followed by the filename DEPTINFO:

SQL> SAVE DEPTINFO
Created file DEPTINFO

Manipulating Commands 3-7

Creating a Command File

by Using INPUT and
SAVE

3-8

Example 3-7
Saving Commands
Using INPUT and
SAVE

You can verify that the command file DEPTINFO exists by entering the
SQL*Plus HOST command followed by your host operating system’s
file listing command:

SQL> HOST your_host’s_file_listing_command

You can use the same method to save a PL/SQL block currently stored
in the buffer.

If you use INPUT to enter your commands, you can enter SQL*Plus
commands (as well as one or more SQL commands or PL/SQL blocks)
into the buffer. You must enter the SQL*Plus commands first, and the
SQL command(s) or PL/SQL block(s) last—just as you would if you
were entering the commands directly to the command prompt.

You can also store a set of SQL*Plus commands you plan to use with
many different queries by themselves in a command file.

Suppose you have composed a query to display a list of salespeople and
their commissions. You plan to run it once a month to keep track of how
well each employee is doing. To compose and save the query using
INPUT, you must first clear the buffer:

SQL> CLEAR BUFFER

Next, use INPUT to enter the command (be sure not to type a semicolon
at the end of the command):

SQL> INPUT
1 COLUMN ENAME HEADING SALESMAN
2 COLUMN SAL HEADING SALARY FORMAT $99,999
3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
4 SELECT EMPNO, ENAME, SAL, COMM
5 FROM EMP
6 WHERE JOB = 'SALESMAN’
.

The zero at the end of the format model for the column COMM tells
SQL*Plus to display a zero instead of a blank when the value of COMM
is zero for a given row. Format models and the COLUMN command are
described in more detail in Chapter 4.

Now use the SAVE command to store your query in a file called SALES
with the extension SQL.:

SQL> SAVE SALES
Created file SALES

SQL*Plus User’s Guide and Reference

Creating Command Files
with a System Editor

Note that you do not type a semicolon at the end of the query; if you did
include a semicolon, SQL*Plus would attempt to run the buffer contents.
The SQL*Plus commands in the buffer would produce an error because
SQL*Plus expects to find only SQL commands in the buffer. You will
learn how to run a command file later in this chapter.

To input more than one SQL command, leave out the semicolons on all
the SQL commands. Then, use APPEND to add a semicolon to all but
the last command. (SAVE appends a slash to the end of the file
automatically; this slash tells SQL*Plus to run the last command when
you run the command file.)

To input more than one PL/SQL block, enter the blocks one after
another without including a period or a slash on a line between blocks.
Then, for each block except the last, list the last line of the block to make
it current and use INPUT in the following form to insert a slash on a line
by itself:

INPUT /

You can also create a command file with a host operating system text
editor by entering EDIT followed by the name of the file, for example:

SQL> EDIT SALES

Like the SAVE command, EDIT adds the filename extension SQL to the
name unless you type a period and a different extension at the end of
the filename. When you save the command file with the text editor, it is
saved back into the same file.

You must include a semicolon at the end of each SQL command and a
period on a line by itself after each PL/SQL block in the file. (You can
include multiple SQL commands and PL/SQL blocks.)

When you create a command file using EDIT, you can also include
SQL*Plus commands at the end of the file. You cannot do this when you
create a command file using the SAVE command because SAVE appends
a slash to the end of the file. This slash would cause SQL*Plus to run the
command file twice, once upon reaching the semicolon at the end of the
last SQL command (or the slash after the last PL/SQL block) and once
upon reaching the slash at the end of the file.

Manipulating Commands 3-9

Placing Comments in
Command Files

Using the REMARK
Command

Using /7*..*/

You can enter comments in a command file in one of three ways:
« using the SQL*Plus REMARK command
+ using the SQL comment delimiters, /* ... */

« using ANSIZISO (American National Standards
Institute/International Standards Organization) comments, —

Anything that is identified in one of these ways as a comment is not
parsed or executed by SQL*Plus.

Note: You cannot enter a comment on the same line on which
you enter a semicolon.

Use the REMARK command on a line by itself in the command file,

followed by comments on the same line. To continue the comments on
additional lines, enter additional REMARK commands. Do not place a
REMARK command between different lines of a single SQL command.

REMARK Commissions report

REMARK to be run monthly.

COLUMN ENAME HEADING SALESMAN

COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
REMARK Includes only salesmen.

SELECT EMPNO, ENAME, SAL, COMM

FROM EMP

WHERE JOB = 'SALESMAN’

Enter the SQL comment delimiters, /*...*/, on separate lines in your
command file, on the same line as a SQL command, or onaline in a
PL/SQL block. The comments can span multiple lines, but cannot be
nested within one another:

[* Commissions report

to be run monthly. */

COLUMN ENAME HEADING SALESMAN

COLUMN SAL HEADING SALARY FORMAT $99,999
COLUMN COMM HEADING COMMISSION FORMAT $99,990
SELECT EMPNO, ENAME, SAL, COMM

FROM EMP

WHERE JOB ='SALESMAN'’ /* Includes only salesmen. */

If you enter a SQL comment directly at the command prompt, SQL*Plus
does not store the comment in the buffer.

3-10 SQL*Plus User’s Guide and Reference

Using —

Retrieving Command
Files

You can use ANSI/ZISO “— style comments within SQL statements,
PL/SQL blocks, or SQL*Plus commands. Since there is no ending
delimiter, the comment cannot span multiple lines. For PL/SQL and
SQL, enter the comment after a command on a line or on a line by itself:

— Commissions report to be run monthly
DECLARE —block for reporting monthly sales

For SQL*Plus commands, you can only include “—" style comments if
they are on a line by themselves. For example, these comments are legal:

—set maximum width for LONG to 777

SET LONG 777

— set the heading for ENAME to be SALESMAN
COLUMN ENAME HEADING SALESMAN

These comments are illegal:

SET LONG 777 — set maximum width for LONG to 777
SET — set maximum width for LONG to 777 LONG 777

If you entered the following SQL*Plus command, it would be treated as
a comment and would not be executed:

— SET LONG 777

If you want to place the contents of a command file in the buffer, you
must retrieve the command from the file in which it is stored. You can
retrieve a command file using the SQL*Plus command GET.

Just as you can save a query from the buffer to a file with the SAVE
command, you can retrieve a query from a file to the buffer with the
GET command:

SQL> GET file_name

When appropriate to the operating system, SQL*Plus adds a period and
the extension SQL to the filename unless you type a period at the end of
the filename followed by a different extension.

Manipulating Commands 3-11

Example 3-8
Retrieving a
Command File

Running Command
Files

Example 3-9
Running a
Command File

Suppose you need to retrieve the SALES file in a later session. You can
retrieve the file by entering the GET command. To retrieve the file
SALES, enter

SQL> GET SALES
1 COLUMN ENAME HEADING SALESMAN
2 COLUMN SAL HEADING SALARY FORMAT $99,999
3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
4 SELECT EMPNO, ENAME, SAL, COMM
5 FROM EMP
6* WHERE JOB = 'SALESMAN’

SQL*Plus retrieves the contents of the file SALES with the extension
SQL into the SQL buffer and lists it on the screen. Then you can edit the
command further. If the file did not contain SQL*Plus commands, you
could also execute it with the RUN command.

The START command retrieves a command file and runs the
command(s) it contains. Use START to run a command file containing
SQL commands, PL/SQL blocks, and/or SQL*Plus commands. Follow
the word START with the name of the file:

START file_name

If the file has the extension SQL, you need not add the period and the
extension SQL to the filename.

To retrieve and run the command stored in SALES.SQL, enter

SQL> START SALES

SQL*Plus runs the commands in the file SALES and displays the results
of the commands on your screen, formatting the query results according
to the SQL*Plus commands in the file:

EMPNO SALESMAN SALARY COMMISSION

7499 ALLEN $1,600 $300
7521 WARD $1,250 $500
7654 MARTIN $1,250 $1,400
7844 TURNER $1,500 $0

To see the commands as SQL*Plus “enters” them, you can set the ECHO
variable of the SET command to ON. The ECHO variable controls the
listing of the commands in command files run with the START, @ and
@@ commands. Setting the ECHO variable to OFF suppresses the listing.

3-12 SQL*Plus User’s Guide and Reference

Running a Command File
as You Start SQL*Plus

Nesting Command
Files

You can also use the @ (“at” sign) command to run a command file:
SQL> @SALES

The @ command lists and runs the commands in the specified command
file in the same manner as START. SET ECHO affects the @ command as
it affects the START command.

START, @ and @@ leave the last SQL command or PL/SQL block in the
command file in the buffer.

To run a command file as you start SQL*Plus, use one of the following
four options:

« Follow the SQLPLUS command with your username, a slash,
your password, a space, @, and the name of the file:

SQLPLUS SCOTT/TIGER @SALES
SQL*Plus starts and runs the command file.

+ Follow the SQLPLUS command and your username with a space,
@, and the name of the file:

SQLPLUS SCOTT @SALES

SQL*Plus prompts you for your password, starts, and runs the
command file.

« Include your username as the first line of the file. Follow the
SQLPLUS command with @ and the filename. SQL*Plus prompts
for your password, starts, and runs the file.

+ Include your username, a slash (/), and your password as the
first line of the file. Follow the SQLPLUS command with @ and
the filename. SQL*Plus starts and runs the file.

To run a series of command files in sequence, first create a command file
containing several START commands, each followed by the name of a
command file in the sequence. Then run the command file containing
the START commands. For example, you could include the following
START commands in a command filenamed SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

Note: The @@ command may be useful in this example. See the
@@ command in Chapter 6 for more information.

Manipulating Commands 3-13

Modifying Command
Files

Exiting from a
Command File with a
Return Code

You can modify an existing command file in two ways:
« using the EDIT command
« using GET, the SQL*Plus editing commands, and SAVE

To edit an existing command file with the EDIT command, follow the
word EDIT with the name of the file. For example, to edit an existing
filenamed PROFIT that has the extension SQL, enter the following
command:

SQL> EDIT PROFIT

Remember that EDIT assumes the file extension SQL if you do not
specify one.

To edit an existing file using GET, the SQL*Plus editing commands, and
SAVE, first retrieve the file with GET, then edit the file with the
SQL*Plus editing commands, and finally save the file with the SAVE
command.

Note that if you want to replace the contents of an existing command file
with the command or block in the buffer, you must use the SAVE
command and follow the filename with the word REPLACE. For
example:

SQL> GET MYREPORT

1* SELECT * FROM EMP
SQL> C/*/ENAME, JOB

1* SELECT ENAME, JOB FROM EMP
SQL> SAVE MYREPORT REPLACE
Wrote file MYREPORT

If you want to append the contents of the buffer to the end of an existing
command file, use the SAVE command and follow the filename with the
word APPEND:

SQL> SAVE file_name APPEND

If your command file generates a SQL error while running from a batch
file on the host operating system, you may want to abort the command
file and exit with a return code. Use the SQL*Plus command
WHENEVER SQLERROR to do this; see WHENEVER SQLERROR in
Chapter 6 for more information.

Similarly, the WHENEVER OSERROR command may be used to exit if
an operating system error occurs. See WHENEVER OSERROR in
Chapter 6 for more information.

3-14 SQL*Plus User’s Guide and Reference

Setting Up Your
SQL*Plus Environment

Modifying Your LOGIN
File

Storing and Restoring
SQL*Plus System
Variables

You may wish to set up your SQL*Plus environment in a particular way
(such as showing the current time as part of the SQL*Plus command
prompt) and then reuse those settings with each session. You can do this
through a host operating system file called LOGIN with the file
extension SQL (also called your User Profile). The exact name of this file
is system dependent; see the Oracle installation and user’s manual(s)
provided for your operating system for the precise name.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus
commandes to this file; when you start SQL*Plus, it automatically
searches for your LOGIN file (first in your local directory and then on a
system-dependent path) and runs the commands it finds there. (You
may also have a Site Profile, for example, GLOGIN.SQL. See the
SQLPLUS command in Chapter 6 for more information on the
relationship of Site and User Profiles.)

You can modify your LOGIN file just as you would any other command
file. You may wish to add some of the following commands to the
LOGIN file:

SET Followed by V6 or V7, sets compatibility to the

COMPATIBILITY version of Oracle you specify. Setting
COMPATIBILITY to V6 allows you to run
command files created with Version 6 of Oracle.

SET NUMFORMAT Followed by a number format (such as $99,999), sets
the default format for displaying numbers in query

results.

SET PAGESIZE Followed by a number, sets the number of lines per
page.

SET PAUSE Followed by ON, causes SQL*Plus to pause at the

beginning of each page of output (SQL*Plus
continues scrolling after you enter [Return]).
Followed by text, sets the text to be displayed each
time SQL*Plus pauses (you must also set PAUSE to
ON).

SET TIME Followed by ON, displays the current time before
each command prompt.

See the SET command in Chapter 6 for more information on these and
other SET command variables you may wish to set in your SQL*Plus
LOGIN file.

You can store the current SQL*Plus system (“SET”) variables in a host

operating system file (a command file) with the STORE command. If
you alter any variables, this command file can be run to restore the

Manipulating Commands 3-15

Restoring the System
Variables

Example 3-10

Storing and Restoring

3-16

SQL*Plus System
Variables

original values. This is useful if you run a report that alters system
variables and you want to reset their values after the report has finished.

To store the current setting of all system variables, enter
SQL> STORE SET file_name

By default, SQL*Plus adds the extension “SQL” to the file name. If you
want to use a different file extension, type a period at the end of the file
name, followed by the extension. Alternatively, you can use the SET
SUFFIX command to change the default file extension.

To restore the stored system variables, enter
SQL> START file_name

If the file has the default extension (as specified by the SET SUFFIX
command), you do not need to add the period and extension to the file
name.

You can also use the @ (“at” sign) or the @@ (double “at” sign)
commands to run the command file.

To store the current values of the SQL*Plus system variables in a new
command file “plusenv.sgl”:

SQL> STORE SET plusenv
Created file plusenv

Now the value of any system variable can be changed:

SQL> SHOW PAGESIZE
pagesize 24
SQL> SET PAGESIZE 60
SQL> SHOW PAGESIZE
pagesize 60

The original values of the system variables can then be restored from the
command file:

SQL> START plusenv
SQL> SHOW PAGESIZE
pagesize 24

SQL*Plus User’s Guide and Reference

Writing Interactive Commands

Defining User
Variables

Example 3-11
Defining a User
Variable

Using Substitution
Variables

The following features of SQL*Plus make it possible for you to set up
command files that allow end-user input:

« defining user variables
« substituting values in commands
+ using the START command to provide values

« prompting for values

You can define variables, called user variables, for repeated use in a single
command file by using the SQL*Plus command DEFINE. Note that you
can also define user variables to use in titles and to save you keystrokes
(by defining a long string as the value for a variable with a short name).

To define a user variable EMPLOYEE and give it the value “SMITH”,
enter the following command:

SQL> DEFINE EMPLOYEE = SMITH

To confirm the definition of the variable, enter DEFINE followed by the
variable name:

SQL> DEFINE EMPLOYEE

SQL*Plus lists the definition:
DEFINE EMPLOYEE =“SMITH” (CHAR)

To list all user variable definitions, enter DEFINE by itself at the
command prompt. Note that any user variable you define explicitly
through DEFINE takes only CHAR values (that is, the value you assign
to the variable is always treated as a CHAR datatype). You can define a
user variable of datatype NUMBER implicitly through the ACCEPT
command. You will learn more about the ACCEPT command later in
this chapter.

To delete a user variable, use the SQL*Plus command UNDEFINE
followed by the variable name.

Suppose you want to write a query like the one in SALES (see Example
3-7) to list the employees with various jobs, not just those whose job is
SALESMAN. You could do that by editing a different CHAR value into
the WHERE clause each time you run the command, but there is an
easier way.

Manipulating Commands 3-17

Where and How to Use
Substitution Variables

By using a substitution variable in place of the value SALESMAN in the
WHERE clause, you can get the same results you would get if you had
written the values into the command itself.

A substitution variable is a user variable name preceded by one or two
ampersands (&). When SQL*Plus encounters a substitution variable in a
command, SQL*Plus executes the command as though it contained the
value of the substitution variable, rather than the variable itself.

For example, if the variable SORTCOL has the value JOB and the
variable MYTABLE has the value EMP, SQL*Plus executes the
commands

SQL> BREAK ON &SORTCOL
SQL> SELECT &SORTCOL, SAL
2 FROM &MYTABLE
3 ORDER BY &SORTCOL,;

as if they were

SQL> BREAK ON JOB
SQL> SELECT JOB, SAL
2 FROM EMP
3 ORDER BY JOB;

(The BREAK command suppresses duplicate values of the column
named in SORTCOL; BREAK is discussed in Chapter 4.)

