NCURSES Programming HOWTO

Pradeep Padala

<ppadala@gmail.com>

v1.9, 2005-06-20

Revision History

Revision 1.9 2005-06-20 Revised by: ppadala

The license has been changed to the MIT—style license used by NCURSES. Note that the programs are also
re—licensed under this.

Revision 1.8 2005-06-17 Revised by: ppadala

Lots of updates. Added references and perl examples. Changes to examples. Many grammatical and stylistic
changes to the content. Changes to NCURSES history.

Revision 1.7.1 2002-06-25 Revised by: ppadala
Added a README file for building and instructions for building from source.
Revision 1.7 2002-06-25 Revised by: ppadala

Added "Other formats" section and made a lot of fancy changes to the programs. Inlining of programs is
gone.

Revision 1.6.1 2002-02-24 Revised by: ppadala
Removed the old Changelog section, cleaned the makefiles

Revision 1.6 2002-02-16 Revised by: ppadala
Corrected a lot of spelling mistakes, added ACS variables section

Revision 1.5 2002-01-05 Revised by: ppadala
Changed structure to present proper TOC

Revision 1.3.1 2001-07-26 Revised by: ppadala
Corrected maintainers paragraph, Corrected stable release number

Revision 1.3 2001-07-24 Revised by: ppadala
Added copyright notices to main document (LDP license) and programs (GPL), Corrected printw_example.
Revision 1.2 2001-06-05 Revised by: ppadala
Incorporated ravi's changes. Mainly to introduction, menu, form, justforfun sections
Revision 1.1 2001-05-22 Revised by: ppadala

Added "a word about window" section, Added scanw_example.

This document is intended to be an "All in One" guide for programming with ncurses and its sister libraries.
We graduate from a simple "Hello World" program to more complex form manipulation. No prior experience
in ncurses is assumed. Send comments to this address

mailto:ppadala@gmail.com
mailto:ppadala@gmail.com

NCURSES Programming HOWTO

Table of Contents

1. Introduction 1
1.1. What iS NCURSESttt e ettt e e e e et e e e e e s seenaaaeeeeessesnaaseeeeesesnnsanneeeas 1

1.2. What we can do with NCURSES ...ttt e e s e e eaaae e e e e e e s ennaaaeeeeas 1

1.3, WREIE £0 GOE Il .ueeutietieiieieete ettt ettt et ettt e et e bt e bt e bt e bt e bt e s bt e sbe e bt e bt enbee bt enbeesbeenbeenbeennes 2

1.4. Purpose/Scope Of the dOCUMEIIE.ccueertierieeitieitietieieeie ettt ettt et et e e b e b e b e bt e sbeesbeesbeesbeenes 2

1.5. ADOUL the PIrOGIAIMNS. .. eeveeteetietietieteete ettt ettt ettt et e bt e bt e bt e bt e sbeesbeesbee bt e bt enbeesbeesbeesbeenbeennes 2

1.6. Other Formats Of the dOCUIMENT..........coovuvriiiiieeicitieee et e e e eeeaaae e e e e e eaaar e e e e e s eenaaeneeeas 4

1.6.1. Readily available formats from tIdp.org.......ccoceeiieiiiiiiiieiieieeeee e 4

1.6.2. BUilding frOm SOUICE . .. coveetieteeteenteeiteeteet ettt et et e bt e bt et e bt e s bt e sbe e bt e sbee bt e sbeesbeesbeenseennes 4

R O =Ta 12T 5
T4 1Y oW 5 1T SRR 5

1.9, COPVIIGIE .. e ettt ettt ettt e b e bt e b e bt e bt et e e s bt e bt e bt e bt e sbeeebe e bt e bt e bt e bt e bt e sbeeebeenbeenns 5

2. Hello World !!! 7
2.1. Compiling With the NCURSES LibIArV......ccerierieriieiienieeniienieeieeieesie ettt e e e e 7

R B LY=o 5 (o) | VTP 7

2.2.1. ADOUL MIESCI(): cuuvvvvrreeeeeiinreeeeeeeeeeeitteeeeeeeeeesaaeeeeeeeeesnaaeeeeesesesasaeeeeeesssassaaeeeeessessssseeeeesssnsreeneeess 7

2.2.2. The mysterious refT@SH(). .. .oueereerieeieetieie ettt ettt e b e b e b 8

2.2.3. ADOUL ENAWIN) uuvvviiiieiiiiieieiiee e eeeteee e e e e et e e e e e esa e e e e e esabaaeeeeeseeesaaaeeeeessesnaareeeeeesannraaneeeas 8

3. The Gory Details, 9
4. Initialization 10
4.1. Initialization fUNCHIOMS.vvvvveeeeeeieetieeiee e ettt e e ettt e e e e et e e e e e s eeaaaeeeeeesssnnsaneeesessannsereeeessaans 10

P v\ O 1 11 Ta o]) (Y1) VTSN 10

Z R T ~To) T T2V 016 B 110 =e) 1 1o 0 TP RN 10

A4, KEYPAA(). ettt ettt ettt ettt ettt et e bt e bttt e bt e bt e te e bt e bt e be e bt e bt e be e bt ebeebeenbean 10

4.5, DAIEACIAY() .- veeuveenteeieeie ettt ettt ettt ettt e b ettt et e bt e be e bt e bt e bt e bt e te e be e bt e bt e beentean 10

4.6. Miscellaneous Initialization fUNCHIONS.ccovvvviiieiiiiiieiieeee et et e e e e eeraee e e e e s e eeaaaeeeeeeeens 11

4.7, AN BXAMPIE.eoueiiiiiie ettt et ettt ettt ettt e bt e bt e bt e bt e te e be e bt e bt e beenean 11

5. A Word about Windows 12
6. Output functions 13
6.1. addch() class Of fUNCHIOMS. . ..cceveeveieiieee ettt ettt e e e e e e ee et e e e e e e eeaaaeeeeeeseennsaareeeesesnnanns 13

6.2. mvaddch(). waddch() and MmvWaddCh().....uvveeiiiieeeiiiieeeeeeeeeeeee e 13

6.3. printw() class Of fUNCHOMS. .. .ueeuteeuieeiiieieet ettt ettt ettt st et e e abeeaeeeaeesateeaeeeas 14

6.3.1. Printw() aNd MVPIIIEW. .oc.eeeteeiieeieete ettt ettt ettt eateeateeabeeabeeateeateeaeesateeateembeemeeeaeesaeesnseeas 14

6.3.2. Wprintw() and MVWDIIIEW.co.veeteeieeie et ettt ettt eteeteeteete et e et e satesateeateeabeemeeeaeesneeeaeeeas 14

0.3.3. VIWPIIIEW(D e veeuteeute et ettt ettt ettt et et e e bt et e eateea et eateeateeabeeabeemseemteeaeesateeabeeubeemeeenteeneeenteeas 14

6.3.4. A Simple PrintW eXaAMPIEceoueeeieteeiieie ettt ettt ete et ebeeateeateeatesatesateeabeeneeeaeeeneeeaeeeas 14

6.4. addstr() Class Of FUNCHIOMS.ceveeveieiieee ittt e e et e e e e ee ettt e e e e e eeaaaeeeesessenbaaeeeeesessnanes 15

6.5. A WOId Of CAULION.ceeiuvvveeeiieeeeeitieeee e ettt e e e e e et e e e e e eetae e e e e e e eeesaaaeeseessessaaeeeesesesnstaeeeeessannnnnns 15

7. Input functions 16
2.1, getch() ClasS Of FUNCHIOMNS. c.vvvvveeeeiiieiiieieee ettt et e e e e ettt e e e e e et e e e e e eenaaaaeeeeessennseeeeeeessaans 16

7.2, scanW() Class OF fUNCHIOMS .uvvvveeiiiieeiiiiiee ettt e e e e e e e et e e e e e eeaaaaeeeeessesnnaaeeeeessens 16

7.2.1. 8canW() ANd IMVSCANW......ccoeeeeiieiieieeeeeeeeeeeeeeeeeeee e e e e eaeaaaaaeaaasaeaeseaeeeseseseseeeesaeeseseseseseesesenes 16

NCURSES Programming HOWTO

Table of Contents

7. Input functions

7.2.2. wscanw() and MVWSCANW(L uvvvvveeeeeeuneiieeeeeiiiieeeeeeeeesestreeeeeseessssreeeeeesssssrreeeessssnssssseesessensssnes 16

2.3, VWSCANW() vvvveeeeieenieeeeeeeeeeetteeeeeeeeeetateeeeeeeeeasaaeeeeesessssaaeeeeessesssaeeseeesesnaseseeeesssansanneesessensrnnes 16

7.3, getStr() class Of fUNCHOMS c.uvvveieeeiiiiiieiee ettt et e e e e et e e e e e e aat e e e e e e e esnaaaeeeeessesnsseeeeessens 16

7.4, SOME EXAMPIES. ..eeruveeeuiiieiieeritt et etee ettt e ettt ettt e sttt e st e e eab e e eabe e e bt e enateesabeesabeesabeeeabaeenbeeesabeesabeens 17

8. Attributes 18
oI I N s T e (=721 1 (R 19

I 110 00) o [0 IR L1 4 611 IO TSR 19

IR 111 G (=1 1) TR TRR TR 20

oI T L1 5 A 100 Lol (o) 4 IR 20

oI TA 2110 o 114 To1 5 10) 11N PR TR PR 20

8.6. CHZAL() TUNCHIOMS. .- e veeeuteeiteeite ettt ettt ettt ettt ettt et st e et e e ateebtesb e e sheesheeeatesutesaeesbeesbeesaeesbeesaeenis 20

9. Windows 22
L T N 1T 0 13 Lo TSRO 22

9.2. Letthere be @ WINAOW [l ettt e e e e e e e e e e e eaaae e e e e e s s ennnaaneeeas 22

LT =540 F21 o -1 o) 1 AT SO SUS U U TUPTUSRSOPR 24

9.4. The other stuff in the eXamPIE.......ccoueriiiiiiiiee ettt sttt 24

9.5. Other BOrder fUNCHIOMNS.coeeuvveiiieeieeeeiitieee e eeeetite e e e e eett e e e e eeeaeee e e e e s seeaaaeeeeessesssarereeeessennarereeeas 24

10. Colors 27
1O, 1. THE DASICS. ..eeeuvvveeeeeeeeetieieee e e e eeee et eeeeeeaae e e e e e eeessaaeeeeeeeesaaaaaeeeesssssssaaeeeeessasnsssesseeesssnnsesreeeessannrrees 27

10.2. Changing Color DEfiNitiONSecveeteeeeeieeteeteeie ettt ete et et e ettt eateeatesatesabeeabeeaeeeaeesaeesnteeas 28

(ORI o) (o) o 0 111~ 1 1 SRRSO 28

11. Interfacing with the key board 29
L1 1. THE BASICS . ceteuuueiiiieeieetieieee e e eeetee e e e e e ettt e e e e e eeaaae et e e eeseeaaaaeeeeessssssaaeeeeessesnssaeeseeesssnnsenneeeessennrnnns 29

11.2. A Simple Key USAZE EXAMPIE. ..uveeuveeeeeieiieeieeieete ettt et ete et et etesatestestesbeeabeeaeeeaeesaeesaeeens 29

12. Interfacing with the mouse 32
12.1. THE BASICS .eieuuueiiieeiiietiieeeee e eeee et e e e e ee et e e e e e ettt et e e eeeeeaaaaeeeeessesssaaeeeeessesssaeeseeesssnssaaseeeessennrrens 32

12.2. GENG the BVEIES.....eetieutieieett ettt ettt ettt ettt et et et e et e e abe e teeateeateeateeatesabeeabeeaeeensesaeesnteeas 32

12.3. Putting it all TOGERET. ...oveeeeiieeie ettt ettt ettt et ettt eaee st 33

12.4. Miscellaneous FUNCHOMSoovuuvriieeeieiiiieeeeeeeeeetieeee e e e e eeaaee e e e e e eeeaaeeeeeessessaeeeeeeesssnssaareeeessennnnnes 35

13. Screen Manipulation 36
13.1. ELYX() FUNMCHIOMS: -+t euteeuteeuteenie ettt ettt ettt et ettt ettt et e et e et e e bt et e eateeateeateeabeeabeemeeeneeeneesnteens 36

13.2. SCIEEN DUMIDIIIG. -+ cuveeuteeuteeteeteete et et ettt et et et et e eateeateeabesabe e beeateeateeateeatesasesabeeaeeentesaeesnteans 36

13.3. WindOW DUMPINZ. .. eeteeuteeieiieeteeieeie ettt ettt et ettt et e eabesbeeabeeateeatesatesatesabeeabeeaeeentesneesnsenns 36

14. Miscellaneous features 37
LA 1. CUIS SEU(N uuuuuuuuuuuuurerururerurrerereeereeeeeeeereeeeeereteteteeeeeaaeeeeeeeeeeeeeeeeeesesesesaasasassssssssssssssssssssssssssssssssneresees 37

14.2. Temporarily L.eaving CUrses MOAE.cccueeruerieerieeiieieeieete et ete ettt eteeteeteeteebeseeeeesaeeseeeas 37

14.3. ACS VATIADIES. ...eeeiieeeeieeeeee oottt e e et e e e e e e e aae e e e e s eesaaaeeeeessessateeeeeesssnssanreeeessanrenes 37

NCURSES Programming HOWTO

Table of Contents

15. Other libraries 39
16. Panel Library 40
10.1. THE BASICS ..eieuuvviiieiiiieiiieie e e e eeet et e e e e eeae et e e e e e esaa e e e e eeeeseaaaaeeeessssssaaaeeeesssasnsseeeseeesssnsnasseeeessennseees 40

16.2. Compiling With the Panels TADIarY........ccceoeiiiieiiieiieiieie ettt ettt s 40

16.3. Panel WindOW BIOWSING.ceoueetieieeieeieete ettt ettt ettt et ettt et satesatesatesabeeaeeeaeeeaeeeneeens 41

16.4. USING USET POINLETS.veeutieuieeieeieete ettt ettt ettt ettt ettt et e s atesate et e eaeeentesaeesaeeeas 43

16.5. Moving and ReSizing Panels........ccceeuiiiiiiiiiiieieee ettt ettt 44

16.6. Hiding and ShOWing Pan@lS.........cecueeieeiiiiiiiieeie ettt ettt st st 48

16.7. panel above() and panel below() FUNCHONSueeteeiiriieieeieeie et 51

17. Menus Library 52
171 THE BASICS .. eeeuuveiiieeieiettieee e e e ettt e e e ettt e e e e e e e et e e eeeeeaaaaeeeeeseesssaaeeeeessasnssaeeseeesssnnsaareeeessannrrees 52

17.2. Compiling With the Menu LiDIary........ccceeriiiieeiieiieeeie ettt ettt 52

17.3. Menu Driver: The work horse of the Menu SYSIeM.......cceerueriiiriieiieiieie e 54

17.4. MENU WINAOWS ...ocoiiiiiiiieieie et eeeeee e e e e e et e e e e e eeaaaeeeeeeseessaaaeeeeessesssteeeeeesssnssanreeeessennsrens 55

17.5. SCIOIING IMEBIIUS ...cuveeuteeuttenieete et et ettt et et et et eateeateeateeabeeabeembeemeeeateeatesateeatesabeemseentesaeesaneans 57

17.6. Multi COlUMNAT IMEIUSeeeeeieureieeeeeeeeitieeeeeeeeeestaeeeeeeeeessaaaeeeeesssessaeeeeesssssssseesseessssnsasreeeessennrrees 60

17.7. MUlti Valued IMEIUS. ...uvvvveeeeeieeieieeeeeeeeeiieeeeeeeeeeetaieeeeeeeeeeaaaeeeeessesesaaeeeeesssesssseeeseessssnssasreeeessennrnees 62

17.8. IMIEIIU OIDTIOMS - euveeuteeuteeuteenteeateete et euteeuteeateeateeateembeemteeaeeeateeateeabeembeamseemseeaeeeateeateeabesaseentesasesnneans 64

17.9. The USEfUL USET POIMLET.......ccoeeuvveeieeeeeeiiieeeeeeeeeeeeeeeeeeeeeaaeeeeeeeeeesaaeeeeeeseessseeeeeeessssssasreeeesssnnrnnes 65

18. Forms Library. 68
L18.1. THE BASICS ..eeeuuriiieeiiieieieee e e e eeee ettt e e e eete e e e e e e esaaae et e e eeeeeaaaaeeeeessssssaaeeeeessesssaeeseeesssnssaareeeessannrnees 68

18.2. Compiling With the FOrms LIDIAry.......cceeiuiiiiieiiiiiieiiee et 68

18.3. Playing With FIEldS.......coouiiiiiiieiieeee ettt et et ettt et 70

18.3.1. Fetching Size and Location of Field.........ccceceeiiiiiiiiiiiieieeeeeeee e 70

18.3.2. MoVING the fIEld......cooueeiiiiieii ettt et ettt s 70

18.3.3. Field JUSHITICAION.coeeuvvvieieeeeeeetiieie e e ettt e e et e e e e ettt e e e s s e entteeeeeeeesaareeeeeesssnnaeneeeas 70

18.3.4. Field DiSplay AIIIDULES. ... eecveeeeeieeieeie ettt ettt et ettt ettt et eteete et eeteeatesaeesneeeas 71

18.3.5. Field OPHON BitS. .. ceoueeieetieiieieete ettt ettt et ettt ettt et et eeteeatesaeesneeeas 73

18.3.6. FIEIA STALUS ...uvvvveeieieieieeeeee e ettt e e ettt e e e e e eaaae e e e e s e e aae e e e e s seesateeeeesssssnareeeeeessssnnreneeeas 75

18.3.7. Field USEI POINLEL.....ccvvvveeieeeieeetieeeeeeeeeiteeee e e e eetaae e e e s eeeaaaeeeeesseensaeeeeeesssaaseeeesessssnneeneeeas 76

18.3.8. Variable—Sized FIEIAS........cccoiverureiieeeeieiieeiee et eeetteee e ettt e e e e ettt e e e e e eaaaaeee e e e s esanaeneeeas 76

18.4. FOIT WINAOWS.....ceiiiiiiiiiieieeeeeiieeeeee e eeeetee e e e e e e ettt e e e e e esaaaeeeeesseessaaeeeesssesnssaeeseeesssnssaareeeessennsnees 77

18.5. Field ValIAAtiON.coeeuvveeeeeeeieeiieeieee e eeeieee e e e eeeettt e e e e e e aaaeeeeeeseesaaaeeeeessesssseeeeeesssnssaareeeessennreees 79

TYPE ALPHA 81
TYPE ALNUM 82
TYPE ENUM 83
TYPE INTEGER 84
TYPE NUMERIC 85

NCURSES Programming HOWTO

Table of Contents

TYPE REGEXP.

86

19.3. Perl Curses Modules CURSES::FORM and CURSES::WIDGETS

20. Just For Fun !!!

20.1. The GAmMIE OF LITE . ..uuuueeiieieiiieieieeeeeee ettt ettt e e e e e e et e e e e e et e e e e s e e e ss s s s ssssasssssssssssssasasssseasaneees

20.2. MAZIC SQUATE.eeeuteeueeeiieeie ettt ettt ettt et ettt e et e eateeateeabeeabeeaeeeatesatesaeeeabesabeemeeeaeeentesaeeeas
20.3. TOWELS OF HANOI. ...ttt ettt ettt e e e e e e e e et e s e esss s asssasssssaaasssssssasssssasaneees

20.4. QUEEIS PUZZIE......ooiiiieee e e ettt e e e e e ettt e e e e e e e eetaaa e eseeesssaesannans
20,5 SIIULELE ettt ettt et et e e e e e e e et e et et e e et eeeeeeeeaaaeaaaareaaaaeaaa e nna—_—_——————————atratatatataaaaes

20.6. TYPINE TUEOE ..t euteeuteeite ettt ettt ettt ettt et e et e et e e st e at e eateeateeabeeabeemeeeaeesateeatesabesabeemeeeneesnteeaeaaas

21. References

86
86
86
87
88
88
89
89

90
90
90
91
91
91
92

93
93
93
93
93
94
94

95

1. Introduction

In the olden days of teletype terminals, terminals were away from computers and were connected to them
through serial cables. The terminals could be configured by sending a series of bytes. All the capabilities
(such as moving the cursor to a new location, erasing part of the screen, scrolling the screen, changing modes
etc.) of terminals could be accessed through these series of bytes. These control seeuqnces are usually called
escape sequences, because they start with an escape(0x1B) character. Even today, with proper emulation, we
can send escape sequences to the emulator and achieve the same effect on a terminal window.

Suppose you wanted to print a line in color. Try typing this on your console.

echo "7[[0;31;40mIn Coloxr"

The first character is an escape character, which looks like two characters ” and [. To be able to print it, you
have to press CTRL+V and then the ESC key. All the others are normal printable characters. You should be
able to see the string "In Color" in red. It stays that way and to revert back to the original mode type this.

echo "~[[0;37;40m"

Now, what do these magic characters mean? Difficult to comprehend? They might even be different for
different terminals. So the designers of UNIX invented a mechanism named termcap. It is a file that lists all
the capabilities of a particular terminal, along with the escape sequences needed to achieve a particular effect.
In the later years, this was replaced by terminfo. Without delving too much into details, this mechanism
allows application programs to query the terminfo database and obtain the control characters to be sent to a
terminal or terminal emulator.

1.1. What is NCURSES?

You might be wondering, what the import of all this technical gibberish is. In the above scenario, every
application program is supposed to query the terminfo and perform the necessary stuff (sending control
characters etc.). It soon became difficult to manage this complexity and this gave birth to 'CURSES'. Curses is
a pun on the name "cursor optimization". The Curses library forms a wrapper over working with raw terminal
codes, and provides highly flexible and efficient API (Application Programming Interface). It provides
functions to move the cursor, create windows, produce colors, play with mouse etc. The application programs
need not worry about the underlying terminal capabilities.

So what is NCURSES? NCURSES is a clone of the original System V Release 4.0 (SVr4) curses. It is a freely
distributable library, fully compatible with older version of curses. In short, it is a library of functions that
manages an application's display on character—cell terminals. In the remainder of the document, the terms
curses and ncurses are used interchangeably.

A detailed history of NCURSES can be found in the NEWS file from the source distribution. The current
package is maintained by Thomas Dickey. You can contact the maintainers at bug—ncurses @gnu.org.

1.2. What we can do with NCURSES

NCURSES not only creates a wrapper over terminal capabilities, but also gives a robust framework to create
nice looking UI (User Interface)s in text mode. It provides functions to create windows etc. Its sister libraries
panel, menu and form provide an extension to the basic curses library. These libraries usually come along
with curses. One can create applications that contain multiple windows, menus, panels and forms. Windows

1. Introduction 1

mailto:dickey@his.com
mailto:bug-ncurses@gnu.org

NCURSES Programming HOWTO

can be managed independently, can provide 'scrollability’ and even can be hidden.

Menus provide the user with an easy command selection option. Forms allow the creation of easy—to—use data
entry and display windows. Panels extend the capabilities of ncurses to deal with overlapping and stacked
windows.

These are just some of the basic things we can do with ncurses. As we move along, We will see all the
capabilities of these libraries.

1.3. Where to get it

All right, now that you know what you can do with ncurses, you must be rearing to get started. NCURSES is
usually shipped with your installation. In case you don't have the library or want to compile it on your own,
read on.

Compiling the package

NCURSES can be obtained from ftp://ftp.gnu.org/pub/gnu/ncurses/ncurses.tar.gz or any of the ftp sites
mentioned in http://www.gnu.org/order/ftp.html.

Read the README and INSTALL files for details on to how to install it. It usually involves the following
operations.

tar zxvf ncurses<version>.tar.gz # unzip and untar the archive

cd ncurses<version> # cd to the directory

./configure # configure the build according to your
environment

make # make it

su root # become root

make install # install it

Using the RPM

NCURSES RPM can be found and downloaded from http://rpmfind.net . The RPM can be installed with the
following command after becoming root.

rpm -i <downloaded rpm>

1.4. Purpose/Scope of the document

This document is intended to be a "All in One" guide for programming with ncurses and its sister libraries.
We graduate from a simple "Hello World" program to more complex form manipulation. No prior experience
in ncurses is assumed. The writing is informal, but a lot of detail is provided for each of the examples.