You can use substitution variables anywhere in SQL and SQL*Plus
commands, except as the first word entered at the command prompt.
When SQL*Plus encounters an undefined substitution variable in a
command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and

punctuation. If the SQL command containing the reference should have
quote marks around the variable and you do not include them there, the
user must include the quotes when prompted.

SQL*Plus reads your response from the keyboard, even if you have
redirected terminal input or output to a file. If a terminal is not available
(if, for example, you run the command file in batch mode), SQL*Plus
uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing
the substitution variable twice: once before substituting the value you
enter and once after substitution. You can suppress this listing by setting
the SET command variable VERIFY to OFF.

3-18 SQL*Plus User’s Guide and Reference

Example 3-12
Using Substitution
Variables

Create a command filenamed STATS, to be used to calculate a subgroup
statistic (the maximum value) on a numeric column:

SQL> CLEAR BUFFER
SQL> INPUT
1 SELECT &GROUP_COL,
2 MAX(&NUMBER_COL) MAXIMUM
3 FROM &TABLE
4 GROUP BY &GROUP_COL
5
SQL> SAVE STATS
Created file STATS

Now run the command file STATS and respond as shown below to the
prompts for values:

SQL> @STATS

Enter value for group_col: JOB

old 1: SELECT &GROUP_COL,
new 1:SELECT JOB,

Enter value for number_col: SAL

old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SAL) MAXIMUM
Enter value for table: EMP

old 3: FROM &TABLE

new 3:FROM EMP

Enter value for group_col: JOB

old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB

SQL*Plus displays the following output:
JOB MAXIMUM

ANALYST 3000
CLERK 1300
MANAGER 2975
PRESIDENT 5000
SALESMAN 1600

If you wish to append characters immediately after a substitution
variable, use a period to separate the variable from the character. For
example:

SQL> SELECT * FROM EMP WHERE EMPNO="&X.01";
Enter value for X: 123

Manipulating Commands 3-19

Avoiding Unnecessary
Prompts for Values

3-20

Example 3-13
Using Double
Ampersands

will be interpreted as
SQL> SELECT * FROM EMP WHERE EMPNO="12301";

Suppose you wanted to expand the file STATS to include the minimum,
sum, and average of the “number” column. You may have noticed that
SQL*Plus prompted you twice for the value of GROUP_COL and once
for the value of NUMBER_COL in Example 3-12, and that each
GROUP_COL or NUMBER_COL had a single ampersand in front of it.
If you were to add three more functions—using a single ampersand
before each—to the command file, SQL*Plus would prompt you a total
of four times for the value of the number column.

You can avoid being reprompted for the group and number columns by
adding a second ampersand in front of each GROUP_COL and
NUMBER_COL in STATS. SQL*Plus automatically DEFINEs any
substitution variable preceded by two ampersands, but does not
DEFINE those preceded by only one ampersand. When you have
DEFINEd a variable, SQL*Plus substitutes the value of variable for each
substitution variable referencing variable (in the form &variable or
&&variable). SQL*Plus will not prompt you for the value of variable in
this session until you UNDEFINE variable.

To expand the command file STATS using double ampersands and then
run the file, first suppress the display of each line before and after
substitution:

SQL> SET VERIFY OFF

Now retrieve and edit STATS by entering the following commands:

SQL> GET STATS

1 SELECT &GROUP_COL,

2 MAX(&NUMBER_COL) MAXIMUM

3 FROM &TABLE

4 GROUP BY &GROUP_COL
SQL> 2

2* MAX(&NUMBER_COL) MAXIMUM
SQL> APPEND ,

2* MAX(&NUMBER_COL) MAXIMUM,
SQL> C /&/&&

2* MAX(&&NUMBER_COL) MAXIMUM,
SQL> |

3i MIN(&NUMBER_COL) MINIMUM,

4i SUM(&&NUMBER_COL) TOTAL,

5i AVG(&&NUMBER_COL) AVERAGE

6i

SQL*Plus User’s Guide and Reference

Restrictions

SQL>1

1* SELECT &GROUP_COL,
SQL> C /&/&&

1* SELECT &&GROUP_COL,
SQL>7

7* GROUP BY &GROUP_COL
SQL> C /&/&&

7* GROUP BY &&GROUP_COL
SQL> SAVE STATS2
created file STATS2

Finally, run the command file STATS2 and respond to the prompts for
values as follows:

SQL> START STATS2

Enter value for group_col: JOB
Enter value for number_col: SAL
Enter value for table: EMP

SQL*Plus displays the following output:

JOB MAXIMUM MINIMUM TOTAL AVERAGE
ANALYST 3000 3000 6000 3000
CLERK 1300 800 4150 1037.5

MANAGER 2975 2450 8275 2758.33333
PRESIDENT 5000 5000 5000 5000
SALESMAN 1600 1250 5600 1400

Note that you were prompted for the values of NUMBER_COL and
GROUP_COL only once. If you were to run STATS2 again during the
current session, you would be prompted for TABLE (because its hame
has a single ampersand and the variable is therefore not DEFINEd) but
not for GROUP_COL or NUMBER_COL (because their names have
double ampersands and the variables are therefore DEFINEd).

Before continuing, set the system variable VERIFY back to ON:
SQL> SET VERIFY ON

You cannot use substitution variables in the buffer editing commands,
APPEND, CHANGE, DEL, and INPUT, nor in other commands where
substitution would be meaningless, such as REMARK. The buffer
editing commands, APPEND, CHANGE, and INPUT, treat text
beginning with “&” or “&&” literally, as any other text string.

Manipulating Commands 3-21

System Variables

Passing Parameters
through the START
Command

The following system variables, specified with the SQL*Plus SET
command, affect substitution variables:

SET DEFINE Defines the substitution character (by default the
ampersand “&”) and turns substitution on and off.

SET ESCAPE Defines an escape character you can use before the
substitution character. The escape character
instructs SQL*Plus to treat the substitution
character as an ordinary character rather than as a
request for variable substitution. The default escape
character is a backslash (\).

SET VERIFY ON Lists each line of the command file before and after
substitution.

SET CONCAT Defines the character that separates the name of a
substitution variable or parameter from characters
that immediately follow the variable or
parameter—by default the period (.).

Refer to SET in Chapter 6 for more information on these system
variables.

You can bypass the prompts for values associated with substitution
variables by passing values to parameters in a command file through the
START command.

You do this by placing an ampersand (&) followed by a numeral in the
command file in place of a substitution variable. Each time you run this
command file, START replaces each &1 in the file with the first value
(called an argument) after START filename, then replaces each &2 with
the second value, and so forth.

For example, you could include the following commands in a command
file called MYFILE:

SELECT * FROM EMP
WHERE JOB="&1’
AND SAL=&2

In the following START command, SQL*Plus would substitute CLERK
for &1 and 7900 for &2 in the command file MYFILE:

SQL> START MYFILE CLERK 7900

When you use arguments with the START command, SQL*Plus
DEFINEs each parameter in the command file with the value of the
appropriate argument.

3-22 SQL*Plus User’s Guide and Reference

Example 3-14
Passing Parameters
through START

To create a new command file based on SALES that takes a parameter
specifying the job to be displayed, enter

SQL> GET SALES
1 COLUMN ENAME HEADING SALESMAN
2 COLUMN SAL HEADING SALARY FORMAT $99,999
3 COLUMN COMM HEADING COMMISSION FORMAT $99,990
4 SELECT EMPNO, ENAME, SAL, COMM
5 FROM EMP
6* WHERE JOB = 'SALESMAN’
SQL> CHANGE /SALESMAN/&1
6* WHERE JOB ='&1’
SQL>1
1* COLUMN ENAME HEADING SALESMAN
SQL> CHANGE /SALESMAN/&1
1* COLUMN ENAME HEADING &1
SQL> SAVE ONEJOB
Created file ONEJOB

Now run the command with the parameter CLERK:
SQL> START ONEJOB CLERK

SQL*Plus lists the line of the SQL command that contains the parameter,
before and after replacing the parameter with its value, and then
displays the output:

old 3: WHERE JOB ="&1’
new 3: WHERE JOB ='CLERK’
EMPNO CLERK SALARY COMMISSION

7369 SMITH $800
7876 ADAMS $1,100
7900 JAMES $950

7934 MILLER $1,300

You can use any number of parameters in a command file. Within a
command file, you can refer to each parameter any number of times,
and can include the parameters in any order.

Note: You cannot use parameters when you run a command
with RUN or slash (/). You must store the command in a
command file and run it with START or @.

Before continuing, return the column ENAME to its original heading by
entering the following command:

SQL> COLUMN ENAME CLEAR

Manipulating Commands 3-23

Communicating with ~ Three SQL*Plus commands—PROMPT, ACCEPT, and PAUSE—help

the User you communicate with the end user. These commands enable you to
send messages to the screen and receive input from the user, including a
simple [Return]. You can also use PROMPT and ACCEPT to customize
the prompts for values SQL*Plus automatically generates for
substitution variables.

Prompting for and Through PROMPT and ACCEPT, you can send messages to the end user
Accepting User Variable and accept values as end-user input. PROMPT simply displays a
Values message you specify on-screen; use it to give directions or information

to the user. ACCEPT prompts the user for a value and stores it in the
user variable you specify. Use PROMPT in conjunction with ACCEPT
when your prompt for the value spans more than one line.

Example 3-15 To direct the user to supply a report title and to store the input in the
Prompting forand variable MYTITLE for use in a subsequent query, first clear the buffer:

Accepting Input SQL> CLEAR BUFFER

Next, set up a command file as shown below:

SQL> INPUT
1 PROMPT Enter a title up to 30 characters long.
2 ACCEPT MYTITLE PROMPT 'Title: ’
3 TTITLE LEFT MYTITLE SKIP 2
4 SELECT * FROM DEPT
5
SQL> SAVE PROMPT1
Created file PROMPT1

The TTITLE command sets the top title for your report. This command
is covered in detail in Chapter 4.

Finally, run the command file, responding to the prompt for the title as
shown:

SQL> START PROMPT1
Enter a title up to 30 characters long.
Title: Department Report as of 1/1/95

SQL*Plus displays the following output:

Department Report as of 1/1/95
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

3-24 SQL*Plus User’s Guide and Reference

Customizing Prompts for
Substitution Variable
Values

Example 3-16

Using PROMPT and
ACCEPT in
Conjunction with
Substitution Variables

Before continuing, turn the TTITLE command you entered in the
command file off as shown below:

SQL> TTITLE OFF

If you want to customize the prompt for a substitution variable value,
use PROMPT and ACCEPT in conjunction with the substitution
variable, as shown in the following example.

As you have seen in Example 3-15, SQL*Plus automatically generates a
prompt for a value when you use a substitution variable. You can
replace this prompt by including PROMPT and ACCEPT in the
command file with the query that references the substitution variable. To
create such a file, enter the commands shown:

SQL> CLEAR BUFFER
buffer cleared
SQL> INPUT
1 PROMPT Enter a valid employee number
PROMPT For example: 7123, 7456, 7890
ACCEPT ENUMBER NUMBER PROMPT 'Emp. no.: '’
SELECT ENAME, MGR, JOB, SAL
FROM EMP
WHERE EMPNO = &ENUMBER

o O WN

7
SQL> SAVE PROMPT2
Created file PROMPT2

Next, run the command file. SQL*Plus prompts for the value of
ENUMBER using the text you specified with PROMPT and ACCEPT:

SQL> START PROMPT2

Enter a valid employee number
For example: 7123, 7456, 7890
Emp. No.:

Try entering characters instead of numbers to the prompt for “Emp.
No.”:

Emp. No.: ONE
“ONE”" is not a valid number
Emp. No.:

Because you specified NUMBER after the variable name in the ACCEPT
command, SQL*Plus will not accept a non-numeric value. Now enter a
number:

Manipulating Commands 3-25

Sending a Message and
Accepting [Return] as
Input

Clearing the Screen

Using Bind Variables

Emp. No.: 7521
old 3: WHERE EMPNO = &ENUMBER
new 3: WHERE EMPNO = 7521

SQL*Plus displays the following output:
ENAME MGR JOB SALARY

WARD 7698 SALESMAN $1,250

If you want to display a message on the user’s screen and then have the
user enter [Return] after reading the message, use the SQL*Plus
command PAUSE. For example, you might include the following lines in
a command file:

PROMPT Before continuing, make sure you have your account
card.
PAUSE Press RETURN to continue.

If you want to clear the screen before displaying a report (or at any other
time), include the SQL*Plus CLEAR command with its SCREEN clause
at the appropriate point in your command file, using the following
format:

CLEAR SCREEN

Before continuing to the next chapter, reset all columns to their original
formats and headings by entering the following command:

SQL> CLEAR COLUMNS

Suppose that you want to be able to display the variables you use in
your PL/SQL subprograms in SQL*Plus or use the same variables in
multiple subprograms. If you declare a variable in a PL/SQL
subprogram, you cannot display that variable in SQL*Plus. Use a bind
variable in PL/SQL to access the variable from SQL*Plus.

Bind variables are variables you create in SQL*Plus and then reference
in PL/SQL. If you create a bind variable in SQL*Plus, you can use the
variable as you would a declared variable in your PL/SQL subprogram
and then access the variable from SQL*Plus. You can use bind variables
for such things as storing return codes or debugging your PL/SQL
subprograms.

3-26 SQL*Plus User’s Guide and Reference

Creating Bind
Variables

Referencing Bind
Variables

Displaying Bind
Variables

Example 3-17
Creating, Referencing,
and Displaying Bind
Variables

Because bind variables are recognized by SQL*Plus, you can display
their values in SQL*Plus or reference them in other PL/SQL
subprograms that you run in SQL*Plus.

You create bind variables in SQL*Plus with the VARIABLE command.
For example

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of
NUMBER. See VARIABLE in Chapter 6. (To list all of the bind variables
created in a session, type VARIABLE without any arguments.)

You reference bind variables in PL/SQL by typing a colon (:) followed
immediately by the name of the variable. For example

ret_val :=1;

This command assigns a value to the bind variable named ret_val.

To display the value of a bind variable in SQL*Plus, you use the
SQL*Plus PRINT command. For example

PRINT ret_val

This command displays a bind variable named ret_val. See PRINT in
Chapter 6.

To declare a local bind variable named id with a datatype of NUMBER,
enter

VARIABLE id NUMBER

Next, put a value of “1” into the bind variable you have just created:

BEGIN
id = 1;
END;

If you want to display a list of values for the bind variable named id,
enter

PRINT id

Try creating some new departments using the variable:

EXECUTE :id := dept_management.new('ACCOUNTING’,NEW YORK)
EXECUTE :id := dept_management.new(RESEARCH','DALLAS’)
EXECUTE :id := dept_management.new('SALES’,'CHICAGOQ’)
EXECUTE :id := dept_management.new(OPERATIONS’’BOSTON")
PRINT id

COMMIT

Manipulating Commands 3-27

Note: dept_management.new refers to a PL/SQL function,
“new”, in a package (dept_management). The function “new”
adds the department data to a table.

REFCURSOR Bind Variables

SQL*Plus REFCURSOR bind variables allow SQL*Plus to fetch and
format the results of a SELECT statement contained in a PL/SQL block.

REFCURSOR bind variables can also be used to reference PL/SQL
cursor variables in stored procedures. This allows you to store SELECT
statements in the database and reference them from SQL*Plus.

A REFCURSOR bind variable can also be returned from a stored
function.

Note: You must have Oracle7, Release 7.3 or above to assign the
return value of a stored function to a REFCURSOR variable.

Example 3-18 To create, reference and display a REFCURSOR bind variable, first

Creating, Referencing, declare a local bind variable of the REFCURSOR datatype

3-28

and Displaying
REFCURSOR Bind
Variables Next, enter a PL/SQL block that uses the bind variable in an OPEN ...
FOR SELECT statement. This statement opens a cursor variable and
executes a query. See the PL/SQL User’s Guide and Reference for
information on the OPEN command and cursor variables.

SQL> VARIABLE dept_sel REFCURSOR

In this example we are binding the SQL*Plus dept_sel bind variable to
the cursor variable.

SQL> BEGIN
2 OPEN :dept_sel FOR SELECT * FROM DEPT;
3 END;
4/

PL/SQL procedure successfully completed.

The results from the SELECT statement can now be displayed in
SQL*Plus with the PRINT command.