1.5. About the Programs

All the programs in the document are available in zipped form here. Unzip and untar it. The directory
structure looks like this.

ncurses

1. Introduction 2

ftp://ftp.gnu.org/pub/gnu/ncurses/ncurses.tar.gz
http://www.gnu.org/order/ftp.html
http://rpmfind.net
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/ncurses_programs.tar.gz

==
==
==
|
|

==
==
==
==
|

==
==
==

JustForFun
basics
demo
|
| ———=> exe
forms
menus
panels
perl

Makefile
README
COPYING

NCURSES Programming HOWTO

—-— Jjust for fun programs
—-— basic programs
—-— output files go into this directory after make

—— exe files of all example programs

—-— programs related to form library

—-— programs related to menus library

—-— programs related to panels library

—— perl equivalents of the examples (contributed
by Anuradha Ratnaweera)

—— the top level Makefile

—— the top level README file. contains instructions

—-— copyright notice

The individual directories contain the following files.

Description of files in each directory

JustForFun
|
| ————>
| ————>
| ————>
| ————>
| ————>
| ————>

basics

|

| ————>
| ————>
| ————>
| ————>
| ————>
| ————>
|

| ————>
| ————>
| ————>
|

|==——>
|==——>
|

| ————>
| ————>
| ————>

forms
|
|==——>
|==——>
|==——>
|==——>

menus

|

|=———>
|=———>
|=———>
|=———>
|=———>
|=———>

1. Introduct

hanoi.c ==
life.c -
magic.c ==
queens.c ——
shuffle.c ——
tt.c -

acs_vars.c
hello_world.c
init_func_exa
key_code.c
mouse_menu.c
other_border.

printw_exampl
scanw_example
simple_attr.c

simple_color.
simple_key.c

temp_leave.c
win_border.c
with_chgat.c

form_attrib.c
form options.
form_simple.c
form_win.c

menu_attrib.c
menu_item_dat
menu_multi_co
menu_scroll.c
menu_simple.c
menu_toggle.c

ion

The Towers of Hanoi Solver

The Game of Life demo

An Odd Order Magic Square builder
The famous N-Queens Solver

A fun game, if you have time to kill
A very trivial typing tutor

—— ACS_ variables example
—— Simple "Hello World" Program
mple.c —— Initialization functions example
—— Shows the scan code of the key pressed
—-— A menu accessible by mouse
c —— Shows usage of other border functions apa
-— rt from box ()
@.e —— A very simple printw() example
.C —-— A very simple getstr () example
—— A program that can print a ¢ file with
—— comments in attribute

c —— A simple example demonstrating colors
—— A menu accessible with keyboard UP, DOWN
—— arrows

—— Demonstrates temporarily leaving curses mode
—— Shows Creation of windows and borders
—— chgat () usage example

—— Usage of field attributes
c —— Usage of field options
—— A simple form example
—— Demo of windows associated with forms

—— Usage of menu attributes
a.c —— Usage of item name () etc.. functions
lumn.c —— Creates multi columnar menus
—— Demonstrates scrolling capability of menus
—— A simple menu accessed by arrow keys
—— Creates multi valued menus and explains

NCURSES Programming HOWTO

| —— REQ_TOGGLE_ITEM

| -———=> menu_userptr.c —-— Usage of user pointer

| =———=> menu_win.c —— Demo of windows associated with menus
panels

|

| -———=> panel_browse.c —-— Panel browsing through tab. Usage of user

| —— pointer

| -——=> panel_hide.c —— Hiding and Un hiding of panels

|-———=> panel_resize.c —-— Moving and resizing of panels

|=———=> panel_simple.c —— A simple panel example
perl

|=———=> 01-10.pl1 —— Perl equivalents of first ten example programs
There is a top level Makefile included in the main directory. It builds all the files and puts the ready—to—use
exes in demo/exe directory. You can also do selective make by going into the corresponding directory. Each
directory contains a README file explaining the purpose of each c file in the directory.

For every example, I have included path name for the file relative to the examples directory.

If you prefer browsing individual programs, point your browser to
http://tldp.org/HOWTO/NCURSES—Programming—HOWTO/ncurses programs/

All the programs are released under the same license that is used by ncurses (MIT—style). This gives you the
ability to do pretty much anything other than claiming them as yours. Feel free to use them in your programs
as appropriate.

1.6. Other Formats of the document

This howto is also availabe in various other formats on the tldp.org site. Here are the links to other formats of
this document.

1.6.1. Readily available formats from tidp.org

e Acrobat PDF Format
e PostScript Format

¢ In Multiple HTML pages
® In One big HTML format

1.6.2. Building from source
If above links are broken or if you want to experiment with sgml read on.

Get both the source and the tar,gzipped programs, available at
http://cvsview.tldp.org/index.cgi/LDP/howto/docbook/
NCURSES—-HOWTO/NCURSES-Programming-HOWTO. sgml
http://cvsview.tldp.org/index.cgi/LDP/howto/docbook/
NCURSES-HOWTO/ncurses_programs.tar.gz

Unzip ncurses_programs.tar.gz with
tar zxvf ncurses_programs.tar.gz

Use jade to create various formats. For example if you just want to create

1. Introduction 4

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/ncurses_programs/
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/NCURSES-Programming-HOWTO.pdf
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/ps/NCURSES-Programming-HOWTO.ps.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html/NCURSES-Programming-HOWTO-html.tar.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/NCURSES-Programming-HOWTO.html

NCURSES Programming HOWTO

the multiple html files, you would use
jade -t sgml -1 html -d <path to docbook html stylesheet>
NCURSES-Programming—HOWTO.sgml

to get pdf, first create a single html file of the HOWTO with
jade -t sgml -1 html -d <path to docbook html stylesheet> -V nochunks
NCURSES-Programming—HOWTO.sgml > NCURSES-ONE-BIG-FILE.html

then use htmldoc to get pdf file with
htmldoc —--size universal -t pdf --firstpage pl -f <output file name.pdf>
NCURSES-ONE-BIG-FILE.html

for ps, you would use
htmldoc --size universal -t ps —-—-firstpage pl -f <output file name.ps>
NCURSES-ONE-BIG-FILE.html

See LDP_Author guide for more details. If all else failes, mail me at ppadala@ gmail.com

1.7. Credits

I thank Sharath and Emre Akbas for helping me with few sections. The introduction was initially written by
sharath. I rewrote it with few excerpts taken from his initial work. Emre helped in writing printw and scanw
sections.

Perl equivalents of the example programs are contributed by Anuradha Ratnaweera.
Then comes Ravi Parimi, my dearest friend, who has been on this project before even one line was written. He

constantly bombarded me with suggestions and patiently reviewed the whole text. He also checked each
program on Linux and Solaris.

1.8. Wish List

This is the wish list, in the order of priority. If you have a wish or you want to work on completing the wish,
mail me.

¢ Add examples to last parts of forms section.

® Prepare a Demo showing all the programs and allow the user to browse through description of each
program. Let the user compile and see the program in action. A dialog based interface is preferred.

¢ Add debug info. _tracef, _tracemouse stuff.

¢ Accessing termcap, terminfo using functions provided by ncurses package.

e Working on two terminals simultaneously.

¢ Add more stuff to miscellaneous section.

1.9. Copyright
Copyright © 2001 by Pradeep Padala.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, distribute with modifications, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

1. Introduction 5

http://www.tldp.org/LDP/LDP-Author-Guide/
mailto:sharath_1@usa.net
mailto:Aratnaweera@virtusa.com
mailto:parimi@ece.arizona.edu
mailto:ppadala@gmail.com

NCURSES Programming HOWTO

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

1. Introduction

2. Hello World !!!

Welcome to the world of curses. Before we plunge into the library and look into its various features, let's write
a simple program and say hello to the world.

2.1. Compiling With the NCURSES Library

To use ncurses library functions, you have to include ncurses.h in your programs. To link the program with
ncurses the flag —Incurses should be added.

#include <ncurses.h>

compile and link: gcc <program file> -lncurses

Example 1. The Hello World !!! Program

#include <ncurses.h>

int main ()

{

initscr(); /* Start curses mode G
printw ("Hello World !!!"); /* Print Hello World G
refresh () ; /* Print it on to the real screen */
getch () ; /* Wait for user input */

endwin () ; /* End curses mode G

return 0;

2.2. Dissection

The above program prints "Hello World !!!" to the screen and exits. This program shows how to initialize
curses and do screen manipulation and end curses mode. Let's dissect it line by line.

2.2.1. About initscr()

The function initscr() initializes the terminal in curses mode. In some implementations, it clears the screen and
presents a blank screen. To do any screen manipulation using curses package this has to be called first. This
function initializes the curses system and allocates memory for our present window (called stdscr) and
some other data—structures. Under extreme cases this function might fail due to insufficient memory to
allocate memory for curses library's data structures.

After this is done, we can do a variety of initializations to customize our curses settings. These details will be
explained later .

2. Hello World !!! 7

NCURSES Programming HOWTO

2.2.2. The mysterious refresh()

The next line printw prints the string "Hello World !!!" on to the screen. This function is analogous to normal
printf in all respects except that it prints the data on a window called stdscr at the current (y,x) co—ordinates.
Since our present co—ordinates are at 0,0 the string is printed at the left hand corner of the window.

This brings us to that mysterious refresh(). Well, when we called printw the data is actually written to an
imaginary window, which is not updated on the screen yet. The job of printw is to update a few flags and data
structures and write the data to a buffer corresponding to stdscr. In order to show it on the screen, we need to
call refresh() and tell the curses system to dump the contents on the screen.

The philosophy behind all this is to allow the programmer to do multiple updates on the imaginary screen or
windows and do a refresh once all his screen update is done. refresh() checks the window and updates only the
portion which has been changed. This improves performance and offers greater flexibility too. But, it is
sometimes frustrating to beginners. A common mistake committed by beginners is to forget to call refresh()
after they did some update through printw() class of functions. I still forget to add it sometimes :—)

2.2.3. About endwin()

And finally don't forget to end the curses mode. Otherwise your terminal might behave strangely after the
program quits. endwin() frees the memory taken by curses sub—system and its data structures and puts the
terminal in normal mode. This function must be called after you are done with the curses mode.

2. Hello World I!! 8

3. The Gory Details

Now that we have seen how to write a simple curses program let's get into the details. There are many
functions that help customize what you see on screen and many features which can be put to full use.

Here we go...

3. The Gory Details

4. Initialization

We now know that to initialize curses system the function initscr() has to be called. There are functions which
can be called after this initialization to customize our curses session. We may ask the curses system to set the
terminal in raw mode or initialize color or initialize the mouse etc.. Let's discuss some of the functions that are
normally called immediately after initscr();

4.1. Initialization functions

4.2. raw() and cbreak()

Normally the terminal driver buffers the characters a user types until a new line or carriage return is
encountered. But most programs require that the characters be available as soon as the user types them. The
above two functions are used to disable line buffering. The difference between these two functions is in the
way control characters like suspend (CTRL—-Z), interrupt and quit (CTRL-C) are passed to the program. In
the raw() mode these characters are directly passed to the program without generating a signal. In the
cbreak () mode these control characters are interpreted as any other character by the terminal driver. I
personally prefer to use raw() as I can exercise greater control over what the user does.

4.3. echo() and noecho()

These functions control the echoing of characters typed by the user to the terminal. noecho () switches off
echoing. The reason you might want to do this is to gain more control over echoing or to suppress unnecessary
echoing while taking input from the user through the getch() etc. functions. Most of the interactive programs
call noecho () atinitialization and do the echoing of characters in a controlled manner. It gives the
programmer the flexibility of echoing characters at any place in the window without updating current (y,x)
co—ordinates.

4.4. keypad()

This is my favorite initialization function. It enables the reading of function keys like F1, F2, arrow keys etc.
Almost every interactive program enables this, as arrow keys are a major part of any User Interface. Do
keypad (stdscr, TRUE) to enable this feature for the regular screen (stdscr). You will learn more about
key management in later sections of this document.

4.5. halfdelay()

This function, though not used very often, is a useful one at times. halfdelay()is called to enable the
half—delay mode, which is similar to the cbreak() mode in that characters typed are immediately available to
program. However, it waits for 'X' tenths of a second for input and then returns ERR, if no input is available.
X' is the timeout value passed to the function halfdelay(). This function is useful when you want to ask the
user for input, and if he doesn't respond with in certain time, we can do some thing else. One possible example
is a timeout at the password prompt.

4. Initialization 10

NCURSES Programming HOWTO

4.6. Miscellaneous Initialization functions

There are few more functions which are called at initialization to customize curses behavior. They are not

used as extensively as those mentioned above. Some of them are explained where appropriate.

4.7. An Example

Let's write a program which will clarify the usage of these functions.

Example 2. Initialization Function Usage example

#include <ncurses.h>

int main ()

{ int ch;
initscr(); /* Start curses mode */
raw () ; /* Line buffering disabled */
keypad (stdscr, TRUE); /* We get Fl, F2 etc.. =/
noecho () ; /* Don't echo() while we do getch */

printw ("Type any character to see it in bold\n");

ch = getch(); /* If raw() hadn't been called
* we have to press enter before it
* gets to the program &
if(ch == KEY_F (1)) /* Without keypad enabled this will */
printw ("F1 Key pressed");/* not get to us either &
/* Without noecho () some ugly escape
* charachters might have been printed
* on screen &4
else
{ printw ("The pressed key is ");
attron (A_BOLD) ;
printw("%c", ch);
attroff (A_BOLD) ;
}
refresh () ; /* Print it on to the real screen */
getch () ; /* Wait for user input */
endwin () ; /* End curses mode */

return 0;

}

This program is self—explanatory. But I used functions which aren't explained yet. The function getch () is
used to get a character from user. It is equivalent to normal get char () except that we can disable the line

buffering to avoid <enter> after input. Look for more about getch () and reading keys in the key
management section . The functions attron and attroff are used to switch some attributes on and off

respectively. In the example I used them to print the character in bold. These functions are explained in detail

later.

4. Initialization

11

5. A Word about Windows

Before we plunge into the myriad ncurses functions, let me clear few things about windows. Windows are
explained in detail in following _sections

A Window is an imaginary screen defined by curses system. A window does not mean a bordered window
which you usually see on Win9X platforms. When curses is initialized, it creates a default window named
stdscr which represents your 80x25 (or the size of window in which you are running) screen. If you are
doing simple tasks like printing few strings, reading input etc., you can safely use this single window for all of
your purposes. You can also create windows and call functions which explicitly work on the specified
window.

For example, if you call

printw ("Hi There !!!");
refresh();

It prints the string on stdscr at the present cursor position. Similarly the call to refresh(), works on stdscr only.
Say you have created windows then you have to call a function with a 'w' added to the usual function.

wprintw (win, "Hi There !!!");

wrefresh (win) ;
As you will see in the rest of the document, naming of functions follow the same convention. For each
function there usually are three more functions.

printw(string) ; /* Print on stdscr at present cursor position */
mvprintw(y, x, string);/* Move to (y, x) then print string */
wprintw(win, string); /* Print on window win at present cursor position */
/* in the window */
mvwprintw (win, y, %X, string); /* Move to (y, x) relative to window */
/* co-ordinates and then print =/

Usually the w—less functions are macros which expand to corresponding w—function with stdscr as the
window parameter.

5. A Word about Windows 12

6. Output functions

I guess you can't wait any more to see some action. Back to our odyssey of curses functions. Now that curses
1s initialized, let's interact with world.

There are three classes of functions which you can use to do output on screen.
1. addch() class: Print single character with attributes
2. printw() class: Print formatted output similar to printf()

3. addstr() class: Print strings

These functions can be used interchangeably and it's a matter of style as to which class is used. Let's see each
one in detail.

6.1. addch() class of functions

These functions put a single character into the current cursor location and advance the position of the cursor.
You can give the character to be printed but they usually are used to print a character with some attributes.
Attributes are explained in detail in later sections of the document. If a character is associated with an
attribute(bold, reverse video etc.), when curses prints the character, it is printed in that attribute.

In order to combine a character with some attributes, you have two options:

¢ By OR'ing a single character with the desired attribute macros. These attribute macros could be found
in the header file ncurses . h. For example, you want to print a character ch(of type char) bold and
underlined, you would call addch() as below.
addch (ch | A_BOLD | A_UNDERLINE);
¢ By using functions like attrset () ,attron (), attroff (). These functions are explained in
the Attributes section. Briefly, they manipulate the current attributes of the given window. Once set,
the character printed in the window are associated with the attributes until it is turned off.

Additionally, curses provides some special characters for character—based graphics. You can draw tables,
horizontal or vertical lines, etc. You can find all avaliable characters in the header file ncurses.h. Try
looking for macros beginning with ACS__ in this file.

6.2. mvaddch(), waddch() and mvwaddch()

mvaddch () is used to move the cursor to a given point, and then print. Thus, the calls:

move (row, col) ; /* moves the cursor to rowth row and colth column */
addch (ch) ;

can be replaced by

mvaddch (row, col, ch) ;
waddch () is similar to addch (), except that it adds a character into the given window. (Note that
addch () adds a character into the window stdscr.)

In a similar fashion mvwaddch () function is used to add a character into the given window at the given
coordinates.

6. Output functions 13

NCURSES Programming HOWTO

Now, we are familiar with the basic output function addch () . But, if we want to print a string, it would be
very annoying to print it character by character. Fortunately, ncurses provides print f—like or put s—like
functions.

6.3. printw() class of functions

These functions are similar to print £ () with the added capability of printing at any position on the screen.

6.3.1. printw() and mvprintw

These two functions work much like printf (). mvprintw () can be used to move the cursor to a position
and then print. If you want to move the cursor first and then print using printw () function, use move ()
first and then use printw () though I see no point why one should avoid using mvprintw (), you have the
flexibility to manipulate.

6.3.2. wprintw() and mvwprintw

These two functions are similar to above two except that they print in the corresponding window given as
argument.

6.3.3. vwprintw()

This function is similar to vprint £ (). This can be used when variable number of arguments are to be
printed.

6.3.4. A Simple printw example

Example 3. A Simple printw example

#include <ncurses.h> /* ncurses.h includes stdio.h */
#include <string.h>

int main ()

{

char mesg[]="Just a string"; /* message to be appeared on the screen */
int row,col; /* to store the number of rows and *

* the number of colums of the screen */
initscr(); /* start the curses mode */
getmaxyx (stdscr, row,col) ; /* get the number of rows and columns */

mvprintw (row/2, (col-strlen (mesg))/2,"%$s",mesqg) ;

/* print the message at the center of the screen */
mvprintw (row-2,0, "This screen has %d rows and %d columns\n", row,col);
printw("Try resizing your window (if possible) and then run this program again");
refresh () ;
getch () ;
endwin () ;

return 0;

}

Above program demonstrates how easy it is to use printw. You just feed the coordinates and the message to
be appeared on the screen, then it does what you want.

6. Output functions 14

NCURSES Programming HOWTO

The above program introduces us to a new function getmaxyx (), a macro defined in ncurses. h. It gives
the number of columns and the number of rows in a given window. getmaxyx () does this by updating the
variables given to it. Since getmaxyx () is not a function we don't pass pointers to it, we just give two
integer variables.

6.4. addstr() class of functions

addstr () is used to put a character string into a given window. This function is similar to calling addch ()
once for each character in a given string. This is true for all output functions. There are other functions from
this family such as mvaddstr () ,mvwaddstr () and waddstr (), which obey the naming convention of
curses.(e.g. mvaddstr() is similar to the respective calls move() and then addstr().) Another function of this
family is addnstr(), which takes an integer parameter(say n) additionally. This function puts at most n
characters into the screen. If n is negative, then the entire string will be added.

6.5. A word of caution

All these functions take y co—ordinate first and then x in their arguments. A common mistake by beginners is
to pass X,y in that order. If you are doing too many manipulations of (y,x) co—ordinates, think of dividing the
screen into windows and manipulate each one separately. Windows are explained in the _windows section.

6. Output functions 15

7. Input functions

Well, printing without taking input, is boring. Let's see functions which allow us to get input from user. These
functions also can be divided into three categories.

1. getch() class: Get a character
2. scanw() class: Get formatted input
3. getstr() class: Get strings

7.1. getch() class of functions

These functions read a single character from the terminal. But there are several subtle facts to consider. For
example if you don't use the function cbreak(), curses will not read your input characters contiguously but will
begin read them only after a new line or an EOF is encountered. In order to avoid this, the cbreak() function
must used so that characters are immediately available to your program. Another widely used function is
noecho(). As the name suggests, when this function is set (used), the characters that are keyed in by the user
will not show up on the screen. The two functions cbreak() and noecho() are typical examples of key
management. Functions of this genre are explained in the key management section .

7.2. scanw() class of functions

These functions are similar to scanf () with the added capability of getting the input from any location on
the screen.

7.2.1. scanw() and mvscanw

The usage of these functions is similar to that of sscanf (), where the line to be scanned is provided by
wgetstr () function. That is, these functions call to wgetstr () function(explained below) and uses the
resulting line for a scan.

7.2.2. wscanw() and mvwscanw()

These are similar to above two functions except that they read from a window, which is supplied as one of the
arguments to these functions.

7.2.3. vwscanw()

This function is similar to vscanf (). This can be used when a variable number of arguments are to be
scanned.

7.3. getstr() class of functions

These functions are used to get strings from the terminal. In essence, this function performs the same task as
would be achieved by a series of calls to getch () until a newline, carriage return, or end—of—file is
received. The resulting string of characters are pointed to by st r, which is a character pointer provided by the
user.

7. Input functions 16

NCURSES Programming HOWTO

7.4. Some examples

Example 4. A Simple scanw example

#include <ncurses.h> /* ncurses.h includes stdio.h */
#include <string.h>

int main ()

{

char mesg[]="Enter a string: "; /* message to be appeared on the screen */
char str[80];
int row,col; /* to store the number of rows and *

* the number of colums of the screen */
initscr(); /* start the curses mode */
getmaxyx (stdscr, row,col) ; /* get the number of rows and columns */

mvprintw (row/2, (col-strlen (mesg))/2,"%s",mesqg) ;
/* print the message at the center of the screen */
getstr(str);
mvprintw (LINES - 2, 0, "You Entered: %s", str);
getch () ;
endwin () ;

return 0;

}

7. Input functions 17

8. Attributes

We have seen an example of how attributes can be used to print characters with some special effects.
Attributes, when set prudently, can present information in an easy, understandable manner. The following
program takes a C file as input and prints the file with comments in bold. Scan through the code.

Example 5. A Simple Attributes example

/* pager functionality by Joseph Spainhour" <spainhou@bellsouth.net> */
#include <ncurses.h>
#include <stdlib.h>

int main (int argc, char *argv([])
{

int ch, prev, row, col;

prev = EOF;

FILE *fp;

int y, x;

if (argc !'= 2)

{
printf ("Usage: %s <a c file name>\n", argv[0]);
exit (1);

}

fp = fopen(argv([1l], "r");

if (fp == NULL)

{

perror ("Cannot open input file");

exit (1);
}
initscr(); /* Start curses mode */
getmaxyx (stdscr, row, col); /* find the boundaries of the screeen */
while ((ch = fgetc(fp)) != EOF) /* read the file till we reach the end */
{
getyx (stdscr, y, X); /* get the current curser position */
if(y == (row — 1)) /* are we are at the end of the screen */
{
printw ("<-Press Any Key->"); /* tell the user to press a key */
getch () ;
clear () ; /* clear the screen */
move (0, 0); /* start at the beginning of the screen */
}
if (prev == '/' && ch == '"*") /* If it is / and * then only
* switch bold on */
{
attron (A_BOLD) ; /* cut bold on */
getyx (stdscr, y, Xx); /* get the current curser position */
move (y, x — 1); /* back up one space */
printw ("%c%c", '/', ch); /* The actual printing is done here */
}
else

printw ("%c", ch);
refresh () ;
if (prev == '*' g& ch == '/")
attroff (A_BOLD) ; /* Switch it off once we got *
* and then / */
prev = ch;

8. Attributes

NCURSES Programming HOWTO

endwin () ; /* End curses mode */

fclose (fp) ;

return 0;
}
Don't worry about all those initialization and other crap. Concentrate on the while loop. It reads each character
in the file and searches for the pattern /*. Once it spots the pattern, it switches the BOLD attribute on with
attron () . When we get the pattern */ it is switched off by attroff () .

The above program also introduces us to two useful functions getyx () and move (). The first function gets
the co—ordinates of the present cursor into the variables y, x. Since getyx() is a macro we don't have to pass
pointers to variables. The function move () moves the cursor to the co—ordinates given to it.

The above program is really a simple one which doesn't do much. On these lines one could write a more
useful program which reads a C file, parses it and prints it in different colors. One could even extend it to
other languages as well.