SQL> PRINT dept_sel
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

SQL*Plus User’s Guide and Reference

Example 3-19

Using REFCURSOR
Variables in Stored
Procedures

The PRINT statement also closes the cursor. To reprint the results, the
PL/SQL block must be executed again before using PRINT.

A REFCURSOR bind variable is passed as a parameter to a procedure.
The parameter has a REF CURSOR type. First, define the type.

SQL> CREATE OR REPLACE PACKAGE cv_types AS
2 TYPE DeptCurTyp is REF CURSOR RETURN dept%ROWTYPE;
3 END cv_types;
4/

Package created.

Next, create the stored procedure containing an OPEN ... FOR SELECT
statement.

SQL> CREATE OR REPLACE PROCEDURE dept_rpt
2 (dept_cv IN OUT cv_types.DeptCurTyp) AS
3 BEGIN
4 OPEN dept_cv FOR SELECT * FROM DEPT;
5 END;
6 /
Procedure successfully completed.

Execute the procedure with a SQL*Plus bind variable as the parameter.

SQL> VARIABLE odcv REFCURSOR
SQL> EXECUTE dept_rpt(:odcv)
PL/SQL procedure successfully completed.

Now print the bind variable.

SQL> PRINT odcv
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

The procedure can be executed multiple times using the same or a
different REFCURSOR bind variable.

SQL> VARIABLE pcv REFCURSOR
SQL> EXECUTE dept_rpt(:pcv)
PL/SQL procedure successfully completed.
SQL> PRINT pev

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

Manipulating Commands 3-29

Example 3-20

Using REFCURSOR

3-30

Variables in Stored
Functions

30 SALES CHICAGO
40 OPERATIONS BOSTON

Create a stored function containing an OPEN ... FOR SELECT statement:

SQL> CREATE OR REPLACE FUNCTION dept_fn RETURN —
> cv_types.DeptCurTyp IS

2 resultset cv_types.DeptCurTyp;

3 BEGIN

4 OPEN resultset FOR SELECT * FROM DEPT;

5 RETURN(resultset);

6 END;

71
Function created.

Execute the function.

SQL> VARIABLE rc REFCURSOR
SQL> EXECUTE :rc :=dept_fn
PL/SQL procedure successfully completed.

Now print the bind variable.

SQL> PRINT rc
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
4 rows selected.

The function can be executed multiple times using the same or a
different REFCURSOR bind variable.

SQL> EXECUTE :rc := dept_fn
PL/SQL procedure successfully completed.
SQL> PRINT rc

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
4 rows selected.

SQL*Plus User’s Guide and Reference

Tracing Statements

Controlling the Report

Execution Plan

You can automatically get a report on the execution path used by the
SQL optimizer and the statement execution statistics. The report is
generated after successful SQL DML (that is, SELECT, DELETE,
UPDATE and INSERT) statements. It is useful for monitoring and
tuning the performance of these statements.

You can control the report by setting the AUTOTRACE system variable.

SET AUTOTRACE OFF No AUTOTRACE report is
generated. This is the default.
SET AUTOTRACE ON EXPLAIN The AUTOTRACE report shows

only the optimizer execution path.
SET AUTOTRACE ON STATISTICS The AUTOTRACE report shows

only the SQL statement execution
statistics.

SET AUTOTRACE ON The AUTOTRACE report includes
both the optimizer execution path
and the SQL statement execution
statistics.

SET AUTOTRACE TRACEONLY Like SET AUTOTRACE ON, but
suppresses the printing of the
user’s query output, if any.

To use this feature, you must have the PLUSTRACE role granted to you
and a PLAN_TABLE table created in your schema. For more
information on the PLUSTRACE role and PLAN_TABLE table, see the
AUTOTRACE variable of the SET command in Chapter 6.

The Execution Plan shows the SQL optimizer’s query execution path.
Both tables are accessed by a full table scan, sorted, and then merged.

Each line of the Execution Plan has a sequential line number. SQL*Plus
also displays the line number of the parent operation.

The Execution Plan consists of four columns displayed in the following
order:

Manipulating Commands 3-31

Statistics

Example 3-21

Tracing Statements for
Performance Statistics
and Query Execution

Path

Column Name Description

ID_PLUS EXP Shows the line number of each
execution step.

PARENT _ID PLUS EXP Shows the relationship between each
step and its parent. This column is
useful for large reports.

PLAN_PLUS_EXP Shows each step of the report.

OBJECT_NODE_PLUS _EXP Shows the database links or parallel
query servers used.

The format of the columns may be altered with the COLUMN
command. For example, to stop the PARENT _ID_PLUS_EXP column
being displayed, enter

SQL> COLUMN PARENT_ID_PLUS_EXP NOPRINT
The default formats can be found in the site profile (for example,
glogin.sql).

The Execution Plan output is generated using the EXPLAIN PLAN
command. For information about interpreting the output of EXPLAIN
PLAN, see the Oracle7 Server Tuning guide.

The statistics are recorded by the server when your statement executes
and indicate the system resources required to execute your statement.

The client referred to in the statistics is SQL*Plus. SQL*Net refers to the
generic process communication between SQL*Plus and the server,
regardless of whether SQL*Net is installed.

You cannot change the default format of the statistics report.

For more information about the statistics and how to interpret them, see
the Oracle7 Server Tuning guide.

If the SQL buffer contains the following statement:

SQL> SELECT D.DNAME, E.ENAME, E.SAL, E.JOB
2 FROM EMP E, DEPT D
3 WHERE E.DEPTNO = D.DEPTNO

The statement can be automatically traced when it is run:

SQL> SET AUTOTRACE ON
SQL>/

3-32 SQL*Plus User’s Guide and Reference

DNAME ENAME SAL JOB

ACCOUNTING CLARK 2450 MANAGER
ACCOUNTING KING 5000 PRESIDENT
ACCOUNTING MILLER 1300 CLERK
RESEARCH SMITH 800 CLERK
RESEARCH ADAMS 1100 CLERK
RESEARCH FORD 3000 ANALYST
RESEARCH SCOTT 3000 ANALYST
RESEARCH JONES 2975 MANAGER
SALES ALLEN 1600 SALESMAN
SALES BLAKE 2850 MANAGER
SALES MARTIN 1250 SALESMAN
SALES JAMES 950 CLERK

SALES TURNER 1500 SALESMAN
SALES WARD 1250 SALESMAN

14 rows selected.

Execution Plan

SELECT STATEMENT Optimizer=CHOOSE
MERGE JOIN
SORT (JOIN)
TABLE ACCESS (FULL) OF 'DEPT’
SORT (JOIN)

0
1
2
3
4
5 TABLE ACCESS (FULL) OF 'EMP’

AR NRERO

Statistics

148 recursive calls
4 db block gets
24 consistent gets
6 physical reads
43 redo size
591 bytes sent via SQL*Net to client
256 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
2 sort (memory)
0 sort (disk)
14 rows processed

Note: Your output may vary depending on the version of the
server to which you are connected and the configuration of the
server.

Manipulating Commands 3-33

Example 3-22
Tracing Statements
Without Displaying
Query Data

Example 3-23
Tracing Statements
Using a Database Link

Tracing Parallel and
Distributed Queries

To trace the same statement without displaying the query data:

SQL> SET AUTOTRACE TRACEONLY
SQL>/

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN

2 1 SORT (JOIN)

3 2 TABLE ACCESS (FULL) OF 'DEPT’

4 1 SORT (JOIN)

5 4 TABLE ACCESS (FULL) OF 'EMP’

Statistics

0 recursive calls
4 db block gets
2 consistent gets
0 physical reads
0 redo size
599 bytes sent via SQL*Net to client
256 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
2 sort (memory)
0 sort (disk)
14 rows processed

This option is useful when you are tuning a large query, but do not want
to see the query report.

To trace a statement using a database link:

SQL> SET AUTOTRACE TRACEONLY EXPLAIN
SQL> SELECT * FROM EMP@MY_LINK;

Execution Plan

0 SELECT STATEMENT (REMOTE) Optimizer=CHOOSE
1 0 TABLE ACCESS (FULL) OF 'TEMP’ MY_LINK.DB_DOMAIN

The Execution Plan shows the table being accessed on line 1 is via the
database link MY_LINK.DB_ DOMAIN.

When you trace a statement in a parallel or distributed query, the
Execution Plan shows the cost based optimizer estimates of the number
of rows (the cardinality). In general, the cost, cardinality and bytes at

3-34 SQL*Plus User’s Guide and Reference

Example 3-24
Tracing Statements
With Parallel Query
Option

each node represent cumulative results. For example, the cost of a join
node accounts for not only the cost of completing the join operations,
but also the entire costs of accessing the relations in that join.

Lines marked with an asterisk (*) denote a parallel or remote operation.
Each operation is explained in the second part of the report. See the
Oracle7 Server Tuning guide for more information on parallel and
distributed operations.

The second section of this report consists of three columns displayed in
the following order:

Column Name Description

ID_PLUS_EXP Shows the line number of each
execution step.

OTHER_TAG_PLUS _EXP Describes the function of the SQL
statement in the OTHER_PLUS_EXP
column.

OTHER_PLUS_EXP Shows the text of the query for the
parallel server or remote database.

The format of the columns may be altered with the COLUMN
command. The default formats can be found in the site profile (for
example, glogin.sql).

Note: You must have Oracle7, Release 7.3 or greater to view the
second section of this report.

To trace a parallel query running the parallel query option:

SQL> CREATE TABLE T2_T1 (UNIQUE1 NUMBER) PARALLEL —
> (DEGREE 6);

Table created.

SQL> CREATE TABLE T2_T2 (UNIQUE1 NUMBER) PARALLEL —
> (DEGREE 6);

Table created.

SQL> CREATE UNIQUE INDEX D2_|_UNIQUE1 ON D2_T1(UNIQUEL);
Index created.

SQL> SET LONG 500 LONGCHUNKSIZE 500

SQL> SET AUTOTRACE ON EXPLAIN
SQL> SELECT /*+ INDEX(B,D2_I_UNIQUE1) USE_NL(B) ORDERED -

Manipulating Commands 3-35

> * COUNT (A.UNIQUEL)
2 FROMD2_T2A,D2_T1B
3 WHERE A.UNIQUEL1 = B.UNIQUEL;

SQL*Plus displays the following output:

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1
Card=263 Bytes=5786)
1 0 SORT (AGGREGATE)
2 1 NESTED LOOPS* (Cost=1 Card=263 Bytes=5785)
:Q8200
TABLE ACCESS* (FULL) OF 'D2_T2’ :Q8200
INDEX* (UNIQUE SCAN) OF 'D2_1_UNIQUEY’
(UNIQUE) :Q8200
2 PARALLEL_TO_SERIAL SELECT /*+ ORDERED NO_EXPAND
USE_NL(A2) IN DEX(A2) PIV_SSF */
COUNT(A1.C0O) FROM (SELECT/*+
ROWID(A3) */ A3."UNIQUE1" FROM
"D2_T2" A3 WHERE ROWID BETWEEN :1
AND :2) Al, "D2_T1" A2 WHERE
Al1.C0=A2."UNIQUEY"
3 PARALLEL_COMBINED_WITH_PARENT
4 PARALLEL_COMBINED_WITH_PARENT

W
NN

Line 0 of the Execution Plan shows the cost based optimizer estimates
the number of rows at 263, taking 5786 bytes. The total cost of the
statement is 1.

Lines 2, 3 and 4 are marked with asterisks, denoting parallel operations.
For example, the NESTED LOOPS step on line 2 is a
PARALLEL_TO_SERIAL operation. PARALLEL_TO_SERIAL
operations execute a SQL statement to produce output serially. Line 2
also shows that the parallel query server had the identifier Q8200.

3-36 SQL*Plus User’s Guide and Reference

Formatting Query
Results

CHAPTER

T his chapter explains how to format your query results to produce a
finished report. This chapter covers the following topics:

« changing column headings

« formatting NUMBER, CHAR, VARCHAR2 (VARCHAR), LONG,
DATE, and Trusted Oracle columns

« copying, listing, and resetting column display attributes
« suppressing duplicate values and inserting space for clarity

- calculating and printing summary lines (totals, averages,
minimums, maximums, and more)

- listing and removing spacing and summary line definitions
. setting page dimensions
« placing titles at the top and bottom of each page

. displaying column values and the current date or page number in
your titles

- listing and suppressing page title definitions
+ placing headers and footers at the beginning and end of reports

» sending query results to a file or printer

Formatting Query Results 4-1

Read this chapter while sitting at your computer and try out the
examples shown. Before beginning, make sure you have access to the
sample tables described in Chapter 1.

4-2 SQL*Plus User’s Guide and Reference

Formatting Columns

Changing Column
Headings

Default Headings

Changing Default
Headings

Example 4-1
Changing a Column
Heading

Through the SQL*Plus COLUMN command, you can change the
column headings and reformat the column data in your query results.

When displaying column headings, you can either use the default
heading or you can change it using the COLUMN command. The
sections below describe how the default headings are derived and how
you can alter them with the COLUMN command.

SQL*Plus uses column or expression names as default column headings
when displaying query results. Column names are often short and
cryptic, however, and expressions can be hard to understand.

You can define a more useful column heading with the HEADING
clause of the COLUMN command, in the format shown below:

COLUMNcolumn_name HEADING column_heading

See the COLUMN command in Chapter 6 for more details.

To produce a report from EMP with new headings specified for
DEPTNO, ENAME, and SAL, enter the following commands:

SQL> COLUMN DEPTNO HEADING Department
SQL> COLUMN ENAME HEADING Employee
SQL> COLUMN SAL HEADING Salary
SQL> COLUMN COMM HEADING Commission
SQL> SELECT DEPTNO, ENAME, SAL, COMM
2 FROM EMP
3 WHERE JOB ='SALESMAN’;

SQL*Plus displays the following output:

Department Employee Salary Commission

30 ALLEN 1600 300
30 WARD 1250 500
30 MARTIN 1250 1400
30 TURNER 1500 0

Note: The new headings will remain in effect until you enter
different headings, reset each column’s format, or exit from
SQL*Plus.

To change a column heading to two or more words, enclose the new
heading in single or double quotation marks when you enter the
COLUMN command. To display a column heading on more than one
line, use a vertical bar (]) where you want to begin a new line. (You can

Formatting Query Results 4-3

Example 4-2
Splitting a Column
Heading

Example 4-3
Setting the Underline
Character

use a character other than a vertical bar by changing the setting of the
HEADSEP variable of the SET command. See SET in Chapter 6 for more
information.)

To give the column ENAME the heading EMPLOYEE NAME and to
split the new heading onto two lines, enter

SQL> COLUMN ENAME HEADING "Employee|Name’

Now rerun the query with the slash (/) command:

SQL>/

SQL*Plus displays the following output:

Employee

Department Name Salary Commission

30 ALLEN 1600 300
30 WARD 1250 500
30 MARTIN 1250 1400
30 TURNER 1500 0

To change the character used to underline each column heading, set the
UNDERLINE variable of the SET command to the desired character.

To change the character used to underline headings to an equal sign and
rerun the query, enter the following commands:

SQL> SET UNDERLINE =

SQL>/

SQL*Plus displays the following results:

Employee

Department Name Salary Commission

30 ALLEN 1600 300
30 WARD 1250 500
30 MARTIN 1250 1400
30 TURNER 1500 0

Now change the underline character back to a dash:
SQL> SET UNDERLINE '~

Note: You must enclose the dash in quotation marks; otherwise,
SQL*Plus interprets the dash as a hyphen indicating you wish to
continue the command on another line.

4-4 SQL*Plus User’s Guide and Reference

Formatting NUMBER
Columns

Default Display

Changing the Default
Display

Example 44
Formatting a NUMBER
Column

When displaying NUMBER columns, you can either accept the
SQL*Plus default display width or you can change it using the
COLUMN command. The sections below describe the default display
and how you can alter the default with the COLUMN command.

A NUMBER column’s width equals the width of the heading or the
width of the FORMAT plus one space for the sign, whichever is greater.
If you do not explicitly use FORMAT, then the column’s width will
always be at least the value of SET NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are
required for accuracy, up to a standard display width determined by the
value of the NUMWIDTH variable of the SET command (normally 10).
If a number is larger than the value of SET NUMWIDTH, SQL*Plus
rounds the number up or down to the maximum number of characters
allowed.

You can choose a different format for any NUMBER column by using a
format model in a COLUMN command. A format model is a
representation of the way you want the numbers in the column to
appear, using 9’s to represent digits.

The COLUMN command identifies the column you want to format and
the model you want to use, as shown below:

COLUMNcolumn_name FORMAT model

Use format models to add commas, dollar signs, angle brackets (around
negative values), and/or leading zeros to numbers in a given column.
You can also round the values to a given number of decimal places,
display minus signs to the right of negative values (instead of to the
left), and display values in exponential notation.

To use more than one format model for a single column, combine the
desired models in one COLUMN command (see Example 4-4). For a
complete list of format models and further details, see the COLUMN
command in Chapter 6.

To display SAL with a dollar sign, a comma, and the numeral zero
instead of a blank for any zero values, enter the following command:

SQL> COLUMN SAL FORMAT $99,990

Now rerun the current query:
SQL>/

SQL*Plus displays the following output:

Formatting Query Results 4-5

Formatting CHAR,
VARCHAR?2
(VARCHAR), LONG,
DATE, and Trusted
Oracle Columns

Default Display

Changing the Default
Display

Employee

Department Name Salary Commission

30 ALLEN $1,600 300
30 WARD $1,250 500
30 MARTIN $1,250 1400
30 TURNER $1,500 0

Use a zero in your format model, as shown above, when you use other
formats such as a dollar sign and wish to display a zero in place of a
blank for zero values.

Note: The format model will stay in effect until you enter a new
one, reset the column’s format, or exit from SQL*Plus.

When displaying CHAR, VARCHAR2 (VARCHAR), LONG, DATE, and
Trusted Oracle columns, you can either accept the SQL*Plus default
display width or you can change it using the COLUMN command. The
sections below describe the defaults and how you can alter the defaults
with the COLUMN command.

The default width of CHAR and VARCHAR2 (VARCHAR) columns is
the width of the column in the database. (VARCHAR2 requires Oracle7.)

The display width of LONG columns defaults to the value of the
LONGCHUNKSIZE variable of the SET command.

For Oracle7, the default width and format of unformatted DATE
columns in SQL*Plus is derived from the NLS parameters in effect.
Otherwise, the default format width is A9. With Oracle Version 6, the
default width for DATE columns is nine characters. For more
information on formatting DATE columns, see the FORMAT clause of
the COLUMN command in Chapter 6.

The default display width for the Trusted Oracle datatypes MLSLABEL
and RAW MLSLABEL is the width defined for the column in the
database or the width of the column heading, whichever is longer. (Note
that the default display width for a Trusted Oracle column named
ROWLABEL is 15.)

Note: The default justification for CHAR, VARCHAR?2
(VARCHAR), LONG, DATE, and Trusted Oracle columns is left
justification.

You can change the displayed width of a CHAR, VARCHAR?2
(VARCHAR), LONG, DATE, or Trusted Oracle column by using the
COLUMN command with a format model consisting of the letter A (for

4-6 SQL*Plus User’s Guide and Reference

alphanumeric) followed by a number representing the width of the
column in characters.

Within the COLUMN command, identify the column you want to
format and the model you want to use:

COLUMNcolumn_name FORMAT model

If you specify a width shorter than the column heading, SQL*Plus
truncates the heading. If you specify a width for a LONG column,
SQL*Plus uses the LONGCHUNKSIZE or the specified width,
whichever is smaller, as the column width. See the COLUMN command
in Chapter 6 for more details.

Example 4-5 To set the width of the column ENAME to four characters and rerun the
Formatting a Character current query, enter

Column SQL> COLUMN ENAME FORMAT A4

SQL>/
SQL*Plus displays the results:

Empl
Department Name Salary Commission

30 ALLE $1,600 300
N

30 WARD $1,250 500
30 MART $1,250 1400
IN

30 TURN $1,500 0
ER

Note: The format model will stay in effect until you enter a new
one, reset the column’s format, or exit from SQL*Plus. ENAME
could be a CHAR or VARCHAR?2 (VARCHAR) column.

If the WRAP variable of the SET command is set to ON (its default
value), the employee names wrap to the next line after the fourth
character, as shown in Example 4-5. If WRAP is set to OFF, the names
are truncated (cut off) after the fourth character.

The system variable WRAP controls all columns; you can override the
setting of WRAP for a given column through the WRAPPED,
WORD_WRAPPED, and TRUNCATED clauses of the COLUMN
command. See COLUMN in Chapter 6 for more information on these

Formatting Query Results 4-7

Copying Column
Display Attributes

Example 4-6
Copying a Column’s
Display Attributes

Listing and Resetting
Column Display
Attributes

clauses. You will use the WORD_WRAPPED clause of COLUMN later
in this chapter.

Note: The column heading is truncated regardless of the setting
of WRAP or any COLUMN command clauses.

Now return the column to its previous format:
SQL> COLUMN ENAME FORMAT A10

When you want to give more than one column the same display
attributes, you can reduce the length of the commands you must enter
by using the LIKE clause of the COLUMN command. The LIKE clause
tells SQL*Plus to copy the display attributes of a previously defined
column to the new column, except for changes made by other clauses in
the same command.

To give the column COMM the same display attributes you gave to SAL,
but to specify a different heading, enter the following command:

SQL> COLUMN COMM LIKE SAL HEADING Bonus

Rerun the query:

SQL>/

SQL*Plus displays the following output:

Employee
Department Name Salary Bonus

30 ALLEN $1,600 $300
30 WARD $1,250 $500
30 MARTIN $1,250 $1,400
30 TURNER $1,500 $0

To list the current display attributes for a given column, use the
COLUMN command followed by the column name only, as shown
below:

COLUMNcolumn_name

To list the current display attributes for all columns, enter the COLUMN
command with no column names or clauses after it:

COLUMN

To reset the display attributes for a column to their default values, use
the CLEAR clause of the COLUMN command as shown below:

COLUMNcolumn_name CLEAR

4-8 SQL*Plus User’s Guide and Reference

Example 4-7
Resetting Column
Display Attributes to
their Defaults

Suppressing and
Restoring Column
Display Attributes

Printing a Line of
Characters after
Wrapped Column
Values

To reset the attributes for all columns, use the COLUMNS clause of the
CLEAR command.

To reset all columns’ display attributes to their default values, enter the
following command:

SQL> CLEAR COLUMNS
columns cleared

You may wish to place the command CLEAR COLUMNS at the
beginning of every command file to ensure that previously entered
COLUMN commands will not affect queries you run in a given file.

You can suppress and restore the display attributes you have given a
specific column. To suppress a column’s display attributes, enter a
COLUMN command in the following form:

COLUMNcolumn_name OFF

The OFF clause tells SQL*Plus to use the default display attributes for
the column, but does not remove the attributes you have defined
through the COLUMN command. To restore the attributes you defined
through COLUMN, use the ON clause:

COLUMNcolumn_name ON

As you have seen, by default SQL*Plus wraps column values to
additional lines when the value does not fit within the column width. If
you want to insert a record separator (a line of characters or a blank line)
after each wrapped line of output (or after every row), use the RECSEP
and RECSEPCHAR variables of the SET command.

RECSEP determines when the line of characters is printed: you set
RECSEP to EACH to print after every line, to WRAPPED to print after
wrapped lines, and to OFF to suppress printing. The default setting of
RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set
RECSEPCHAR to any character.

You may wish to wrap whole words to additional lines when a column
value wraps to additional lines. To do so, use the WORD_WRAPPED
clause of the COLUMN command as shown below:

COLUMNcolumn_name WORD_WRAPPED

Formatting Query Results 4-9

Example 4-8
Printing a Line of
Characters after
Wrapped Column
Values

To print a line of dashes after each wrapped column value, enter the
following commands:

SQL> SET RECSEP WRAPPED
SQL> SET RECSEPCHAR '~

Now restrict the width of the column LOC and tell SQL*Plus to wrap
whole words to additional lines when necessary:

SQL> COLUMN LOC FORMAT A7 WORD_WRAPPED
Finally, enter and run the following query:
SQL> SELECT * FROM DEPT;
SQL*Plus displays the results:
DEPTNO DNAME LOC

10 ACCOUNTING NEW
YORK

20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

If you set RECSEP to EACH, SQL*Plus prints a line of characters after
every row (after every department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record
separators:

SQL> SET RECSEP OFF

Clarifying Your Report with Spacing and Summary Lines

4-10

When you use an ORDER BY clause in your SQL SELECT command,
rows with the same value in the ordered column (or expression) are
displayed together in your output. You can make this output more
useful to the user by using the SQL*Plus BREAK and COMPUTE
commands to create subsets of records and add space and/or summary
lines after each subset.

The column you specify in a BREAK command is called a break column.
By including the break column in your ORDER BY clause, you create
meaningful subsets of records in your output. You can then add
formatting to the subsets within the same BREAK command, and add a

SQL*Plus User’s Guide and Reference

Suppressing Duplicate
Values in Break
Columns

summary line (containing totals, averages, and so on) by specifying the
break column in a COMPUTE command.

For example, the following query, without BREAK or COMPUTE
commands,

SQL> SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3 WHERE SAL < 2500
4 ORDER BY DEPTNO;

produces the following unformatted results:

DEPTNO ENAME SAL

10 CLARK 2450
10 MILLER 1300
20 SMITH 800

20 ADAMS 1100
30 ALLEN 1600

30 JAMES 950

30 TURNER 1500
30 WARD 1250
30 MARTIN 1250

To make this report more useful, you would use BREAK to establish
DEPTNO as the break column. Through BREAK you could suppress
duplicate values in DEPTNO and place blank lines or begin a new page
between departments. You could use BREAK in conjunction with
COMPUTE to calculate and print summary lines containing the total
(and/or average, maximum, minimum, standard deviation, variance, or
count of rows of) salary for each department and for all departments.

The BREAK command suppresses duplicate values by default in the
column or expression you name. Thus, to suppress the duplicate values
in a column specified in an ORDER BY clause, use the BREAK
command in its simplest form:

BREAK ON break _column
Note: Whenever you specify a column or expression in a
BREAK command, use an ORDER BY clause specifying the

same column or expression. If you do not do this, the breaks
may appear to occur randomly.

Formatting Query Results 4-11

Example 4-9 To suppress the display of duplicate department numbers in the query
Suppressing Duplicate results shown above, enter the following commands:

Values Ingo?:ﬁgﬁ SQL> BREAK ON DEPTNO
SQL> SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3 WHERE SAL < 2500
4 ORDER BY DEPTNO;

SQL*Pus displays the following output:

DEPTNO ENAME SAL

10 CLARK 2450
MILLER 1300

20 SMITH 800
ADAMS 1100

30 ALLEN 1600
JAMES 950
TURNER 1500
WARD 1250
MARTIN 1250

Inserting Space when a You can insert blank lines or begin a new page each time the value
Break Column’s Value changes in the break column. To insert n blank lines, use the BREAK
Changes command in the following form:

BREAK ON break column SKIP n
To skip a page, use the command in this form:
BREAK ON break column SKIP PAGE
Example 4-10 To place one blank line between departments, enter the following
Inserting Space whena command:

Break Column’s Value

SQL> BREAK ON DEPTNO SKIP 1
Changes

Now rerun the query:
SQL>/

4-12 SQL*Plus User’s Guide and Reference

Inserting Space after
Every Row

Using Multiple
Spacing Techniques

Example 4-11
Combining Spacing
Techniques

SQL*Plus displays the results:

DEPTNO ENAME SAL

10 CLARK 2450
MILLER 1300

20 SMITH 800
ADAMS 1100

30 ALLEN 1600
JAMES 950
TURNER 1500
WARD 1250
MARTIN 1250

You may wish to insert blank lines or a blank page after every row. To
skip n lines after every row, use BREAK in the following form:

BREAK ON ROW SKIP n

To skip a page after every row, use
BREAK ON ROW SKIP PAGE

Note: SKIP PAGE does not cause a physical page break unless
you have also specified NEWPAGE 0.

Suppose you have more than one column in your ORDER BY clause and
wish to insert space when each column’s value changes. Each BREAK
command you enter replaces the previous one. Thus, if you want to use
different spacing techniques in one report or insert space after the value
changes in more than one ordered column, you must specify multiple
columns and actions in a single BREAK command.

First, add another column to the current query:

SQL> L

1 SELECT DEPTNO, ENAME, SAL

2 FROM EMP

3 WHERE SAL < 2500

4* ORDER BY DEPTNO
SQL> 1 SELECT DEPTNO, JOB, ENAME, SAL
SQL> 4 ORDER BY DEPTNO, JOB

Formatting Query Results 4-13

Now, to skip a page when the value of DEPTNO changes and one line
when the value of JOB changes, enter the following command:

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page
number, enter

SQL> TTITLE COL 35 FORMAT 9 'Page:’ SQL.PNO

Run the new query to see the results:

SQL>/
Page: 1
DEPTNO JOB ENAME SAL
10 CLERK MILLER 300
MANAGER CLARK 2450
Page: 2
DEPTNO JOB ENAME SAL
20 CLERK SMITH 800
ADAMS 1100
Page: 3
DEPTNO JOB ENAME SAL
30 CLERK JAMES 950
SALESMAN ALLEN 1600
TURNER 1500
WARD 1250
MARTIN 1250

4-14 SQL*Plus User’s Guide and Reference

Listing and Removing
Break Definitions

Computing Summary
Lines when a Break
Column’s Value
Changes

You can list your current break definition by entering the BREAK
command with no clauses:

BREAK

You can remove the current break definition by entering the CLEAR
command with the BREAKS clause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning
of every command file to ensure that previously entered BREAK
commands will not affect queries you run in a given file.

If you organize the rows of a report into subsets with the BREAK
command, you can perform various computations on the rows in each
subset. You do this with the functions of the SQL*Plus COMPUTE
command. Use the BREAK and COMPUTE commands together in the
following forms:

BREAK ON break_column
COMPUTHEunction LABEL label name OF column column column
..ON break column

You can include multiple break columns and actions, such as skipping
lines in the BREAK command, as long as the column you name after ON
in the COMPUTE command also appears after ON in the BREAK
command. To include multiple break columns and actions in BREAK
when using it in conjunction with COMPUTE, use these commands in
the following forms:

BREAK ON break column_1 SKIP PAGE ON break column 2 SKIP 1
COMPUTHEunction LABEL label_name OF column column column
..ON break_column_2

The COMPUTE command has no effect without a corresponding
BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all
types of columns. See COMPUTE in Chapter 6 for details.

Formatting Query Results 4-15

4-16

Example 4-12
Computing and
Printing Subtotals

The following table lists compute functions and their effects:

Function Effect

SUM Computes the sum of the values in the column.

MINIMUM Computes the minimum value in the column.

MAXIMUM Computes the maximum value in the column.

AVG Computes the average of the values in the column.

STD Computes the standard deviation of the values in the
column.

VARIANCE Computes the variance of the values in the column.

COUNT Computes the number of non-null values in the col-
umn.

NUMBER Computes the number of rows in the column.

Table 4 -1 Compute Functions

The function you specify in the COMPUTE command applies to all
columns you enter after OFF and before ON. The computed values print
on a separate line when the value of the ordered column changes.

Labels for ON REPORT and ON ROW computations appear in the first
column; otherwise, they appear in the column specified in the ON
clause.

You can change the compute label by using COMPUTE LABEL. If you
do not define a label for the computed value, SQL*Plus prints the
unabbreviated function keyword.

The compute label can be suppressed by using the NOPRINT option of
the COLUMN command on the break column. See the COMPUTE
command in Chapter 6 for more details.