8.1. The details

Let's get into more details of attributes. The functions attron (), attroff (), attrset () ,and their
sister functions attr_get () etc.. can be used to switch attributes on/off , get attributes and produce a
colorful display.

The functions attron and attroff take a bit—mask of attributes and switch them on or off, respectively. The
following video attributes, which are defined in <curses.h> can be passed to these functions.

A_NORMAL Normal display (no highlight)
A_STANDOUT Best highlighting mode of the terminal.
A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_PROTECT Protected mode

A_TINVIS Invisible or blank mode
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR (n) Color-pair number n

The last one is the most colorful one :—) Colors are explained in the next sections.

We can OR(l) any number of above attributes to get a combined effect. If you wanted reverse video with
blinking characters you can use

attron (A_REVERSE | A BLINK);

8.2. attron() vs attrset()

Then what is the difference between attron() and attrset()? attrset sets the attributes of window whereas attron
Jjust switches on the attribute given to it. So attrset() fully overrides whatever attributes the window previously
had and sets it to the new attribute(s). Similarly attroff() just switches off the attribute(s) given to it as an
argument. This gives us the flexibility of managing attributes easily.But if you use them carelessly you may
loose track of what attributes the window has and garble the display. This is especially true while managing

8. Attributes 19

NCURSES Programming HOWTO

menus with colors and highlighting. So decide on a consistent policy and stick to it. You can always use
standend () which is equivalent to attrset (A_NORMAL) which turns off all attributes and brings you
to normal mode.

8.3. atir_get()

The function attr_get() gets the current attributes and color pair of the window. Though we might not use this
as often as the above functions, this is useful in scanning areas of screen. Say we wanted to do some complex
update on screen and we are not sure what attribute each character is associated with. Then this function can
be used with either attrset or attron to produce the desired effect.

8.4. attr_ functions

There are series of functions like attr_set(), attr_on etc.. These are similar to above functions except that they
take parameters of type attr_t.

8.5. wattr functions

For each of the above functions we have a corresponding function with 'w' which operates on a particular
window. The above functions operate on stdscr.

8.6. chgat() functions

The function chgat() is listed in the end of the man page curs_attr. It actually is a useful one. This function can
be used to set attributes for a group of characters without moving. I mean it !!! without moving the cursor :—)
It changes the attributes of a given number of characters starting at the current cursor location.

We can give —1 as the character count to update till end of line. If you want to change attributes of characters
from current position to end of line, just use this.

chgat (-1, A_REVERSE, 0, NULL);
This function is useful when changing attributes for characters that are already on the screen. Move to the
character from which you want to change and change the attribute.

Other functions wchgat(), mvchgat(), wchgat() behave similarly except that the w functions operate on the
particular window. The mv functions first move the cursor then perform the work given to them. Actually
chgat is a macro which is replaced by a wchgat() with stdscr as the window. Most of the "w-less" functions
are macros.

Example 6. Chgat() Usage example

#include <ncurses.h>
int main (int argc, char *argvl[])
{ initscr(); /* Start curses mode G

start_color(); /* Start color functionality */

init_pair(l, COLOR_CYAN, COLOR_BLACK) ;

8. Attributes 20

NCURSES Programming HOWTO

printw("A Big string which i didn't care to type fully ");
mvchgat (0, 0, -1, A_BLINK, 1, NULL);

/*
* First two parameters specify the position at which to start
* Third parameter number of characters to update. -1 means till
* end of line
* Forth parameter is the normal attribute you wanted to give
* to the charcter
* Fifth is the color index. It is the index given during init_pair ()
* use 0 if you didn't want color
* Sixth one is always NULL
)
refresh () ;
getch () ;
endwin () ; /* End curses mode w/

return 0;

}
This example also introduces us to the color world of curses. Colors will be explained in detail later. Use O for
no color.

8. Attributes 21

9. Windows

Windows form the most important concept in curses. You have seen the standard window stdscr above where
all the functions implicitly operated on this window. Now to make design even a simplest GUI, you need to
resort to windows. The main reason you may want to use windows is to manipulate parts of the screen
separately, for better efficiency, by updating only the windows that need to be changed and for a better design.
I would say the last reason is the most important in going for windows. You should always strive for a better
and easy—to—manage design in your programs. If you are writing big, complex GUISs this is of pivotal
importance before you start doing anything.

9.1. The basics

A Window can be created by calling the function newwin (). It doesn't create any thing on the screen
actually. It allocates memory for a structure to manipulate the window and updates the structure with data
regarding the window like it's size, beginy, beginx etc.. Hence in curses, a window is just an abstraction of an
imaginary window, which can be manipulated independent of other parts of screen. The function newwin()
returns a pointer to structure WINDOW, which can be passed to window related functions like wprintw() etc..
Finally the window can be destroyed with delwin(). It will deallocate the memory associated with the window
structure.

9.2. Let there be a Window !!!

What fun is it, if a window is created and we can't see it. So the fun part begins by displaying the window.
The function box () can be used to draw a border around the window. Let's explore these functions in more
detail in this example.

Example 7. Window Border example

#include <ncurses.h>

WINDOW *create_newwin (int height, int width, int starty, int startx);
void destroy_win (WINDOW *local_win) ;

int main(int argc, char *argv[])

{ WINDOW *my_win;

int startx, starty, width, height;

int ch;

initscr(); /* Start curses mode */

cbreak () ; /* Line buffering disabled, Pass on
* everty thing to me)

keypad (stdscr, TRUE) ; /* I need that nifty F1)

height = 3;

width = 10;

starty = (LINES - height) / 2; /* Calculating for a center placement */

startx = (COLS - width) / 2; /* of the window */

printw ("Press F1 to exit");

refresh();

my_win = create_newwin (height, width, starty, startx);

9. Windows 22

NCURSES Programming HOWTO

while ((ch = getch()) != KEY_F (1))
{ switch (ch)
{ case KEY_LEFT:
destroy_win (my_win) ;
my_win = create_newwin (height, width, starty,--startx);
break;

case KEY_RIGHT:
destroy_win (my_win) ;

my_win = create_newwin (height, width, starty,++startx);

break;
case KEY_UP:
destroy_win (my_win) ;
my_win = create_newwin (height, width, --st
break;
case KEY_DOWN:
destroy_win (my_win) ;
my_win = create_newwin (height, width, ++st
break;

endwin () ; /* End curses mode
return 0;
}
WINDOW *create_newwin (int height, int width, int starty, int startx)
{ WINDOW *local_win;
local_win = newwin (height, width, starty, startx);
box (local_win, 0 , 0); /* 0, 0 gives default characters
* for the vertical and horizontal
* lines)
wrefresh (local_win) ; /* Show that box */

return local_win;

voild destroy_win (WINDOW *local_win)
{
/* box (local_win, ' ', ' '); : This won't produce the desired
* result of erasing the window. It will leave it's four corners
* and so an ugly remnant of window.
)
wborder(local_win, 1 l, v I, 1 l,l l,l l,l l,l l,l l);
/* The parameters taken are

arty, startx) ;

arty, startx) ;

*/

* 1. win: the window on which to operate

* 2. ls: character to be used for the left side of the window

* 3. rs: character to be used for the right side of the window

* 4. ts: character to be used for the top side of the window

* 5. bs: character to be used for the bottom side of the window

* 6. tl: character to be used for the top left corner of the window

* 7. tr: character to be used for the top right corner of the window

* 8. bl: character to be used for the bottom left corner of the window
* 9. br: character to be used for the bottom right corner of the window
=

wrefresh (local_win) ;

delwin (local_win) ;

9. Windows

NCURSES Programming HOWTO

9.3. Explanation

Don't scream. I know it's a big example. But I have to explain some important things here :—). This program
creates a rectangular window that can be moved with left, right, up, down arrow keys. It repeatedly creates
and destroys windows as user press a key. Don't go beyond the screen limits. Checking for those limits is left
as an exercise for the reader. Let's dissect it by line by line.

The create_newwin () function creates a window with newwin () and displays a border around it with
box. The function destroy_win () first erases the window from screen by painting a border with '’
character and then calling delwin () to deallocate memory related to it. Depending on the key the user
presses, starty or startx is changed and a new window is created.

In the destroy_win, as you can see, I used wborder instead of box. The reason is written in the comments (You
missed it. I know. Read the code :—)). wborder draws a border around the window with the characters given to
it as the 4 corner points and the 4 lines. To put it clearly, if you have called wborder as below:

wborder(win, 'l'l III, lil, I7I, l+l, I+I, l+l, I+I);

it produces some thing like

9.4. The other stuff in the example

You can also see in the above examples, that I have used the variables COLS, LINES which are initialized to
the screen sizes after initscr(). They can be useful in finding screen dimensions and finding the center
co—ordinate of the screen as above. The function getch () as usual gets the key from keyboard and
according to the key it does the corresponding work. This type of switch— case is very common in any GUI
based programs.

9.5. Other Border functions

Above program is grossly inefficient in that with each press of a key, a window is destroyed and another is
created. So let's write a more efficient program which uses other border related functions.

The following program uses mvhline () and mvvline () to achieve similar effect. These two functions are
simple. They create a horizontal or vertical line of the specified length at the specified position.

Example 8. More border functions

#include <ncurses.h>

typedef struct _win_border_struct {
chtype 1s, rs, ts, bs,

9. Windows 24

NCURSES Programming HOWTO

tl, tr, bl, br;
}WIN_BORDER;

typedef struct _WIN_struct {

int startx, starty;

int height, width;

WIN_BORDER border;
JWIN;

void init_win_params (WIN *p_win) ;
voild print_win_params (WIN *p_win) ;

void create_box (WIN *win, bool flag);

int main (int argc, char *argvl[])

{ WIN win;
int ch;
initscr(); /* Start curses mode w/
start_color(); /* Start the color functionality */
cbreak () ; /* Line buffering disabled, Pass on
* everty thing to me =/
keypad (stdscr, TRUE) ; /* I need that nifty F1 */
noecho () ;
init_pair (1, COLOR_CYAN, COLOR_BLACK) ;
/* Initialize the window parameters */
init_win_params (&win) ;
print_win_params (&win) ;
attron (COLOR_PAIR(1));
printw ("Press F1 to exit");
refresh () ;
attroff (COLOR_PAIR (1)) ;
create_box (&win, TRUE) ;
while ((ch = getch()) != KEY_F (1))
{ switch (ch)
{ case KEY_LEFT:
create_box (&win, FALSE);
—-—win.startx;
create_box (&win, TRUE) ;
break;
case KEY_RIGHT:
create_box (&win, FALSE);
++win.startx;
create_box (&win, TRUE) ;
break;
case KEY_UP:
create_box (&win, FALSE);
-—win.starty;
create_box (&win, TRUE) ;
break;
case KEY_DOWN:
create_box (&win, FALSE);
++win.starty;
create_box (&win, TRUE) ;
break;
}
}
endwin () ; /* End curses mode w/

return 0;

9. Windows

25

NCURSES Programming HOWTO

}
void init_win_params (WIN *p_win)
{
p_win->height = 3;
p_win->width = 10;
(LINES - p_win->height) /2;
(COLS - p_win—->width) /2;

p_win->starty =
p_win->startx =
p_win->border.1ls = '|'
p_win->border.rs = '|'

r
r

p_win->border.ts = '-';
p_win->border.bs = '-';
p_win->border.tl = '+';
p_win->border.tr = '+';
p_win->border.bl = '+';
p_win->border.br = '+';

}

vold print_win_params (WIN *p_win)

{

#ifdef _DEBRUG
mvprintw (25, 0, "%d %d %d %d", p_win->startx, p_win->starty,

p_win->width, p_win->height);

refresh () ;

#endif

}

void create_box (WIN *p_win, bool flag)

{ int i, 3j;
int x, y, w, h;

X = p_win->startx;
y = p_win->starty;
w = p_win->width;
h = p_win->height;
if (flag == TRUE)
{ mvaddch (y, x, p_win->border.tl);
mvaddch (y, x + w, p_win->border.tr);
mvaddch (y + h, x, p_win->border.bl);
mvaddch(y + h, x + w, p_win->border.br);
mvhline(y, x + 1, p_win->border.ts, w - 1);
mvhline(y + h, x + 1, p_win->border.bs, w - 1);
mvvline(y + 1, x, p_win->border.ls, h - 1);
mvvline(y + 1, x + w, p_win->border.rs, h - 1);
}
else
for(j = y; J <=y + h; ++3)
for(i = x; 1 <= x + w; ++1i)
mvaddch (3, i, " ');

refresh();

9. Windows

26

10. Colors
10.1. The basics

Life seems dull with no colors. Curses has a nice mechanism to handle colors. Let's get into the thick of the
things with a small program.

Example 9. A Simple Color example

#include <ncurses.h>

vold print_in_middle (WINDOW *win, int starty, int startx, int width, char *string);
int main (int argc, char *argvl[])

{ initscr(); /* Start curses mode w/
if (has_colors () == FALSE)
{ endwin () ;
printf ("Your terminal does not support color\n");
exit (1);
}
start_color () ; /* Start color)

init_pair (1, COLOR_RED, COLOR_BLACK) ;

attron (COLOR_PAIR(1));
print_in_middle (stdscr, LINES / 2, 0, 0, "Viola !!! In color ...");
attroff (COLOR_PAIR (1)) ;
getch () ;
endwin () ;
}
voild print_in_middle (WINDOW *win, int starty, int startx, int width, char *string)
{ int length, x, vy;
float temp;

if (win == NULL)

win = stdscr;
getyx (win, y, Xx);
if (startx !'= 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = strlen(string);

temp = (width - length)/ 2;

x = startx + (int)temp;

mvwprintw (win, y, x, "%$s", string);

refresh () ;
}
As you can see, to start using color, you should first call the function start_color (). After that, you can
use color capabilities of your terminals using various functions. To find out whether a terminal has color
capabilities or not, you can use has_colors () function, which returns FALSE if the terminal does not

support color.

Curses initializes all the colors supported by terminal when start_color() is called. These can be accessed by
the define constants like COLOR_BLACK etc. Now to actually start using colors, you have to define pairs.

10. Colors 27

NCURSES Programming HOWTO

Colors are always used in pairs. That means you have to use the function init_pair () to define the
foreground and background for the pair number you give. After that that pair number can be used as a normal
attribute with COLOR_PATIR () function. This may seem to be cumbersome at first. But this elegant solution
allows us to manage color pairs very easily. To appreciate it, you have to look into the the source code of
"dialog", a utility for displaying dialog boxes from shell scripts. The developers have defined foreground and
background combinations for all the colors they might need and initialized at the beginning. This makes it
very easy to set attributes just by accessing a pair which we already have defined as a constant.

The following colors are defined in curses.h. You can use these as parameters for various color functions.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

~N o Ul W NP O

10.2. Changing Color Definitions

The function init_color ()can be used to change the rgb values for the colors defined by curses initially.
Say you wanted to lighten the intensity of red color by a minuscule. Then you can use this function as

init_color (COLOR_RED, 700, 0, 0);
/* param 1 : color name
* param 2, 3, 4 : rgb content min = 0, max = 1000 */
If your terminal cannot change the color definitions, the function returns ERR. The function
can_change_color () can be used to find out whether the terminal has the capability of changing color
content or not. The rgb content is scaled from O to 1000. Initially RED color is defined with content 1000(r),

0(g), 0(b).

10.3. Color Content

The functions color_content () and pair_content () can be used to find the color content and
foreground, background combination for the pair.

10. Colors 28

11. Interfacing with the key board
11.1. The Basics

No GUI is complete without a strong user interface and to interact with the user, a curses program should be
sensitive to key presses or the mouse actions done by the user. Let's deal with the keys first.

As you have seen in almost all of the above examples, it's very easy to get key input from the user. A simple
way of getting key presses is to use getch () function. The cbreak mode should be enabled to read keys
when you are interested in reading individual key hits rather than complete lines of text (which usually end
with a carriage return). keypad should be enabled to get the Functions keys, arrow keys etc. See the
initialization section for details.

getch () returns an integer corresponding to the key pressed. If it is a normal character, the integer value

will be equivalent to the character. Otherwise it returns a number which can be matched with the constants

defined in curses . h. For example if the user presses F1, the integer returned is 265. This can be checked
using the macro KEY_F() defined in curses.h. This makes reading keys portable and easy to manage.

For example, if you call getch() like this

int ch;

ch = getch{();
getch() will wait for the user to press a key, (unless you specified a timeout) and when user presses a key, the
corresponding integer is returned. Then you can check the value returned with the constants defined in
curses.h to match against the keys you want.

The following code piece will do that job.
if (ch == KEY_LEFT)

printw("Left arrow is pressed\n");

Let's write a small program which creates a menu which can be navigated by up and down arrows.

11.2. A Simple Key Usage example

Example 10. A Simple Key Usage example

#include <stdio.h>
#include <ncurses.h>

#define WIDTH 30
#define HEIGHT 10

int startx = 0;

int starty = 0;

char *choices[] = {
"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",

11. Interfacing with the key board 29

NCURSES Programming HOWTO

"Exit",
bi
int n_choices = sizeof (choices) / sizeof (char *);
vold print_menu (WINDOW *menu_win, int highlight);

int main ()

{ WINDOW *menu_win;
int highlight = 1;
int choice = 0;
int c;

initscr();

clear () ;

noecho () ;

cbreak () ; /* Line buffering disabled. pass on everything */
startx = (80 - WIDTH) / 2;

starty = (24 - HEIGHT) / 2;

menu_win = newwin (HEIGHT, WIDTH, starty, startx);

keypad (menu_win, TRUE) ;

mvprintw (0, 0, "Use arrow keys to go up and down, Press enter to select a choice");
refresh () ;

print_menu (menu_win, highlight);

while (1)
{ c = wgetch (menu_win) ;
switch (c)
{ case KEY_UP:
if (highlight == 1)
highlight = n_choices;
else
——highlight;
break;
case KEY_DOWN:
if (highlight == n_choices)
highlight = 1;
else
++highlight;
break;
case 10:
choice = highlight;
break;
default:
mvprintw (24, 0, "Charcter pressed is = %3d Hopefully it can be pz
refresh();
break;
}
print_menu (menu_win, highlight);
if (choice != 0) /* User did a choice come out of the infinite loop */
break;
}
mvprintw (23, 0, "You chose choice %d with choice string %s\n", choice, choices[choice - 1

clrtoeol () ;
refresh () ;
endwin () ;
return 0;

void print_menu (WINDOW *menu_win, int highlight)
{

int x, y, 1i;

11. Interfacing with the key board 30

NCURSES Programming HOWTO

X = 2;
y = 2;
box (menu_win, 0, 0);
for(i = 0; 1 < n_choices; ++i)
{ if (highlight == i + 1) /* High light the present choice */
{ wattron (menu_win, A_REVERSE) ;
mvwprintw (menu_win, y, x, "%s", choices[i]);

wattroff (menu_win, A_REVERSE) ;
}

else

mvwprintw (menu_win, vy, x, "%s", choices[i]);
Tty
}

wrefresh (menu_win) ;

11. Interfacing with the key board

12. Interfacing with the mouse

Now that you have seen how to get keys, lets do the same thing from mouse. Usually each UI allows the user
to interact with both keyboard and mouse.

12.1. The Basics

Before you do any thing else, the events you want to receive have to be enabled with mousemask ().

mousemask (mmask_t newmask, /* The events you want to listen to */
mmask_t *oldmask) /* The old events mask */

The first parameter to above function is a bit mask of events you would like to listen. By default, all the events
are turned off. The bit mask ALI,_MOUSE_EVENTS can be used to get all the events.

The following are all the event masks:

Name Description
BUTTON1_PRESSED mouse button 1 down
BUTTON1_RELEASED mouse button 1 up
BUTTON1_CLICKED mouse button 1 clicked
BUTTON1_DOUBLE_CLICKED mouse button 1 double clicked
BUTTON1_TRIPLE_CLICKED mouse button 1 triple clicked
BUTTON2_PRESSED mouse button 2 down
BUTTON2_RELEASED mouse button 2 up
BUTTON2_CLICKED mouse button 2 clicked
BUTTONZ2_DOUBLE_CLICKED mouse button 2 double clicked
BUTTON2_TRIPLE_CLICKED mouse button 2 triple clicked
BUTTON3_PRESSED mouse button 3 down
BUTTON3_RELEASED mouse button 3 up
BUTTON3_CLICKED mouse button 3 clicked
BUTTON3_DOUBLE_CLICKED mouse button 3 double clicked
BUTTON3_TRIPLE_CLICKED mouse button 3 triple clicked
BUTTON4_PRESSED mouse button 4 down
BUTTON4_RELEASED mouse button 4 up
BUTTON4_CLICKED mouse button 4 clicked
BUTTON4_DOUBLE_CLICKED mouse button 4 double clicked
BUTTON4_TRIPLE_CLICKED mouse button 4 triple clicked
BUTTON_SHIFT shift was down during button state change
BUTTON_CTRL control was down during button state change
BUTTON_ALT alt was down during button state change
ALL_MOUSE_EVENTS report all button state changes
REPORT_MOUSE_POSITION report mouse movement

12.2. Getting the events

Once a class of mouse events have been enabled, getch() class of functions return KEY_MOUSE every time
some mouse event happens. Then the mouse event can be retrieved with getmouse ().

The code approximately looks like this:

MEVENT event;

ch = getch{();

12. Interfacing with the mouse 32

NCURSES Programming HOWTO
if (ch == KEY_MOUSE)

if (getmouse (&event) == OK)
/* Do some thing with the event */

getmouse() returns the event into the pointer given to it. It's a structure which contains

typedef struct
{

short id; /* ID to distinguish multiple devices */
int x, y, z; /* event coordinates */
mmask_t bstate; /* button state bits */

}
The bstate is the main variable we are interested in. It tells the button state of the mouse.

Then with a code snippet like the following, we can find out what happened.

if (event.bstate & BUTTON1_PRESSED)
printw ("Left Button Pressed");

12.3. Putting it all Together

That's pretty much interfacing with mouse. Let's create the same menu and enable mouse interaction. To make
things simpler, key handling is removed.

Example 11. Access the menu with mouse !!!

#include <ncurses.h>

#define WIDTH 30
#define HEIGHT 10

int startx = 0;
int starty = 0;

char *choices[] = { "Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Exit",

}i
int n_choices = sizeof (choices) / sizeof (char *);

void print_menu (WINDOW *menu_win, int highlight);
void report_choice (int mouse_x, int mouse_y, int *p_choice);

int main ()

{ int ¢, choice = 0;
WINDOW *menu_win;
MEVENT event;

/* Initialize curses */
initscr();

clear();

noecho () ;

12. Interfacing with the mouse 33

NCURSES Programming HOWTO

cbreak () ; //Line buffering disabled. pass on everything

/* Try to put the window in the middle of screen */
startx = (80 - WIDTH) / 2;

starty = (24 - HEIGHT) / 2;
attron (A_REVERSE) ;
mvprintw (23, 1, "Click on Exit to quit (Works best in a virtual console)");

refresh () ;
attroff (A_REVERSE) ;

/* Print the menu for the first time */

menu_win = newwin (HEIGHT, WIDTH, starty, startx);
print_menu (menu_win, 1);

/* Get all the mouse events */

mousemask (ALL_MOUSE_EVENTS, NULL) ;

while (1)
{ c = wgetch (menu_win) ;
switch (c)
{ case KEY_MOUSE:
if (getmouse (&event) == OK)
{ /* When the user clicks left mouse button */
if (event.bstate & BUTTON1_PRESSED)
{ report_choice(event.x + 1, event.y + 1, &choice);
if (choice == -1) //Exit chosen
goto end;
mvprintw (22, 1, "Choice made is : %d String Chosen is \"¢

refresh () ;

}
print_menu (menu_win, choice);
break;

end:
endwin () ;
return 0;

void print_menu (WINDOW *menu_win, int highlight)
{

int x, vy, 1i;

X = 2;
y = 25
box (menu_win, 0, 0);
for(i = 0; i < n_choices; ++i)
{ if (highlight == i + 1)
{ wattron (menu_win, A_REVERSE) ;
mvwprintw (menu_win, y, x, "%s", choices[i]);
wattroff (menu_win, A_REVERSE) ;
}
else
mvwprintw (menu_win, y, x, "%s", choices[i]);
Tty
}

wrefresh (menu_win) ;

/* Report the choice according to mouse position */

12. Interfacing with the mouse 34

NCURSES Programming HOWTO

void report_choice (int mouse_x, int mouse_y, int *p_choice)

{ int i, j, choice;

startx + 2;
starty + 3;

i
]

for (choice = 0; choice < n_choices; ++choice)
if (mouse_y == j + choice && mouse_x >= 1 && mouse_x <= 1 + strlen(choices[choice]
{ if (choice == n_choices - 1)
*p_choice = -1;
else
*p_choice = choice + 1;
break;

12.4. Miscellaneous Functions

The functions mouse_trafo() and wmouse_trafo() can be used to convert to mouse co—ordinates to screen
relative co—ordinates. See curs_mouse(3X) man page for details.