To compute the total of SAL by department, first list the current BREAK
definition:

SQL> BREAK
break on DEPTNO skip 0 page nodup
on JOB skip 1 nodup

Now enter the following COMPUTE command and run the current
query:

SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL>/

SQL*Plus User’s Guide and Reference

SQL*Plus displays the following output:

DEPTNO JOB ENAME SAL
10 CLERK MILLER 1300
MANAGER CLARK 2450
*hkkkkhkkkhkk hhkkhhkkhkkhk
sum 3750
DEPTNO JOB ENAME SAL
20 CLERK SMITH 800
ADAMS 1100
kkhkkkkkkkhkk kkkkkkkkk
sum 1900
DEPTNO JOB ENAME SAL
30 CLERK JAMES 950
SALESMAN ALLEN 1600
TURNER 1500
WARD 1250
MARTIN 1250
*kkkkkkkkk kkkkkkkkk
sum 6550

To compute the sum of salaries for departments 10 and 20 without

printing the compute label:
SQL> COLUMN DUMMY NOPRINT

SQL> COMPUTE SUM OF SAL ON DUMMY

SQL> BREAK ON DUMMY SKIP 1

SQL> SELECT DEPTNO DUMMY, DEPTNO, ENAME, SAL

2 FROM EMP
3 WHERE DEPTNO <= 20
4 ORDER BY DEPTNO;

Formatting Query Results

4-17

4-18

SQL*Plus displays the following output:

DEPTNO ENAME SAL
10 KING 5000
10 CLARK 2450
10 MILLER 1300

8750
20 JONES 2975
20 FORD 3000
20 SMITH 800
20 SCOTT 3000
20 ADAMS 1100
10875

To compute the salaries at the end of the report:

SQL> COLUMN DUMMY NOPRINT

SQL> COMPUTE SUM OF SAL ON DUMMY

SQL> BREAK ON DUMMY

SQL> SELECT NULL DUMMY, DEPTNO, ENAME, SAL
2 FROM EMP
3 WHERE DEPTNO <= 20
4 ORDER BY DEPTNO;

SQL*Plus displays the following output:

DEPTNO ENAME SAL
10 KING 5000
10 CLARK 2450
10 MILLER 1300
20 JONES 2975
20 FORD 3000
20 SMITH 800
20 SCOTT 3000
20 ADAMS 1100
19625

Note: The format of the column SAL controls the appearance of
the sum of SAL, as well as the individual values of SAL. When
you establish the format of a NUMBER column, you must allow
for the size of sums you will include in your report.

SQL*Plus User’s Guide and Reference

Computing Summary
Lines at the End of the
Report

Example 4-13
Computing and
Printing a Grand Total

Computing Multiple
Summary Values and
Lines

You can calculate and print summary lines based on all values in a
column by using BREAK and COMPUTE in the following forms;

BREAK ON REPORT
COMPUTHEunction LABEL label name OF column column column
... ON REPORT

To calculate and print the grand total of salaries for all salesmen and
change the compute label, first enter the following BREAK and
COMPUTE commands:

SQL> BREAK ON REPORT
SQL> COMPUTE SUM LABEL TOTAL OF SAL ON REPORT

Next, enter and run a new query:

SQL> SELECT ENAME, SAL
2 FROM EMP
3 WHERE JOB ="'SALESMAN’;

SQL*Plus displays the results:

ENAME SAL
ALLEN 1600
WARD 1250

MARTIN 1250
TURNER 1500

*kkkkkkkkk

TOTAL 5600

To print a grand total (or grand average, grand maximum, and so on) in
addition to subtotals (or sub-averages, and so on), include a break
column and an ON REPORT clause in your BREAK command. Then,
enter one COMPUTE command for the break column and another to
compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTHEunction LABEL label nhame OF column ON break column
COMPUTHunction LABEL label name OF column ON REPORT

You can compute and print the same type of summary value on different

columns. To do so, enter a separate COMPUTE command for each
column.

Formatting Query Results 4-19

Example 4-14 To print the total of salaries and commissions for all salesmen, first enter
Computing the Same the following COMPUTE command:

Type of Summary
Value on Different SQL> COMPUTE SUM OF SAL COMM ON REPORT

Columns You do not have to enter a BREAK command; the BREAK you entered in
Example 4-13 is still in effect. Now, add COMM to the current query:

SQL> 1 SELECT ENAME, SAL, COMM

Finally, run the revised query to see the results:

SQL>/

ENAME SAL COMM
ALLEN 1600 300
WARD 1250 500

MARTIN 1250 1400
TURNER 1500 0

*kkkkkkkkk

sum 5600 2200

You can also print multiple summary lines on the same break column.
To do so, include the function for each summary line in the COMPUTE
command as follows:

COMPUTEfunction LABEL label_name function
LABEL label_name function LABEL label_name
OF column ON break column

If you include multiple columns after OFF and before ON, COMPUTE
calculates and prints values for each column you specify.

Example 4-15 To compute the average and sum of salaries for the sales department,
Computing Multiple first enter the following BREAK and COMPUTE commands:

Summary Lines on the
Same Break Column SQL> BREAK ON DEPTNO
SQL> COMPUTE AVG SUM OF SAL ON DEPTNO

Now, enter and run the following query:

SQL> SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3 WHERE DEPTNO = 30
4 ORDER BY DEPTNO, SAL,;

4-20 SQL*Plus User’s Guide and Reference

SQL*Plus displays the results:

DEPTNO ENAME SAL
30 JAMES 950
WARD 1250

MARTIN 1250
TURNER 1500
ALLEN 1600
BLAKE 2850
*kkkkkkkkk
avg 1566.66667
sum 9400

Listing and Removing You can list your current COMPUTE definitions by entering the
COMPUTE Definitions COMPUTE command with no clauses:

COMPUTE

You can remove all the COMPUTE definitions by entering the CLEAR
command with the COMPUTES clause.

Example 4-16 To remove all COMPUTE definitions and the accompanying BREAK
Removing COMPUTE definition, enter the following commands:

Definitions SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR COMPUTES
computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR
COMPUTES at the beginning of every command file to ensure that
previously entered BREAK and COMPUTE commands will not affect
gueries you run in a given file.

Formatting Query Results 4-21

Defining Page and Report Titles and Dimensions

Setting the Top and
Bottom Titles and
Headers and Footers

The word page refers to a screenful of information on your display or a
page of a spooled (printed) report. You can place top and bottom titles
on each page, set the number of lines per page, and determine the width
of each line.

The word report refers to the complete results of a query. You can also
place headers and footers on each report and format them in the same
way as top and bottom titles on pages.

As you have already seen, you can set a title to display at the top of each
page of a report. You can also set a title to display at the bottom of each
page. The TTITLE command defines the top title; the BTITLE command
defines the bottom title.

You can also set a header and footer for each report. The REPHEADER
command defines the report header; the REPFOOTER command defines
the report footer.

ATTITLE, BTITLE, REPHEADER or REPFOOTER command consists of
the command name followed by one or more clauses specifying a
position or format and a CHAR value you wish to place in that position
or give that format. You can include multiple sets of clauses and CHAR
values:

TTITLE position_clause(s) char_value position_clause(s)
char_value

BTITLE position_clause(s) char_value position_clause(s)
char_value

REPHEADERposition_clause(s) char_value position_clause(s)
char_value

REPFOOTERposition_clause(s) char_value position_clause(s)
char_value

The most often used clauses of TTITLE, BTITLE, REPHEADER and
REPFOOTER are summarized in the following table. For descriptions of
all TTITLE, BTITLE, REPHEADER and REPFOOTER clauses, see the
discussions of TTITLE and REPHEADER in Chapter 6.

4-22 SQL*Plus User’s Guide and Reference

Clause Example Description

COL n COL 72 Makes the next CHAR value
appear in the specified column
of the line.

SKIP n SKIP 2 Skips to a new line n times. If

n is greater than 1, n-1 blank
lines appear before the next
CHAR value.

LEFT LEFT Left-aligns the following
CHAR value.

CENTER CENTER Centers the following CHAR
value.

RIGHT RIGHT Right-aligns the following
CHAR value.

Table 4 — 2 Often-Used Clauses of TTITLE, BTITLE, REPHEADER
and REPFOOTER

Example 4-17 To put titles at the top and bottom of each page of a report, enter

PlacingaTopand oo . 171 £ cENTER -
Bottom Title on a Page
'ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT'
SQL> BTITLE CENTER 'COMPANY CONFIDENTIAL'

Now run the current query:
SQL>/
SQL*Plus displays the following output:
ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT

DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL
Example 4-18 To put a report header on a separate page, and to center it, enter

Placing a Head;reggr? SQL> REPHEADER PAGE CENTER 'ACME WIDGET’

Formatting Query Results 4-23

Now run the current query:
SQL>/
SQL*Plus displays the following output on page one

ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT
ACME WIDGET

COMPANY CONFIDENTIAL

and the following output on page two
ACME WIDGET SALES DEPARTMENT PERSONNEL REPORT

DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL

To suppress the report header without changing its definition, enter
SQL> REPHEADER OFF

Positioning Title Elements The report in the preceding exercises might look more attractive if you
give the company name more emphasis and place the type of report and
the department name on either end of a separate line. It may also help to
reduce the linesize and thus center the titles more closely around the
data.

You can accomplish these changes by adding some clauses to the
TTITLE command and by resetting the system variable LINESIZE, as the
following example shows.

4-24 SQL*Plus User’s Guide and Reference

Example 4-19
Positioning Title
Elements

You can format report headers and footers in the same way as BTITLE
and TTITLE using the REPHEADER and REPFOOTER commands.

To redisplay the personnel report with a repositioned top title, enter the
following commands:

SQL> TTITLE CENTER'ACME WIDGE T SKIP 1 —

> CENTER SKIP 1 LEFT 'PERSONNEL REPORT’ —
> RIGHT 'SALES DEPARTMENT’ SKIP 2

SQL> SET LINESIZE 60

SQL>/

SQL*Plus displays the results:
ACME WIDGET

PERSONNEL REPORT SALES DEPARTMENT
DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL

The LEFT, RIGHT, and CENTER clauses place the following values at
the beginning, end, and center of the line. The SKIP clause tells
SQL*Plus to move down one or more lines.

Note that there is no longer any space between the last row of the results
and the bottom title. The last line of the bottom title prints on the last
line of the page. The amount of space between the last row of the report
and the bottom title depends on the overall page size, the number of
lines occupied by the top title, and the number of rows in a given page.
In the above example, the top title occupies three more lines than the top
title in the previous example. You will learn to set the number of lines
per page later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n
clause at the beginning of the BTITLE command. For example, to skip
one line before the bottom title in the example above, you could enter
the following command:

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL’

Formatting Query Results 4-25

Indenting a Title Element

Exercise 4-20
Indenting a Title
Element

Entering Long Titles

Displaying the Page
Number and other
System-Maintained
Values in Titles

4-26

You can use the COL clause in TTITLE or BTITLE to indent the title
element a specific number of spaces. For example, COL 1 places the
following values in the first character position, and so is equivalent to
LEFT, or an indent of zero. COL 15 places the title element in the 15th
character position, indenting it 14 spaces.

To print the company name left-aligned with the report name indented
five spaces on the next line, enter

SQL> TTITLE LEFT "ACME WIDGET’ SKIP 1 —
> COL 6 'SALES DEPARTMENT PERSONNEL REPORT’ SKIP 2

Now rerun the current query to see the results:

SQL>/
ACME WIDGET
SALES DEPARTMENT PERSONNEL REPORT

DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL

If you need to enter a title greater than 500 characters in length, you can
use the SQL*Plus command DEFINE to place the text of each line of the
title in a separate user variable;

SQL> DEFINE LINE1 ="This is the first line...’
SQL> DEFINE LINE2 = 'This is the second line...’
SQL> DEFINE LINE3 = 'This is the third line...’

Then, reference the variables in your TTITLE or BTITLE command as
follows:

SQL> TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 —
> CENTER LINE3

You can display the current page number and other system-maintained
values in your title by entering a system value name as a title element,
for example:

TTITLE LEFT system-maintained_value_name

SQL*Plus User’s Guide and Reference

Example 4-21
Displaying the Current
Page Number in a Title

Example 4-22
Formatting a
System-Maintained
Value in a Title

There are five system-maintained values you can display in titles, the
most commonly used of which is SQL.PNO (the current page number).
Refer to the TTITLE command in Chapter 6 for a list of
system-maintained values you can display in titles.

To display the current page number at the top of each page, along with
the company name, enter the following command:

SQL> TTITLE LEFT '"ACME WIDGET’ RIGHT 'PAGE:" SQL.PNO SKIP 2
Now rerun the current query:

SQL>/

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1
DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL

Note that SQL.PNO has a format ten spaces wide. You can change this
format with the FORMAT clause of TTITLE (or BTITLE).

To close up the space between the word PAGE: and the page number,
re-enter the TTITLE command as shown:

SQL> TTITLE LEFT '"ACME WIDGET’ RIGHT 'PAGE:* FORMAT 999 —
> SQL.PNO SKIP 2

Now rerun the query:
SQL>/

Formatting Query Results 4-27

Listing, Suppressing,
and Restoring Page
Title Definitions

Displaying Column
Values in Titles

Example 4-23
Creating a
Master/Detail Report

SQL*Plus displays the following results:

ACME WIDGET PAGE: 1
DEPTNO ENAME SAL
30 JAMES 950
30 WARD 1250
30 MARTIN 1250
30 TURNER 1500
30 ALLEN 1600
30 BLAKE 2850

COMPANY CONFIDENTIAL

To list a page title definition, enter the appropriate title command with
no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:

TTITLE OFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports,
but do not clear the current definitions of the titles. You may restore the
current definitions by entering

TTITLE ON
BTITLE ON

You may wish to create a master/detail report that displays a changing
master column value at the top of each page with the detail query
results for that value below. You can reference a column value in a top
title by storing the desired value in a variable and referencing the
variable in a TTITLE command. Use the following form of the
COLUMN command to define the variable:

COLUMNcolumn_name NEW_VALUE variable_name

You must include the master column in an ORDER BY clause and in a
BREAK command using the SKIP PAGE clause.

Suppose you want to create a report that displays two different
managers’ employee numbers, each at the top of a separate page, and
the people reporting to the manager on the same page as the manager’s

4-28 SQL*Plus User’s Guide and Reference

employee number. First create a variable, MGRVAR, to hold the value of
the current manager’s employee number:

SQL> COLUMN MGR NEW_VALUE MGRVAR NOPRINT

Because you will display the managers’ employee numbers in the title,
you do not want them to print as part of the detail. The NOPRINT
clause you entered above tells SQL*Plus not to print the column MGR.

Next, include a label and the value in your page title, enter the proper
BREAK command, and suppress the bottom title from the last example:

SQL> TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
SQL> BREAK ON MGR SKIP PAGE
SQL> BTITLE OFF

Finally, enter and run the following query:

SQL> SELECT MGR, ENAME, SAL, DEPTNO
2 FROM EMP
3 WHERE MGR IN (7698, 7839)
3 ORDER BY MGR;

SQL*Plus displays the following output:
Manager: 7698

ENAME SAL DEPTNO
ALLEN 1600 30
WARD 1250 30

TURNER 1500 30
MARTIN 1250 30
JAMES 950 30
Manager: 7839

ENAME SAL DEPTNO

JONES 2975 20
BLAKE 2850 30
CLARK 2450 10

If you want to print the value of a column at the bottom of the page, you
can use the COLUMN command in the following form:

COLUMNcolumn_name OLD_VALUE variable_name

SQL*Plus prints the bottom title as part of the process of breaking to a
new page—after finding the new value for the master column.

Formatting Query Results 4-29

Displaying the Current
Date in Titles

Setting Page

Dimensions

Therefore, if you simply referenced the NEW_VALUE of the master
column, you would get the value for the next set of detail. OLD_VALUE
remembers the value of the master column that was in effect before the
page break began.

You can, of course, date your reports by simply typing a value in the
title. This is satisfactory for ad hoc reports, but if you want to run the
same report repeatedly, you would probably prefer to have the date
automatically appear when the report is run. You can do this by creating
a variable to hold the current date.

To create the variable (in this example named _DATE), you can add the
following commands to your SQL*Plus LOGIN file:

SET TERMOUT OFF

BREAK ON TODAY

COLUMN TODAY NEW_VALUE _DATE

SELECT TO_CHAR(SYSDATE, 'fmMonth DD, YYYY’) TODAY
FROM DUAL;

CLEAR BREAKS

SET TERMOUT ON

When you start SQL*Plus, these commands place the value of SYSDATE
(the current date) into a variable named _DATE. To display the current
date, you can reference _DATE in a title as you would any other
variable.

The date format model you include in the SELECT command in your
LOGIN file determines the format in which SQL*Plus displays the date.
See your Oracle7 Server SQL Language Reference Manual for more
information on date format models. For more information about the
LOGIN file, see “Modifying Your LOGIN File” in Chapter 3.

You can also enter these commands interactively at the command
prompt; see COLUMN in Chapter 6 for an example.

Typically, a page of a report contains the number of blank line(s) set in
the NEWPAGE variable of the SET command, a top title, column
headings, your query results, and a bottom title. SQL*Plus displays a
report that is too long to fit on one page on several consecutive pages,
each with its own titles and column headings. The amount of data
SQL*Plus displays on each page depends on the current page
dimensions.

4-30 SQL*Plus User’s Guide and Reference

Example 4-24
Setting Page
Dimensions

The default page dimensions used by SQL*Plus are shown below:
« number of lines before the top title: 1

« number of lines per page, from the top title to the bottom of the
page: 24

« number of characters per line: 80

You can change these settings to match the size of your computer screen
or, for printing, the size of a sheet of paper.

You can change the page length with the system variable PAGESIZE. For
example, you may wish to do so when you print a report, since printed
pages are customarily 66 lines long.

To set the number of lines between the beginning of each page and the
top title, use the NEWPAGE variable of the SET command:

SET NEWPAGEnumber_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays
and prints a formfeed character to begin a new page. On most types of
computer screens, the formfeed character clears the screen and moves
the cursor to the beginning of the first line. When you print a report, the
formfeed character makes the printer move to the top of a new sheet of
paper, even if the overall page length is less than that of the paper.

To set the number of lines on a page, use the PAGESIZE variable of the
SET command:

SET PAGESIZE number_of_lines

You may wish to reduce the linesize to center a title properly over your
output, or you may want to increase linesize for printing on wide paper.
You can change the line width using the LINESIZE variable of the SET
command:

SET LINESIZE number_of_characters

To set the page size to 66 lines, clear the screen (or advance the printer to
a new sheet of paper) at the start of each page, and set the linesize to 32,
enter the following commands:

SQL> SET PAGESIZE 66
SQL> SET NEWPAGE 0
SQL> SET LINESIZE 32

Now enter and run the following commands to see the results:

SQL> TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT" SKIP 1 —
> CENTER "10-JAN-89’ SKIP 2

Formatting Query Results 4-31

SQL> COLUMN DEPTNO HEADING DEPARTMENT
SQL> COLUMN ENAME HEADING EMPLOYEE
SQL> COLUMN SAL FORMAT $99,999 HEADING SALARY
SQL> SELECT DEPTNO, ENAME, SAL
2 FROM EMP
3 ORDER BY DEPTNO;

SQL*Plus displays a formfeed followed by the query results:

ACME WIDGET PERSONNEL REPORT
10-JAN-89

DEPARTMENT EMPLOYEE SALARY

10 CLARK $2,450

10 KING $5,000
10 MILLER $1,300
20 SMITH $800
20 ADAMS $1,100
20 FORD $3,000

20 SCOTT $3,000
20 JONES $2,975
30 ALLEN $1,600
30 BLAKE $2,850
30 MARTIN $1,250

30 JAMES $950
30 TURNER $1,500
30 WARD $1,250

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default
values:

SQL> SET PAGESIZE 24
SQL> SET NEWPAGE 1
SQL> SET LINESIZE 80

To list the current values of these variables, use the SHOW command:

SQL> SHOW PAGESIZE
pagesize 24

SQL> SHOW NEWPAGE
newpage 1

SQL> SHOW LINESIZE
linesize 80

Through the SQL*Plus command SPOOL, you can store you query
results in a file or print them on your computer’s default printer.

4-32 SQL*Plus User’s Guide and Reference

Sending Results to a
File

To store the results of a query in a file—and still display them on the
screen—enter the SPOOL command in the following form:

SPOOL file_name

SQL*Plus stores all information displayed on the screen after you enter
the SPOOL command in the file you specify.

Storing and Printing Query Results

Creating a Flat File

Send your query results to a file when you want to edit them with a
word processor before printing or include them in a letter, memo, or
other document.

To store the results of a query in a file—and still display them on the
screen—enter the SPOOL command in the following form:

SPOOL file_name

If you do not follow the filename with a period and an extension,
SPOOL adds a default file extension to the filename to identify it as an
output file. The default varies with the host operating system; on most
hosts it is LST or LIS. See the Oracle installation and user’s manual(s)
provided for your operating system for more information.

SQL*Plus continues to spool information to the file until you turn
spooling off, using the following form of SPOOL.:

SPOOL OFF

When moving data between different software products, it is sometimes
necessary to use a “flat” file (an operating system file with no escape
characters, headings, or extra characters embedded). For example, if you
do not have SQL*Net, you need to create a flat file for use with
SQL*Loader when moving data from Oracle Version 6 to Oracle?.

To create a flat file with SQL*Plus, you first must enter the following
SET commands:

SET NEWPAGE 0
SET SPACE 0

SET LINESIZE 80
SET PAGESIZE 0
SET ECHO OFF

SET FEEDBACK OFF
SET HEADING OFF

Formatting Query Results 4-33

Sending Results to a
Printer

Example 4-25
Sending Query Results
to a Printer

After entering these commands, you use the SPOOL command as
shown in the previous section to create the flat file.

The SET COLSEP command may be useful to delineate the columns. For
more information, see the SET command in Chapter 6.

To print query results, spool them to a file as described in the previous
section. Then, instead of using SPOOL OFF, enter the command in the
following form:

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to
your host computer’s standard (default) printer. SPOOL OUT does not
delete the spool file after printing.

To generate a final report and spool and print the results, create a
command filenamed EMPRPT containing the following commands.

First, use EDIT to create the command file with your host operating
system text editor. (Do not use INPUT and SAVE, or SQL*Plus will add
a slash to the end of the file and will run the command file twice—once
as a result of the semicolon and once due to the slash.)

SQL> EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPTNO HEADING DEPARTMENT
COLUMN ENAME HEADING EMPLOYEE
COLUMN SAL HEADING SALARY FORMAT $99,999

BREAK ON DEPTNO SKIP 1 ON REPORT
COMPUTE SUM OF SAL ON DEPTNO
COMPUTE SUM OF SAL ON REPORT

SET PAGESIZE 21
SET NEWPAGE 0
SET LINESIZE 30

TTITLECENTER'ACME WIDGET SKIP 2 -
LEFT 'EMPLOYEE REPORT’ RIGHT 'PAGE:’ —
FORMAT 999 SQL.PNO SKIP 2

4-34 SQL*Plus User’s Guide and Reference

BTITLE CENTER 'COMPANY CONFIDENTIAL’

SELECT DEPTNO, ENAME, SAL
FROM EMP
ORDER BY DEPTNO;

SPOOL OUT

If you do not want to see the output on your screen, you can also add
SET TERMOUT OFF to the beginning of the file and SET TERMOUT ON
to the end of the file. Save the file (you automatically return to
SQL*Plus). Now, run the command file EMPRPT:

SQL> @EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT
to OFF), spools it to the file TEMP, and sends the contents of TEMP to
your default printer:

ACME WIDGET
EMPLOYEE REPORT PAGE: 1

DEPARTMENT EMPLOYEE SALARY

10 CLARK $2,450
KING $5,000
MILLER $1,300

*kkkkkkkkk

sum $8,750

20 SMITH $800
ADAMS $1,100
FORD $3,000
SCOTT $3,000
JONES $2,975

*kkkkkkkkk

sum $10,875

COMPANY CONFIDENTIAL

Formatting Query Results 4-35

4-36

ACME WIDGET

EMPLOYEE REPORT PAGE: 2

DEPARTMENT EMPLOYEE SALARY

30 ALLEN $1,600
BLAKE $2,850
MARTIN $1,250
JAMES $900
TURNER $1,500
WARD $1,250

kkkkkkkkkk

sum $9,400

K*kkkkkkkkk

sum $29,025

COMPANY CONFIDENTIAL

SQL*Plus User’s Guide and Reference

Accessing SQL
Databases

CHAPTER

T his chapter explains how to access databases through SQL*Plus,
and discusses the following topics:

« connecting to the default database

« connecting to a remote database

« copying data between different databases

« copying data between tables on the same database

Read this chapter while sitting at your computer and try out the
example shown. Before beginning, make sure you have access to the
sample tables described in Chapter 1.

Accessing SQL Databases 5-1

Connecting to the Default Database

In order to access data in a given database, you must first connect to the
database. When you start SQL*Plus, you normally connect to your
default Oracle database under the username and password you enter
while starting. Once you have logged in, you can connect under a
different username with the SQL*Plus CONNECT command. The
username and password must be valid for the database.

For example, to connect the username TODD to the default database
using the password FOX, you could enter

SQL> CONNECT TODD/FOX

If you omit the username and password, SQL*Plus prompts you for
them. You also have the option of typing only the username following
CONNECT and omitting the password (SQL*Plus then prompts for the
password). Because CONNECT first disconnects you from your current
database, you will be left unconnected to any database if you use an
invalid username and password in your CONNECT command.

You can disconnect the username currently connected to Oracle without
leaving SQL*Plus by entering the SQL*Plus command DISCONNECT at
the SQL*Plus command prompt.

The default database is configured at an operating system level by
setting operating system environment variables, symbols or, possibly, by
editing an Oracle specific configuration file. Refer to your Oracle
documentation for your operating system for more information.

Connecting to a Remote Database

Many large installations run Oracle on more than one computer. Such
computers are often connected in a network, which permits programs
on different computers to exchange data rapidly and efficiently.
Networked computers can be physically near each other, or can be
separated by large distances and connected by telecommunication links.

Databases on other computers or databases on your host computer other
than your default database are called remote databases. You can access
remote databases if the desired database has SQL*Net and both
databases have compatible network drivers.

You can connect to a remote database in one of two ways:
« from within SQL*Plus, using the CONNECT command
+ as you start SQL*Plus, using the SQLPLUS command

5-2 SQL*Plus User’s Guide and Reference

Connecting to a To connect to a remote database using CONNECT, include a SQL*Net

Remote Database from database specification in the CONNECT command in one of the

within SQL*Plus following forms (the username and password you enter must be valid
for the database to which you wish to connect):

« CONNECT SCOTTd@tabase_specification
+ CONNECT SCOTT/TIGER@atabase_specification

SQL*Plus prompts you for a password as needed, and connects you to
the specified database. This database becomes the default database until
you CONNECT again to another database, DISCONNECT, or leave
SQL*Plus.

When you connect to a remote database in this manner, you can use the
complete range of SQL and SQL*Plus commands and PL/SQL blocks on
the database.

The exact string you enter for the database specification depends upon
the SQL*Net protocol your computer uses. For more information, see
CONNECT in Chapter 6 and the SQL*Net manual appropriate for your
protocol, or contact your DBA.

Connecting to a To connect to a remote database when you start SQL*Plus, include the
Remote Database as SQL*Net database specification in your SQLPLUS command in one of

You Start SQL*Plus the following forms:
+ SQLPLUS SCOTT@atabase_specification

+ SQLPLUS SCOTT/TIGER@atabase_specification

You must use a username and password valid for the remote database
and substitute the appropriate database specification for the remote
database. SQL*Plus prompts you for username and password as
needed, starts SQL*Plus, and connects you to the specified database.
This database becomes the default database until you CONNECT to
another database, DISCONNECT, or leave SQL*Plus.

Once again, you can manipulate tables in the remote database directly
after you connect in this manner.

Note: Do not confuse the @ symbol of the connect string with
the @ command used to run a command file.

Accessing SQL Databases 5-3

Copying Data from One Database to Another

Understanding COPY
Command Syntax

Use the SQL*Plus COPY command to copy data between databases and
between tables on the same database. With the COPY command, you
can copy data between databases in the following ways:

- copy data from a remote database to your local database

+ copy data from your local (default) database to a remote database
(on most systems)

- copy data from one remote database to another remote database
(on most systems)

Note: In general, the COPY command was designed to be used
for copying data between Oracle and non-Oracle databases. You
should use SQL commands (CREATE TABLE AS and INSERT)
to copy data between Oracle databases.

You enter the COPY command in the following form:

COPY FROMdatabase TO database action -
destination_table (column_name, column_name |, —
column_name ...) USING query

Here is a sample COPY command:

COPY FROM SCOTT/TIGER@BOSTONDB —
TO TODD/FOX@CHICAGODB —
CREATE NEWDEPT (DNUMBER, DNAME, CITY)-
USING SELECT * FROM DEPT

To specify a database in the FROM or TO clause, you must have a valid
username and password for the local and remote database(s) and know
the appropriate database specification(s). COPY obeys Oracle security,
so the username you specify must have been granted access to tables for
you to have access to tables. For information on what databases are
available to you, contact your DBA.

When you copy to your local database from a remote database, you can
omit the TO clause. When you copy to a remote database from your
local database, you can omit the FROM clause. When you copy between
remote databases, you must include both clauses.

The COPY command behaves differently based on whether the
destination table already exists and on the action clause you enter
(CREATE in the example above). See “Controlling Treatment of the
Destination Table” later in this chapter.

5-4 SQL*Plus User’s Guide and Reference

Controlling Treatment
of the Destination
Table

By default, the copied columns have the same names in the destination
table that they have in the source table. If you want to give new names
to the columns in the destination table, enter the new names in
parentheses after the destination table name. If you enter any column
names, you must enter a name for every column you are copying.

Note: To enable the copying of data between Oracle and
non-Oracle databases, NUMBER columns are changed to
DECIMAL columns in the destination table. Hence, if you are
copying between Oracle databases, a NUMBER column with no
precision will be changed to a DECIMAL(38) column. When
copying between Oracle databases, you should use SQL
commands (CREATE TABLE AS and INSERT) or you should
ensure that your columns have a precision specified.

The USING clause specifies a query that names the source table and
specifies the data that COPY copies to the destination table. You can use
any form of the SQL SELECT command to select the data that the COPY
command copies.

Here is an example of a COPY command that copies only two columns
from the source table, and copies only those rows in which the value of
DEPTNO is 30:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB —
> REPLACE EMPCOPY2 —

> USING SELECT ENAME, SAL —

> FROM EMPCOPY —

> WHERE DEPTNO = 30

You may find it easier to enter and edit long COPY commands in
command files rather than trying to enter them directly at the command
prompt.

You control the treatment of the destination table by entering one of four
control clauses—REPLACE, CREATE, INSERT, or APPEND.

The REPLACE clause names the table to be created in the destination
database and specifies the following actions:

- If the destination table already exists, COPY drops the existing
table and replaces it with a table containing the copied data.

« If the destination table does not already exist, COPY creates it
using the copied data.

Accessing SQL Databases 5-5

You can use the CREATE clause to avoid accidentally writing over an
existing table. CREATE specifies the following actions:

- If the destination table already exists, COPY reports an error and
stops.

- If the destination table does not already exist, COPY creates the
table using the copied data.

Use INSERT to insert data into an existing table. INSERT specifies the
following actions:

- If the destination table already exists, COPY inserts the copied
data in the destination table.

« If the destination table does not already exist, COPY reports an
error and stops.

Use APPEND when you want to insert data in an existing table, or
create a new table if the destination table does not exist. APPEND
specifies the following actions:

« If the destination table already exists, COPY inserts the copied
data in the destination table.

« If the table does not already exist, COPY creates the table and
then inserts the copied data in it.

Example 5-1 To copy EMP from a remote database into a table called EMPCOPY on
Copying froma your own database, enter the following command:

Remote Database to .
Your Local Database Note: See your DBA for an appropriate username, password,

Using CREATE and database specification for a remote computer that contains a
copy of EMP.

SQL> COPY FROM SCOTT/TIGER@BOSTONDB —
> CREATE EMPCOPY —
> USING SELECT * FROM EMP

SQL*Plus displays the following messages:

Array fetch/bind size is 20. (arraysize is 20)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SQL*Plus then creates the table EMPCOPY, copies the rows, and
displays the following additional messages:

Table EMPCOPY created.

14 rows selected from SCOTT@BOSTONDB.

14 rows inserted into EMPCOPY.

14 rows committed into EMPCOPY at DEFAULT HOST connection.

5-6 SQL*Plus User’s Guide and Reference

Interpreting the
Messages that COPY
Displays

Specifying Another
User’s Table

In this COPY command, the FROM clause directs COPY to connect you
to the database with the specification D:BOSTON-MFG as SCOTT, with
the password TIGER.

Notice that you do not need a semicolon at the end of the command;
COPY is a SQL*Plus command, not a SQL command, even though it
contains a query. Because most COPY commands are longer than one
line, you must use a hyphen (=), optionally preceded by a space, at the
end of each line except the last.

The first three messages displayed by COPY show the values of SET
command variables that affect the COPY operation. The most important
one is LONG, which limits the length of a LONG column’s value.
(LONG is a datatype, similar to CHAR.) If the source table contains a
LONG column, COPY truncates values in that column to the length
specified by the system variable LONG.

The variable ARRAYSIZE limits the number of rows that SQL*Plus
fetches from the database at one time. This number of rows makes up a
batch. The variable COPYCOMMIT sets the number of batches after
which COPY commits changes to the database. (If you set
COPYCOMMIT to zero, COPY commits changes only after all batches
are copied.) For more information on the variables of the SET command,
including how to change their settings, see SET in Chapter 6.

After listing the three system variables and their values, COPY tells you
if a table was dropped, created, or updated during the copy. Then COPY
lists the number of rows selected, inserted, and committed.

You can refer to another user’s table in a COPY command by qualifying
the table name with the username, just as you would in your local
database, or in a query with a database link.