The mouseinterval function sets the maximum time (in thousands of a second) that can elapse between press
and release events in order for them to be recognized as a click. This function returns the previous interval

value. The default is one fifth of a second.

12. Interfacing with the mouse 35

13. Screen Manipulation

In this section, we will look into some functions, which allow us to manage the screen efficiently and to write
some fancy programs. This is especially important in writing games.

13.1. getyx() functions

The function getyx () can be used to find out the present cursor co—ordinates. It will fill the values of x and
y co—ordinates in the arguments given to it. Since getyx() is a macro you don't have to pass the address of the
variables. It can be called as

getyx(win, y, X);
/* win: window pointer
o y, X: y, X co-ordinates will be put into this variables
*/
The function getparyx() gets the beginning co—ordinates of the sub window relative to the main window. This
is some times useful to update a sub window. When designing fancy stuff like writing multiple menus, it
becomes difficult to store the menu positions, their first option co—ordinates etc. A simple solution to this
problem, is to create menus in sub windows and later find the starting co—ordinates of the menus by using

getparyx().

The functions getbegyx() and getmaxyx() store current window's beginning and maximum co—ordinates.
These functions are useful in the same way as above in managing the windows and sub windows effectively.

13.2. Screen Dumping

While writing games, some times it becomes necessary to store the state of the screen and restore it back to
the same state. The function scr_dump() can be used to dump the screen contents to a file given as an
argument. Later it can be restored by scr_restore function. These two simple functions can be used effectively
to maintain a fast moving game with changing scenarios.

13.3. Window Dumping

To store and restore windows, the functions putwin () and getwin () can be used. putwin () puts the
present window state into a file, which can be later restored by getwin ().

The function copywin () can be used to copy a window completely onto another window. It takes the
source and destination windows as parameters and according to the rectangle specified, it copies the
rectangular region from source to destination window. It's last parameter specifies whether to overwrite or just
overlay the contents on to the destination window. If this argument is true, then the copying is
non—destructive.

13. Screen Manipulation 36

14. Miscellaneous features

Now you know enough features to write a good curses program, with all bells and whistles. There are some
miscellaneous functions which are useful in various cases. Let's go headlong into some of those.

14.1. curs_set()

This function can be used to make the cursor invisible. The parameter to this function should be

0 : invisible or
1 : normal or
2 : very visible.

14.2. Temporarily Leaving Curses mode

Some times you may want to get back to cooked mode (normal line buffering mode) temporarily. In such a
case you will first need to save the tty modes with a call to def_prog_mode () and then call endwin () to
end the curses mode. This will leave you in the original tty mode. To get back to curses once you are done,
call reset_prog_mode () . This function returns the tty to the state stored by def_prog_mode (). Then
do refresh(), and you are back to the curses mode. Here is an example showing the sequence of things to be
done.

Example 12. Temporarily Leaving Curses Mode

#include <ncurses.h>

int main ()

{

initscr(); /* Start curses mode */
printw("Hello World !!!\n"); /* Print Hello World */
refresh () ; /* Print it on to the real screen */
def_prog_mode () ; /* Save the tty modes */
endwin () ; /* End curses mode temporarily */
system("/bin/sh") ; /* Do whatever you like in cooked mode */
reset_prog_mode () ; /* Return to the previous tty mode*/
/* stored by def_prog_mode () */
refresh () ; /* Do refresh() to restore the */
/* Screen contents A/
printw ("Another String\n"); /* Back to curses use the full */
refresh () ; /* capabilities of curses */
endwin () ; /* End curses mode */

return 0;

14.3. ACS_ variables

If you have ever programmed in DOS, you know about those nifty characters in extended character set. They
are printable only on some terminals. NCURSES functions like box () use these characters. All these
variables start with ACS meaning alternative character set. You might have noticed me using these characters
in some of the programs above. Here's an example showing all the characters.

14. Miscellaneous features 37

NCURSES Programming HOWTO

Example 13. ACS Variables Example

#include <ncurses.h>

int main ()

{

initscr();

"Upper left corner "

printw

printw ("Lower left corner "
printw ("Lower right corner "
printw ("Tee pointing right "
printw ("Tee pointing left "
printw("Tee pointing up "
printw ("Tee pointing down "
printw ("Horizontal line "
printw("Vertical line

printw("Large Plus or cross over "
printw("Scan Line 1

printw("Scan Line 3

printw("Scan Line 7

printw("Scan Line 9

printw ("Diamond

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
printw ("Checker board
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(stipple) "

printw ("Degree Symbol

printw ("Plus/Minus Symbol "
printw ("Bullet

printw ("Arrow Pointing Left "
printw ("Arrow Pointing Right "
printw ("Arrow Pointing Down "
printw ("Arrow Pointing Up "
printw ("Board of squares "
printw ("Lantern Symbol "
printw("Solid Square Block "
printw ("Less/Equal sign "
printw ("Greater/Equal sign "
printw ("P1i

printw ("Not equal

printw ("UK pound sign

refresh();
getch () ;
endwin () ;

return 0;

addch (ACS_ULCORNER) ; printw ("\n");
addch (ACS_LLCORNER) ; printw ("\n");
addch (ACS_LRCORNER) ; printw ("\n");
addch (ACS_LTEE) ; printw("\n");
addch (ACS_RTEE) ; printw("\n");
addch (ACS_BTEE) ; printw ("\n");
addch (ACS_TTEE) ; printw("\n");
addch (ACS_HLINE); printw("\n");
addch (ACS_VLINE); printw("\n");
addch (ACS_PLUS) ; printw("\n");
addch (ACS_S1); printw ("\n");

addch (ACS_S3); printw ("\n");

addch (ACS_S7); printw ("\n");

addch (ACS_S9); printw ("\n");

addch (ACS_DIAMOND) ; printw ("\n");
addch (ACS_CKBOARD) ; printw ("\n");
addch (ACS_DEGREE) ; printw ("\n");
addch (ACS_PLMINUS); printw("\n");
addch (ACS_BULLET) ; printw ("\n");
addch (ACS_LARROW) ; printw ("\n");
addch (ACS_RARROW) ; printw ("\n");
addch (ACS_DARROW) ; printw ("\n");
addch (ACS_UARROW) ; printw ("\n");
addch (ACS_BOARD) ; printw ("\n");
addch (ACS_LANTERN) ; printw ("\n");
addch (ACS_BLOCK) ; printw ("\n");
addch (ACS_LEQUAL) ; printw ("\n");
addch (ACS_GEQUAL) ; printw ("\n");
addch (ACS_PI); printw("\n");

addch (ACS_NEQUAL) ; printw ("\n");
addch (ACS_STERLING); printw("\n");

14. Miscellaneous features

38

15. Other libraries

Apart from the curses library, there are few text mode libraries, which provide more functionality and a lot of
features. The following sections explain three standard libraries which are usually distributed along with

curses.

15. Other libraries

39

16. Panel Library

Now that you are proficient in curses, you wanted to do some thing big. You created a lot of overlapping
windows to give a professional windows—type look. Unfortunately, it soon becomes difficult to manage these.
The multiple refreshes, updates plunge you into a nightmare. The overlapping windows create blotches,
whenever you forget to refresh the windows in the proper order.

Don't despair. There's an elegant solution provided in panels library. In the words of developers of ncurses

When your interface design is such that windows may dive deeper into the visibility stack or pop to the top at
runtime, the resulting book—keeping can be tedious and difficult to get right. Hence the panels library.

If you have lot of overlapping windows, then panels library is the way to go. It obviates the need of doing
series of wnoutrefresh(), doupdate() and relieves the burden of doing it correctly(bottom up). The library
maintains information about the order of windows, their overlapping and update the screen properly. So why
wait? Let's take a close peek into panels.

16.1. The Basics

Panel object is a window that is implicitly treated as part of a deck including all other panel objects. The deck
is treated as a stack with the top panel being completely visible and the other panels may or may not be
obscured according to their positions. So the basic idea is to create a stack of overlapping panels and use
panels library to display them correctly. There is a function similar to refresh() which, when called , displays
panels in the correct order. Functions are provided to hide or show panels, move panels, change its size etc..
The overlapping problem is managed by the panels library during all the calls to these functions.

The general flow of a panel program goes like this:

1. Create the windows (with newwin()) to be attached to the panels.

2. Create panels with the chosen visibility order. Stack them up according to the desired visibility. The
function new_panel() is used to created panels.

3. Call update_panels() to write the panels to the virtual screen in correct visibility order. Do a
doupdate() to show it on the screen.

4. Mainpulate the panels with show_panel(), hide_panel(), move_panel() etc. Make use of helper
functions like panel_hidden() and panel_window(). Make use of user pointer to store custom data for
a panel. Use the functions set_panel_userptr() and panel_userptr() to set and get the user pointer for a
panel.

5. When you are done with the panel use del_panel() to delete the panel.

Let's make the concepts clear, with some programs. The following is a simple program which creates 3
overlapping panels and shows them on the screen.

16.2. Compiling With the Panels Library

To use panels library functions, you have to include panel.h and to link the program with panels library the
flag —Ipanel should be added along with —Incurses in that order.

#include <panel.h>

16. Panel Library 40

NCURSES Programming HOWTO

compile and link: gcc <program file> —-lpanel -lncurses
Example 14. Panel basics

#include <panel.h>

int main ()
{ WINDOW *my_wins[3];
PANEL *my_panels[3];
int lines = 10, cols = 40, yv = 2, x = 4, 1i;

initscr();
cbreak () ;

noecho () ;

/* Create windows for the panels */

my_wins[0] = newwin(lines, cols, vy, X);
my_wins[l] = newwin(lines, cols, y + 1, x + 5);
my_wins[2] = newwin(lines, cols, y + 2, x + 10);
/*

* Create borders around the windows so that you can see the effect
* of panels

=)
for(i = 0; 1 < 3; ++1)
box (my_wins[i], 0, 0);
/* Attach a panel to each window */ /* Order is bottom up */
my_panels[0] = new_panel (my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[l] = new_panel (my_wins[1]); /* Push 1, order: stdscr-0-1 */
my_panels[2] = new_panel (my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

/* Update the stacking order. 2nd panel will be on top */
update_panels () ;

/* Show it on the screen */
doupdate () ;

getch () ;

endwin () ;
}
As you can see, above program follows a simple flow as explained. The windows are created with newwin()
and then they are attached to panels with new_panel(). As we attach one panel after another, the stack of
panels gets updated. To put them on screen update_panels() and doupdate() are called.

16.3. Panel Window Browsing

A slightly complicated example is given below. This program creates 3 windows which can be cycled through
using tab. Have a look at the code.