For example, to make a local copy of a table named DEPT, owned by the
username ADAMS on the database associated with the SQL*Net connect
string BOSTONDB, you would enter

SQL> COPY FROM SCOTT/TIGER@BOSTONDB —
> CREATE EMPCOPY2 —
> USING SELECT * FROM ADAMS.DEPT

Of course, you could get the same result by instructing COPY to log in
to the remote database as ADAMS. You cannot do that, however, unless
you know the password associated with the username ADAMS.

Accessing SQL Databases 5-7

Copying Data between Tables on One Database

You can copy data from one table to another in a single database (local
or remote). To copy between tables in your local database, specify your
own username and password and the database specification for your

local database in either a FROM or a TO clause (omit the other clause):

SQL> COPY FROM SCOTT/TIGER@MYDATABASE —
> INSERT EMPCOPY2 —
> USING SELECT * FROM EMP

To copy between tables on a remote database, include the same
username, password, and database specification in the FROM and TO
clauses:

SQL> COPY FROM SCOTT/TIGER@BOSTONDB —
> TO SCOTT/TIGER@BOSTONDB —

> INSERT EMPCOPY?2 —

> USING SELECT * FROM EMP

5-8 SQL*Plus User’s Guide and Reference

Command Reference

CHAPTER

T his chapter contains descriptions of SQL*Plus commands, listed
alphabetically. Use this chapter for reference only. Each description
contains the following parts:

Purpose Discusses the basic use(s) of the command.

Syntax Shows how to enter the command. Refer to
Chapter 1 for an explanation of the syntax notation.

Terms and Describes the function of each term or clause

Clauses appearing in the syntax.

Usage Notes Provides additional information on how the

command works and on uses of the command.
Examples Gives one or more examples of the command.

A summary table that lists and briefly describes SQL*Plus commands
precedes the individual command descriptions.

To access online help for SQL*Plus commands, you can type HELP
followed by the command name at the SQL command prompt. For
example:

SQL> HELP ACCEPT

If you get a response that help is unavailable, consult your database
administrator. See the HELP command for more information.

You can continue a long SQL*Plus command by typing a hyphen at the
end of the line and pressing [Return]. If you wish, you can type a space

Command Reference 6-1

before typing the hyphen. SQL*Plus displays a right angle-bracket (>)
as a prompt for each additional line.

You do not need to end a SQL*Plus command with a semicolon. When
you finish entering the command, you can just press [Return]. If you
wish, however, you can enter a semicolon at the end of a SQL*Plus
command.

6-2 SQL*Plus User’s Guide and Reference

SQL*Plus Command Summary

Command

Description

@

@@

/
ACCEPT

APPEND

BREAK

BTITLE

CHANGE

CLEAR

COLUMN

COMPUTE

CONNECT
COPY

DEFINE

DEL
DESCRIBE

DISCONNECT

EDIT

Runs the specified command file.
Runs a nested command file.
Executes the SQL command or PL/SQL block.

Reads a line of input and stores it in a given user
variable.

Adds specified text to the end of the current line in
the buffer.

Specifies where and how formatting will change in a
report, or lists the current break definition.

Places and formats a specified title at the bottom of
each report page, or lists the current BTITLE
definition.

Changes text on the current line in the buffer.

Resets or erases the current value or setting for the
specified option, such as BREAKS or COLUMNS.

Specifies display attributes for a given column, or
lists the current display attributes for a single column
or for all columns.

Calculates and prints summary lines, using various
standard computations, on subsets of selected rows,
or lists all COMPUTE definitions.

Connects a given username to Oracle.

Copies data from a query to a table in a local or
remote database.

Specifies a user variable and assigns ita CHAR
value, or lists the value and variable type of a single
variable or all variables.

Deletes one or more lines of the buffer.

Lists the column definitions for the specified table,
view, or synonym or the specifications for the
specified function or procedure.

Commits pending changes to the database and logs
the current username off Oracle, but does not exit
SQL*Plus.

Invokes a host operating system text editor on the
contents of the specified file or on the contents of the
buffer.

Command Reference 6-3

Command

Description

EXECUTE
EXIT

GET

HELP
HOST

INPUT

LIST
PAUSE

PRINT
PROMPT

REMARK

REPFOOTER

REPHEADER

RUN

RUNFORM

SAVE

SET

SHOW

SPOOL

SQLPLUS

6-4 SQL*Plus User’s Guide and Reference

Executes a single PL/SQL statement.

Terminates SQL*Plus and returns control to the
operating system.

Loads a host operating system file into the SQL
buffer.

Accesses the SQL*Plus help system.

Executes a host operating system command without
leaving SQL*Plus.

Adds one or more new lines after the current line in
the buffer.

Lists one or more lines of the SQL buffer.

Displays an empty line followed by a line containing
text, then waits for the user to press [Return], or
displays two empty lines and waits for the user’s
response.

Displays the current value of a bind variable.

Sends the specified message or a blank line to the
user’s screen.

Begins a comment in a command file.

Places and formats a specified report footer at the
bottom of each report, or lists the current
REPFOOTER definition.

Places and formats a specified report header at the
top of each report, or lists the current REPHEADER
definition.

Lists and executes the SQL command or PL/SQL
block currently stored in the SQL buffer.

Invokes a SQL*Forms application from within
SQL*Plus.

Saves the contents of the SQL buffer in a host
operating system file (a command file).

Sets a system variable to alter the SQL*Plus
environment for your current session.

Shows the value of a SQL*Plus system variable or the
current SQL*Plus environment.

Stores query results in an operating system file and,
optionally, sends the file to a printer.

Starts SQL*Plus from the operating system prompt.

Command

Description

START
STORE

TIMING

TTITLE

UNDEFINE

VARIABLE

WHENEVER
OSERROR

WHENEVER
SQLERROR

Executes the contents of the specified command file.

Saves attributes of the current SQL*Plus environment
in a host operating system file (a command file).

Records timing data for an elapsed period of time,
lists the current timer’s title and timing data, or lists
the number of active timers.

Places and formats a specified title at the top of each
report page, or lists the current TTITLE definition.

Deletes one or more user variables that you defined
either explicitly (with the DEFINE command) or
implicitly (with an argument to the START
command).

Declares a bind variable that can be referenced in
PL/SQL.

Exits SQL*Plus if an operating system command
generates an error.

Exits SQL*Plus if a SQL command or PL/SQL block
generates an error.

Command Reference 6-5

@ ("at” sign)

6-6

Purpose Runs the specified command file.

Syntax @file_name [. ext][arg..]

Terms and Clauses Refer to the following list for a description of each term or clause:

file_name [. ext]

arg...

SQL*Plus User’s Guide and Reference

Represents the command file you wish to run. If
you omit ext, SQL*Plus assumes the default
command-file extension (normally SQL). For
information on changing the default extension, see
the SUFFIX variable of the SET command in this
chapter.

When you enter @ file_name.ext, SQL*Plus searches
for a file with the filename and extension you
specify in the current default directory. If SQL*Plus
does not find such a file, SQL*Plus will search a
system-dependent path to find the file. Some
operating systems may not support the path
search. Consult the Oracle installation and user’s
manual(s) provided for your operating system for
specific information related to your operating
system environment.

Represent data items you wish to pass to
parameters in the command file. If you enter one or
more arguments, SQL*Plus substitutes the values
into the parameters (&1, &2, and so forth) in the
command file. The first argument replaces each
occurrence of &1, the second replaces each
occurrence of &2, and so forth.

The @ command DEFINES the parameters with the
values of the arguments; if you run the command
file again in this session, you can enter new
arguments or omit the arguments to use the
current values.

For more information on using parameters, refer to
the subsection “Passing Parameters through the
START Command” under “Writing Interactive
Commands” in Chapter 3.

Usage Notes

Example

You can include in a command file any command you would normally
enter interactively (typically, SQL, SQL*Plus commands, or PL/SQL
blocks).

An EXIT or QUIT command used in a command file terminates
SQL*Plus.

The @ command functions similarly to START.

If the START command is disabled (see “Disabling SQL*Plus, SQL, and
PL/SQL Commands” in Appendix E), this will also disable the @
command. See START in this chapter for information on the START
command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default)
before the @ command is issued. A workaround for this is to add
another SQLTERMINATOR. See the SQLTERMINATOR variable of the
SET command in this chapter for more information.

To run acommand filenamed PRINTRPT with the extension SQL, enter

SQL> @PRINTRPT

To run a command filenamed WKRPT with the extension QRY, enter
SQL> @WKRPT.QRY

Command Reference 6-7

@@ (double “at” sign)

Purpose Runs a nested command file. This command is identical to the @ (“at”
sign) command except that it looks for the specified command file in
the same path as the command file from which it was called.

Syntax @d@le_name [. ext]

Terms and Clauses Refer to the following for a description of the term or clause:

file_name [. ext] Representsthe nested command file you wish to
run. If you omit ext, SQL*Plus assumes the default
command-file extension (normally SQL). For
information on changing the default extension, see
the SUFFIX variable of the SET command in this
chapter.

When you enter @@file_name.ext from within a
command file, SQL*Plus runs file_name.ext from the
same directory as the command file. When you
enter @@file_name.ext interactively, SQL*Plus runs
file_name.ext from the current working directory. If
SQL*Plus does not find such a file, SQL*Plus
searches a system-dependent path to find the file.
Some operating systems may not support the path
search. Consult the Oracle installation and user’s
manual(s) provided for your operating system for
specific information related to your operating
system environment.

Usage Notes You can include in a command file any command you would normally
enter interactively (typically, SQL or SQL*Plus commands).

An EXIT or QUIT command used in a command file terminates
SQL*Plus.

The @@ command functions similarly to START.

If the START command is disabled, this will also disable the @@
command. See START in this chapter for further information on the
START command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default)
before the @@ command is issued. A workaround for this is to add
another SQLTERMINATOR. See the SQLTERMINATOR variable of the
SET command in this chapter for more information.

6-8 SQL*Plus User’s Guide and Reference

Example

Suppose that you have the following command filenamed PRINTRPT:

SELECT * FROM EMP
@EMPRPT
@@ WKRPT

When you START PRINTRPT and it reaches the @ command, it looks
for the command filenamed EMPRPT in the current working directory
and runs it. When PRINTRPT reaches the @@ command, it looks for the
command filenamed WKRPT in the same path as PRINTRPT and runs
it.

Command Reference 6-9

/ (slash)
Purpose Executes the SQL command or PL/SQL block currently stored in the
SQL buffer.
Syntax /

Usage Notes You can enter a slash (/) at the command prompt or at a line number
prompt of a multi-line command.

The slash command functions similarly to RUN, but does not list the
command in the buffer on your screen.

Executing a SQL command or PL/SQL block using the slash command
will not cause the current line number in the SQL buffer to change
unless the command in the buffer contains an error. In that case,
SQL*Plus changes the current line number to the number of the line
containing the error.

Example To see the SQL command(s) you will execute, you can list the contents
of the buffer:

SQL> LIST
1* SELECT ENAME, JOB FROM EMP WHERE ENAME = 'JAMES’

Enter a slash (/) at the command prompt to execute the command in
the buffer:

SQL>/
For the above query, SQL*Plus displays the following output:
ENAME JOB

JAMES CLERK

6-10 SQL*Plus User’s Guide and Reference

ACCEPT
Purpose Reads a line of input and stores it in a given user variable.

Syntax ACC[EPT] variable [NUM[BER]|CHAR |DATE] [FOR[MAT] format]
[DEF[AULT] default][PROMPT text [NOPR[OMPT]] [HIDE]

Terms and Clauses Refer to the following list for a description of each term or clause:

variable Represents the name of the variable in which you
wish to store a value. If variable does not exist,
SQL*Plus creates it.

NUM[BER] Makes the datatype of variable the datatype
NUMBER. If the reply does not match the
datatype, ACCEPT gives an error message and
prompts again.

CHAR Makes the datatype of variable the datatype CHAR.
The maximum CHAR length limit is 240 bytes. If a
multi-byte character set is used, one CHAR may be
more than one byte in size.

DATE Makes reply a valid DATE format. If the reply is
not a valid DATE format, ACCEPT gives an error
message and prompts again. The datatype is
CHAR.

FOR[MAT] Specifies the input format for the reply. If the reply
does not match the specified format, ACCEPT
gives an error message and prompts again for a
reply. The format element must be a text constant
such as A10 or 9.999. See the COLUMN command
in this chapter for a complete list of format
elements.

Oracle date formats such as 'dd/mm/yy’ are valid
when the datatype is DATE. DATE without a
specified format defaults to the Oracle
NLS_DATE_FORMAT of the current session. See
the Oracle7 Server Administrator’s Guide and the SQL
Language Reference Guide for information on Oracle
date formats.

DEF[AULT] Sets the default value if a reply is not given. The
reply must be in the specified format if defined.

PROMPTtext Displays text on-screen before accepting the value
of variable from the user.

Command Reference 6-11

6-12

Examples

NOPR[OMPT] Skips a line and waits for input without displaying
a prompt.

HIDE Suppresses the display as you type the reply.

To display or reference variables, use the DEFINE command. See the
DEFINE command in this chapter for more information.

To display the prompt “Password: ”, place the reply ina CHAR
variable named PSWD, and suppress the display, enter

SQL> ACCEPT pswd CHAR PROMPT 'Password: ' HIDE

To display the prompt “Enter weekly salary: ” and place the reply in a
NUMBER variable named SALARY with a default of 000.0, enter

SQL> ACCEPT salary NUMBER FORMAT '999.99' DEFAULT ’000.0’ —
> PROMPT 'Enter weekly salary: ’

To display the prompt “Enter date hired: ” and place the reply in a
DATE variable named HIRED with the format “dd/mm/yy” and a
default of “01/01/94”, enter

SQL> ACCEPT hired DATE FORMAT 'dd/mm/yy’ DEFAULT '01/01/94'—
> PROMPT ’Enter date hired: ’

To display the prompt “Enter employee lasthame: ” and place the reply
in a CHAR variable named LASTNAME, enter

SQL> ACCEPT lastname CHAR FORMAT 'A20’ —
> PROMPT ’Enter employee lastname: ’

SQL*Plus User’s Guide and Reference

APPEND
Purpose
Syntax

Terms and Clauses

Examples

Adds specified text to the end of the current line in the SQL buffer.
A[PPEND] text

Refer to the following for a description of the term or clause:

text Represents the text you wish to append. If you
wish to separate text from the preceding characters
with a space, enter two spaces between APPEND
and text.

To APPEND text that ends with a semicolon, end
the command with two semicolons (SQL*Plus
interprets a single semicolon as an optional
command terminator).

To append a space and the column name DEPT to the second line of the
buffer, make that line the current line by listing the line as follows:

SQL> 2
2* FROM EMP,

Now enter APPEND:

SQL> APPEND DEPT
SQL> 2
2* FROM EMP, DEPT

Notice the double space between APPEND and DEPT. The first space
separates APPEND from the characters to be appended; the second
space becomes the first appended character.

To append a semicolon to the line, enter
SQL> APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the
second as the terminator for the APPEND command.

Command Reference 6-13

BREAK

6-14

Terms and Clauses

Purpose Specifies where and how formatting will change in a report, such as

« suppressing display of duplicate values for a given column

+ skipping a line each time a given column value changes

« printing COMPUTECA figures each time a given column value
changes or at the end of the report (see also the COMPUTE

command)

Also lists the current BREAK definition.

Syntax BRE[AK][ON report_element [action [action 1] ...

where:

report_element

action

ON column [action

SQL*Plus User’s Guide and Reference

Requires the following syntax:
{ column | expr |ROW|REPORT}
Requires the following syntax:

[SKI[P] nl|[SKI[P]] PAGE]
[NODUP[LICATES] |DUP[LICATES]]

Refer to the following list for a description of each term or clause:

[action 1]
When you include action(s), specifies action(s) for
SQL*Plus to take whenever a break occurs in the
specified column (called the break column). (column
cannot have a table or view appended to it. To
achieve this, you can alias the column in the SQL
statement.) A break is one of three events:

+ achange in the value of a column or expression
» the output of a row
. the end of a report

When you omit action(s), BREAK ON column
suppresses printing of duplicate values in column
and marks a place in the report where SQL*Plus
will perform the computation you specify in a
corresponding COMPUTE command.

You can specify ON column one or more times. If
you specify multiple ON clauses, as in

SQL> BREAK ON DEPTNO SKIP PAGE ON JOB —
> SKIP 1 ON SAL SKIP 1

the first ON clause represents the outermost break
(in this case, ON DEPTNO) and the last ON clause
represents the innermost break (in this case, ON
SAL). SQL*Plus searches each row of output for the
specified break(s), starting with the outermost
break and proceeding—in the order you enter the
clauses—to the innermost. In the example,
SQL*Plus searches for a change in the value of
DEPTNO, then JOB, then SAL.

Next, SQL*Plus executes actions beginning with
the action specified for the innermost break and
proceeding in reverse order toward the outermost
break (in this case, from SKIP 1 for ON SAL toward
SKIP PAGE for ON DEPTNO). SQL*Plus executes
each action up to and including the action specified
for the first occurring break encountered in the
initial search.

If, for example, in a given row the value of JOB
changes—but the values of DEPTNO and SAL
remain the same—SQL*Plus skips two lines before
printing the row (one as a result of SKIP 1 in the
ON SAL clause and one as a result of SKIP 1 in the
ON JOB clause).

Whenever you use ON column, you should also use
an ORDER BY clause in the SQL SELECT
command. Typically, the columns used in the
BREAK command should appear in the same order
in the ORDER BY clause (although all columns
specified in the ORDER BY clause need not appear
in the BREAK command). This prevents breaks
from occurring at meaningless points in the report.
The following SELECT command produces
meaningful results:

SQL> SELECT DEPTNO, JOB, SAL, ENAME
2 FROM EMP
3 ORDER BY DEPTNO, JOB, SAL, ENAME;

All rows with the same DEPTNO print together on
one page, and within that page all rows with the

Command Reference 6-15

6-16

ON expr [action

ON ROW [action

SQL*Plus User’s Guide and Reference

same JOB print in groups. Within each group of
jobs, jobs with the same SAL print in groups.
Breaks in ENAME cause no action because
ENAME does not appear in the BREAK command.

[action 1]
When you include action(s), specifies action(s) for
SQL*Plus to take when the value of the expression
changes.

When you omit action(s), BREAK ON expr
suppresses printing of duplicate values of expr and
marks a place in the report where SQL*Plus will
perform the computation you specify in a
corresponding COMPUTE command.

You can use an expression involving one or more
table columns or an alias assigned to a report
column in a SQL SELECT or SQL*Plus COLUMN
command. If you use an expression in a BREAK
command, you must enter expr exactly as it
appears in the SELECT command. If the expression
in the SELECT command is a+b, for example, you
cannot use b+a or (a+b) in a BREAK command to
refer to the expression in the SELECT command.

The information given above for ON column also
applies to ON expr.

[action 1]
When you include action(s), specifies action(s) for
SQL*Plus to take when a SQL SELECT command
returns a row. The ROW break becomes the
innermost break regardless of where you specify it
in the BREAK command. You should always
specify an action when you BREAK on a row.

Usage Notes

Example

ON REPORT [action]

Marks a place in the report where SQL*Plus will
perform the computation you specify in a
corresponding COMPUTE command. Use BREAK
ON REPORT in conjunction with COMPUTE to
print grand totals or other “grand” computed
values.

The REPORT break becomes the outermost break
regardless of where you specify it in the BREAK
command.

Note that SQL*Plus will not skip a page at the end
of a report, so you cannot use BREAK ON REPORT
SKIP PAGE.

Refer to the following list for a description of each action:

SKI[P] n

[SKI[P]] PAGE

NODUPILICATES]

DUP[LICATES]

Skips n lines before printing the row where the
break occurred.

Skips the number of lines that are defined to be a
page before printing the row where the break
occurred. The number of lines per page can be set
via the PAGESIZE clause of the SET command.
Note that PAGESIZE only changes the number of
lines that SQL*Plus considers to be a page.
Therefore, SKIP PAGE may not always cause a
physical page break, unless you have also specified
NEWPAGE 0. Note also that if there is a break after
the last row of data to be printed in a report,
SQL*Plus will not skip the page.

Prints blanks rather than the value of a break
column when the value is a duplicate of the
column’s value in the preceding row.

Prints the value of a break column in every selected
row.

Enter BREAK with no clauses to list the current break definition.

Each new BREAK command you enter replaces the preceding one.
To remove the BREAK command, use CLEAR BREAKS.

To produce a report that prints duplicate job values, prints the average
of SAL and inserts one blank line when the value of JOB changes, and

additionally prints the sum of SAL and inserts another blank line when
the value of DEPTNO changes, you could enter the following

Command Reference 6-17

commands. (The example selects departments 10 and 30 and the jobs of
clerk and salesman only.)

SQL> BREAK ON DEPTNO SKIP 1 ON JOB SKIP 1 DUPLICATES
SQL> COMPUTE SUM OF SAL ON DEPTNO
SQL> COMPUTE AVG OF SAL ON JOB
SQL> SELECT DEPTNO, JOB, ENAME, SAL FROM EMP
2 WHERE JOB IN ('CLERK’, 'SALESMAN’)
3 AND DEPTNO IN (10, 30)
4 ORDER BY DEPTNO, JOB,;

The following output results:

DEPTNO JOB ENAME SAL
10 CLERK MILLER 1300
*kkkkkkkk
avg 1300
*kkkkkkkkk
sum 1300
30 CLERK JAMES 1045
*kkkkkkkk
avg 1045
SALESMAN ALLEN 1760
SALESMAN MARTIN 1375
SALESMAN TURNER 1650
SALESMAN WARD 1375
*kkkkkkkk
avg 1540
*kkkkkkkkk
sum 7205

6-18 SQL*Plus User’s Guide and Reference

BTITLE

Purpose

Syntax

Terms and Clauses

Usage Notes

Examples

Places and formats a specified title at the bottom of each report page or
lists the current BTITLE definition.

For a description of the old form of BTITLE, see Appendix F.

BTI[TLE][printspec [text | variable]..]J][OFF ___ |ON]

Refer to the TTITLE command for additional information on terms and
clauses in the BTITLE command syntax.

Enter BTITLE with no clauses to list the current BTITLE definition.

If you do not enter a printspec clause before the first occurrence of text,
BTITLE left justifies the text. SQL*Plus interprets BTITLE in the new

form if a valid printspec clause (LEFT, SKIP, COL, and so on)
immediately follows the command name.

To set a bottom title with CORPORATE PLANNING DEPARTMENT
on the left and a date on the right, enter

SQL> BTITLE LEFT '"CORPORATE PLANNING DEPARTMENT’ —
> RIGHT '11 Mar 1988’

To set a bottom title with CONFIDENTIAL in column 50, followed by
six spaces and a date, enter

SQL> BTITLE COL 50 'CONFIDENTIAL’ TAB 6 '11 Mar 88’

Command Reference 6-19

CHANGE

6-20

Purpose
Syntax

Terms and Clauses

Usage Notes

Changes the first occurrence of text on the current line in the buffer.
C[HANGE] sepchar old [sepchar [new][sepchar 1]

Refer to the following list for a description of each term or clause:

sepchar Represents any non-alphanumeric character such
as “/” or “I”. Use a sepchar that does not appear in
old or new. You can omit the space between
CHANGE and the first sepchar.

old Represents the text you wish to change. CHANGE
ignores case in searching for old. For example,

CHANGE /ag/aw

will find the first occurrence of “aq”, “AQ”, “aQ”,
or “Aq” and change it to “aw”. SQL*Plus inserts
the new text exactly as you specify it.

If old is prefixed with “...”, it matches everything
up to and including the first occurrence of old. If it
is suffixed with *“...”, it matches the first occurrence
of old and everything that follows on that line. If it
contains an embedded “...””, it matches everything
from the preceding part of old through the
following part of old.

new Represents the text with which you wish to replace
old. If you omit new and, optionally, the second
and third sepchars, CHANGE deletes old from the
current line of the buffer.

CHANGE changes the first occurrence of the existing specified text on
the current line of the buffer to the new specified text. The current line
is marked with an asterisk (*) in the LIST output.

You can also use CHANGE to modify a line in the buffer that has
generated an Oracle error. SQL*Plus sets the buffer’s current line to the
line containing the error so that you can make modifications.

To re-enter an entire line, you can type the line number followed by the
new contents of the line. If you specify a line number larger than the
number of lines in the buffer and follow the number with text,
SQL*Plus adds the text in a new line at the end of the buffer. If you
specify zero (“0”) for the line number and follow the zero with text,

SQL*Plus User’s Guide and Reference

then SQL*Plus inserts the line at the beginning of the buffer (that line
becomes line 1).

Examples Assume the current line of the buffer contains the following text:
4* WHERE JOB IS IN (CLERK',SECRETARY’,'RECEPTIONIST’)
Enter the following command:

SQL> C /RECEPTIONIST/GUARD/

The text in the buffer changes as follows:
4* WHERE JOB IS IN ('CLERK',SECRETARY’,GUARD’)
Or enter the following command:

SQL> C /'CLERK’,.../'CLERK")/

The original line changes to

4* WHERE JOB IS IN (CLERK")

Or enter the following command:

SQL> C /(...)/((COOK’,BUTLER)/

The original line changes to

4* WHERE JOB IS IN (COOK’,BUTLER’)

You can replace the contents of an entire line using the line number.
This entry

SQL>2 FROM EMP el
causes the second line of the buffer to be replaced with

FROM EMP el

Note that entering a line number followed by a string will replace the
line regardless of what text follows the line number. Thus,

SQL> 2 c/old/new/

will change the second line of the buffer to be

2* c/old/new/

Command Reference 6-21

CLEAR

Purpose Resets or erases the current value or setting for the specified option.

Syntax CL[EAR] option
where option represents one of the following clauses:

BRE[AKS]
BUFF[ER]
COL[UMNS]
COMP[UTES]
SCRI[EEN]
SQL
TIMI[NG]

Terms and Clauses Refer to the following list for a description of each term or clause:

BRE[AKS] Removes the break definition set by the BREAK
command.
BUFF[ER] Clears text from the buffer. CLEAR BUFFER has

the same effect as CLEAR SQL, unless you are
using multiple buffers (see SET BUFFER in
Appendix F).

COL[UMNS] Resets column display attributes set by the
COLUMN command to default settings for all
columns. To reset display attributes for a single
column, use the CLEAR clause of the COLUMN

command.

COMPIUTES] Removes all COMPUTE definitions set by the
COMPUTE command.

SCR[EEN] Clears your screen.

SQL Clears the text from SQL buffer. CLEAR SQL has

the same effect as CLEAR BUFFER, unless you are
using multiple buffers (see SET BUFFER in
Appendix F).

TIMI[NG] Deletes all timers created by the TIMING
command.

Examples To clear breaks, enter
SQL> CLEAR BREAKS

To clear column definitions, enter
SQL> CLEAR COLUMNS

6-22 SQL*Plus User’s Guide and Reference

COLUMN

Purpose

Syntax

Terms and Clauses

Specifies display attributes for a given column, such as
+ text for the column heading
- alignment of the column heading
. format for NUMBER data
« wrapping of column data

Also lists the current display attributes for a single column or all
columns.

COL[UMN] [{ column | expr }[option ... 1]
where option represents one of the following clauses:

ALI[AS] alias

CLE[AR]

FOLD_A[FTER]

FOLD_B[EFORE]

FOR[MAT] format

HEA[DING] text
JUS[TIFY]{L[EFT]|C[ENTER]|C[ENTRE]|R[IGHT]}
LIKE{ expr | alias }

NEWL[INE]

NEW_VI[ALUE] variable

NOPRI[NT]|PRI[NT]

NUL[L] text

OLD_VI[ALUE] variable

ONOFF
WRA[PPED]WOR[D_WRAPPED]|TRU[NCATED]

Enter COLUMN followed by column or expr and no other clauses to list
the current display attributes for only the specified column or
expression. Enter COLUMN with no clauses to list all current column
display attributes.

Refer to the following list for a description of each term or clause:

{ column | expr } Identifies the data item (typically, the name of a
column) in a SQL SELECT command to which the
column command refers. If you use an expression
ina COLUMN command, you must enter expr
exactly as it appears in the SELECT command. If
the expression in the SELECT command is a+b, for
example, you cannot use b+a or (a+b) in a

Command Reference 6-23

ALI[AS] alias

CLE[AR]

FOLD_A[FTER]

FOLD_B[EFORE]

FOR[MAT] format

6-24 SQL*Plus User’s Guide and Reference

COLUMN command to refer to the expression in
the SELECT command.

If you select columns with the same name from
different tables, a COLUMN command for that
column name will apply to both columns. That is, a
COLUMN command for the column ENAME
applies to all columns named ENAME that you
reference in this session. COLUMN ignores table
name prefixes in SELECT commands. Also, spaces
are ignored unless the name is placed in double
quotes.

To format the columns differently, assign a unique
alias to each column within the SELECT command
itself (do not use the ALIAS clause of the
COLUMN command) and enter a COLUMN
command for each column’s alias.

Assigns a specified alias to a column, which can be
used to refer to the column in BREAK, COMPUTE,
and other COLUMN commands.

Note: A SQL*Plus alias is different from a SQL
alias. See the Oracle7 Server SQL Language Reference
Manual for further information on the SQL alias.

Resets the display attributes for the column to
default values.

To reset the attributes for all columns, use the
CLEAR COLUMNS command.

Inserts a carriage return after the column heading
and after each row in the column. SQL*Plus does
not insert an extra carriage return after the last
column in the SELECT list.

Inserts a carriage return before the column heading
and before each row of the column. SQL*Plus does
not insert an extra carriage return before the first
column in the SELECT list.

Specifies the display format of the column. The
format specification must be a text constant such as
A10 or $9,999—not a variable.

Character Columns The default width of CHAR
and VARCHAR?2 (VARCHAR) columns is the
width of the column in the database. SQL*Plus

formats CHAR and VARCHAR?2 (VARCHAR) data
left-justified. If a value does not fit within the
column width, SQL*Plus wraps or truncates the
character string depending on the setting of SET
WRAP. The width cannot exceed 32,767 or the
value set with SET MAXDATA. (VARCHAR?2
requires Oracle7.)

A LONG column’s width defaults to the value of
SET LONGCHUNKSIZE or SET LONG, whichever
one is smaller.

A Trusted Oracle column of datatype MLSLABEL
or RAW MLSLABEL defaults to the width defined
for the column in the database or the length of the
column’s heading, whichever is longer. The default
display width for a Trusted Oracle column of
datatype ROWLABEL is 15.

To change the width of a CHAR, VARCHAR?2
(VARCHAR), LONG, or Trusted Oracle column to
n, use FORMAT An. (A stands for alphanumeric.)
If you specify a width shorter than the column
heading, SQL*Plus truncates the heading. If you
specify a width for a LONG column, SQL*Plus
uses the LONGCHUNKSIZE or the specified
width, whichever is smaller, as the column width.

DATE Columns For Oracle7, the default width
and format of unformatted DATE columns in
SQL*Plus is derived from the NLS parameters in
effect. Otherwise, the default width is A9. In
Oracle7, the NLS parameters may be set in your
database parameter file or may be environment
variables or an equivalent platform-specific
mechanism. They may also be specified for each
session with the ALTER SESSION command. (See
the documentation for the Oracle7 Server for a
complete description of the NLS parameters).

You can change the format of any DATE column
using the SQL function TO_CHAR in your SQL
SELECT statement. You may also wish to use an
explicit COLUMN FORMAT command to adjust
the column width.

Command Reference 6-25

6-26

When you use SQL functions like TO_CHAR,
Oracle automatically allows for a very wide
column.

To change the width of a DATE column to n, use
the COLUMN command with FORMAT An. If you
specify a width shorter than the column heading,
the heading is truncated.

NUMBER Columns To change a NUMBER
column’s width, use FORMAT followed by an
element as specified in Table 6 — 1.

Element Example(s) Description

9 9999 Number of “9”s specifies number of significant
digits returned. Blanks are displayed for leading
zeroes and for a value of zero.

0 0999 Displays a leading zero or a value of zero in this

9990 position as a 0, rather than as a blank.

$ $9999 Prefixes value with dollar sign.

B9999 Displays a zero value as blank, regardless of “0’s
in the format model.

M 9999MI Displays “~" after a negative value. For a positive
value, a trailing space is displayed.

S S9999 Returns “+” for positive values and “-” for nega-
tive values in this position.

PR 9999PR Displays a negative value in <angle brackets>. For
a positive value, a leading and trailing space is
displayed.

D 99D99 Displays the decimal character in this position,
separating the integral and fractional parts of a
number.

G 9G999 Displays the group separator in this position.

C C999 Displays the ISO currency symbol in this position.

L L999 Displays the local currency symbol in this position.

, (comma) 9,999 Displays a