Example 15. Panel Window Browsing Example

#include <panel.h>

16. Panel Library 41

NCURSES Programming HOWTO

#define NLINES 10
#define NCOLS 40

void init_wins (WINDOW **wins, int n);

void win_show (WINDOW *win, char *label, int label_color);
voild print_in_middle (WINDOW *win, int starty, int startx, int width, char *string,

int main ()

{ WINDOW *my_wins[3];
PANEL *my_panels[3];
PANEL *top;
int ch;

/* Initialize curses */
initscr();
start_color();
cbreak () ;

noecho () ;

keypad (stdscr, TRUE) ;

/* Initialize all the colors */
init_pair (1, COLOR_RED, COLOR_BLACK) ;
init_pair (2, COLOR_GREEN, COLOR_BLACK) ;
init_pair (3, COLOR_BLUE, COLOR_BLACK) ;
init_pair (4, COLOR_CYAN, COLOR_BLACK) ;

init_wins (my_wins, 3);

/* Attach a panel to each window */

my_panels[0] = new_panel (my_wins[0]);
my_panels[l] = new_panel (my_wins[1]);
my_panels[2] = new_panel (my_wins[2]);

/*
/*
/*
/*

Order is bottom up */

Push 0, order: stdscr-0 */
Push 1, order: stdscr-0-1 */
Push 2, order: stdscr-0-1-2 */

/* Set up the user pointers to the next panel */
set_panel_userptr (my_panels[0], my_panels[1l]);
set_panel_userptr (my_panels[l], my_panels[2]);
set_panel_userptr (my_panels[2], my_panels[0]);

/* Update the stacking order. 2nd panel will be on top */

update_panels () ;

/* Show it on the screen */
attron (COLOR_PAIR(4));

mvprintw (LINES - 2, 0, "Use tab to browse through the windows

attroff (COLOR_PAIR (4));
doupdate () ;

top = my_panels[2];

while ((ch = getch()) != KEY_F (1))
{ switch (ch)
{ case 9:
top = (PANEL *)panel_userptr (top);

top_panel (top) ;
break;
}
update_panels () ;
doupdate () ;
}
endwin () ;
return 0;

16. Panel Library

(F1 to Exit)"

chtype color) ;

") ;

42

NCURSES Programming HOWTO

/* Put all the windows */
void init_wins (WINDOW **wins, int n)
{ int x, y, 1i;

char label[80];

y = 2;

x = 10;

for(i = 0; 1 < n; ++1)

{ wins[i] = newwin (NLINES, NCOLS, vy, X);

sprintf (label, "Window Number %d", i + 1);
win_show (wins[i], label, i + 1);

y t= 3;

= oar= g

/* Show the window with a border and a label */
void win_show (WINDOW *win, char *label, int label_color)
{ int startx, starty, height, width;

getbegyx (win, starty, startx);
getmaxyx (win, height, width);

box (win, 0, 0);

mvwaddch (win, 2, 0, ACS_LTEE);

mvwhline (win, 2, 1, ACS_HLINE, width - 2);
mvwaddch (win, 2, width - 1, ACS_RTEE);

print_in middle (win, 1, 0, width, label, COLOR_PAIR(label_color));

voild print_in_middle (WINDOW *win, int starty, int startx, int width, char *string, chtype color)
{ int length, x, vy;
float temp;

if (win == NULL)

win = stdscr;
getyx (win, y, x);
if (startx !'= 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = strlen(string);

temp = (width - length)/ 2;

x = startx + (int)temp;

wattron (win, color);

mvwprintw (win, y, x, "%s", string);
wattroff (win, color);

refresh();

16.4. Using User Pointers

In the above example I used user pointers to find out the next window in the cycle. We can attach custom
information to the panel by specifying a user pointer, which can point to any information you want to store. In
this case I stored the pointer to the next panel in the cycle. User pointer for a panel can be set with the function

16. Panel Library 43

NCURSES Programming HOWTO

set_panel_userptr (). It can be accessed using the function panel_userptr () which will return
the user pointer for the panel given as argument. After finding the next panel in the cycle It's brought to the
top by the function top_panel(). This function brings the panel given as argument to the top of the panel stack.

16.5. Moving and Resizing Panels

The function move_panel () can be used to move a panel to the desired location. It does not change the
position of the panel in the stack. Make sure that you use move_panel() instead mvwin() on the window
associated with the panel.

Resizing a panel is slightly complex. There is no straight forward function just to resize the window
associated with a panel. A solution to resize a panel is to create a new window with the desired sizes, change
the window associated with the panel using replace_panel(). Don't forget to delete the old window. The
window associated with a panel can be found by using the function panel_window().

The following program shows these concepts, in supposedly simple program. You can cycle through the
window with <TAB> as usual. To resize or move the active panel press 't' for resize 'm' for moving. Then use
arrow keys to resize or move it to the desired way and press enter to end your resizing or moving. This
example makes use of user data to get the required data to do the operations.

Example 16. Panel Moving and Resizing example

#include <panel.h>

typedef struct _PANEL_DATA {
int x, y, w, h;
char label[80];
int label_color;
PANEL *next;
}PANEL_DATA;

#define NLINES 10
#define NCOLS 40

void init_wins (WINDOW **wins, int n);

void win_show (WINDOW *win, char *label, int label_color);

void print_in middle (WINDOW *win, int starty, int startx, int width, char *string, chtype color);
void set_user_ptrs (PANEL **panels, int n);

int main ()
{ WINDOW *my_wins[3];
PANEL *my_panels[3];
PANEL_DATA *top;
PANEL *stack_top;
WINDOW *temp_win, *old_winj;
int ch;
int newx, newy, neww, newh;
int size = FALSE, move = FALSE;

/* Initialize curses */
initscr();
start_color();
cbreak () ;

noecho () ;
keypad(stdscr, TRUE) ;

16. Panel Library 44

NCURSES Programming HOWTO

/* Initialize all the colors */
init_pair (1, COLOR_RED, COLOR_BLACK) ;
init_pair (2, COLOR_GREEN, COLOR_BLACK) ;
init_pair (3, COLOR_BLUE, COLOR_BLACK) ;
init_pair (4, COLOR_CYAN, COLOR_BLACK) ;

init_wins (my_wins, 3);

/* Attach a panel to each window */ /* Order is bottom up */
my_panels[0] = new_panel (my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[l] = new_panel (my_wins[1]); /* Push 1, order: stdscr-0-1 */
my_panels[2] = new_panel (my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

set_user_ptrs (my_panels, 3);
/* Update the stacking order. 2nd panel will be on top */
update_panels () ;

/* Show it on the screen */

attron (COLOR_PAIR(4));

mvprintw (LINES - 3, 0, "Use 'm' for moving, 'r' for resizing");

mvprintw (LINES - 2, 0, "Use tab to browse through the windows (Fl to Exit)");
attroff (COLOR_PAIR (4));

doupdate () ;

stack_top = my_panels|[2];

top = (PANEL_DATA *)panel_userptr (stack_top);
newx = top-—>x;
newy = top-—>y;
neww = top—>w;
newh = top—>h;
while ((ch = getch()) != KEY_F (1))
{ switch (ch)

{ case 9: /* Tab */

top = (PANEL_DATA *)panel_userptr (stack_top);

top_panel (top—>next) ;
stack_top = top->next;

top = (PANEL_DATA *)panel_userptr (stack_top);
newx = top—>x;
newy = top—->y;
neww = top—->w;
newh = top—>h;
break;
case 'r': /* Re—-Size*/

size = TRUE;
attron (COLOR_PAIR(4));
mvprintw (LINES - 4, 0, "Entered Resizing :Use Arrow Keys to resi:
refresh();
attroff (COLOR_PAIR(4));
break;
case 'm': /* Move */
attron (COLOR_PAIR(4));
mvprintw (LINES - 4, 0, "Entered Moving: Use Arrow Keys to Move ar
refresh () ;
attroff (COLOR_PAIR(4));
move = TRUE;

break;

case KEY_LEFT:
if (size == TRUE)
{ -——newx;

++neww;

16. Panel Library 45

NCURSES Programming HOWTO

if (move

break;
case KEY_RIGHT:
if (size

{

}

if (move

break;
case KEY_UP:
if (size

{

}

if (move

break;
case KEY_DOWN:
if (size

{

}

if (move

break;
case 10:

move (LINES - 4,

== TRUE)
——newx;

TRUE)
++newx;
——neww;

== TRUE)
++newx;

== TRUE)
——newy;
++newh;

== TRUE)
——newy;

== TRUE)
++newy;
——newh;

== TRUE)
++newy;

/* Enter */
0);

clrtoeol () ;
refresh () ;

if (size

{

== TRUE)

old _win = panel_window (stack_top);
temp_win = newwin (newh, neww, newy,
replace_panel (stack_top, temp_win);
win_show (temp_win, top->label,
delwin (old_win) ;

newx) ;

top—->label_color);

size = FALSE;
}
if (move == TRUE)
{ move_panel (stack_top, newy, newx);
move = FALSE;
}
break;
}
attron (COLOR_PAIR(4));
mvprintw (LINES - 3, 0, "Use 'm' for moving, 'r' for resizing");

mvprintw (LINES - 2, O,
attroff (COLOR_PAIR (4));
refresh () ;
update_panels () ;
doupdate () ;

}

endwin () ;

return O;

/* Put all the windows */
void init_wins (WINDOW **wins,
{ int x, vy, 1i;

char label[80];

int n)

16. Panel Library

"Use tab to browse through the windows

(F1 to Exit)");

46

NCURSES Programming HOWTO

y = 2;

x = 10;

for(i = 0; 1 < n; ++1)

{ wins[i] = newwin (NLINES, NCOLS, vy, X);
sprintf (label, "Window Number %d", i + 1);
win_show (wins[i], label, i + 1);

y t= 3;
= oar= g

/* Set the PANEL_DATA structures for individual panels */

voild set_user_ptrs (PANE

{ PANEL_DATA *ptr
WINDOW *win;
int x, y, w, h,
char temp[80];

L **panels, int n)
S;

i;

ptrs = (PANEL_DATA *)calloc(n, sizeof (PANEL_DATA));

for(i = 0;1 < n
{ win = p

g)
anel_window (panels[i]);

getbegyx (win, vy, X);
getmaxyx (win, h, w);

ptrs[i]
ptrs[i]
ptrs[i]

ptrs[i].

sprintf

X = X;
Y T Y
W= W;
h = h;

(temp, "Window Number %d", i + 1);

strcpy (ptrs[i].label, temp);

ptrs[i]
if (i +

else

.label_color = i + 1;
1l == n)
ptrs[i] .next = panels[0];

ptrs[i] .next = panels[i + 1];

set_panel_userptr (panels[i], &ptrs[i]);

/* Show the window with a border and a label */
void win_show (WINDOW *win, char *label, int label_color)
{ int startx, starty, height, width;

getbegyx (win, s

tarty, startx);

getmaxyx (win, height, width);

box (win, 0, 0);
mvwaddch (win, 2
mvwhline (win, 2
mvwaddch (win, 2

, 0, ACS_LTEE);
, 1, ACS_HLINE, width - 2);
, width - 1, ACS_RTEE);

print_in middle (win, 1, 0, width, label, COLOR_PAIR(label_color));

voild print_in_middle (WINDOW *win, int starty, int startx, int width,

{ int length, x,
float temp;

if (win == NULL)

Yi

win = stdscr;
getyx (win, y, x);

16. Panel Library

char *string,

chtype color)

47

NCURSES Programming HOWTO

if (startx !'= 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = strlen(string);

temp = (width - length)/ 2;

x = startx + (int)temp;

wattron (win, color);

mvwprintw (win, y, x, "%s", string);

wattroff (win, color);

refresh () ;
}
Concentrate on the main while loop. Once it finds out the type of key pressed, it takes appropriate action. If 'r'
is pressed resizing mode is started. After this the new sizes are updated as the user presses the arrow keys.
When the user presses <ENTER> present selection ends and panel is resized by using the concept explained.
While in resizing mode the program doesn't show how the window is getting resized. It's left as an exercise to
the reader to print a dotted border while it gets resized to a new position.

When the user presses 'm' the move mode starts. This is a bit simpler than resizing. As the arrow keys are
pressed the new position is updated and pressing of <KENTER> causes the panel to be moved by calling the
function move_panel().

In this program the user data which is represented as PANEL_DATA, plays very important role in finding the
associated information with a panel. As written in the comments, the PANEL_DATA stores the panel sizes,
label, label color and a pointer to the next panel in the cycle.

16.6. Hiding and Showing Panels

A Panel can be hidden by using the function hide_panel(). This function merely removes it form the stack of
panels, thus hiding it on the screen once you do update_panels() and doupdate(). It doesn't destroy the PANEL
structure associated with the hidden panel. It can be shown again by using the show_panel() function.

The following program shows the hiding of panels. Press 'a' or 'b' or 'c' to show or hide first, second and third
windows respectively. It uses a user data with a small variable hide, which keeps track of whether the window
is hidden or not. For some reason the function panel_hidden () which tells whether a panel is hidden or
not is not working. A bug report was also presented by Michael Andres _here

Example 17. Panel Hiding and Showing example

#include <panel.h>

typedef struct _PANEL_DATA {
int hide; /* TRUE if panel is hidden */
}PANEL_DATA;

#define NLINES 10
#define NCOLS 40

void init_wins (WINDOW **wins, int n);

void win_show (WINDOW *win, char *label, int label_color);
void print_in_middle (WINDOW *win, int starty, int startx, int width, char *string, chtype color);

16. Panel Library 48

http://www.geocrawler.com/archives/3/344/1999/9/0/2643549/

NCURSES Programming HOWTO

int main ()

{ WINDOW *my_wins[3];
PANEL “*my_panels[3];
PANEL_DATA panel_datas[3];
PANEL_DATA *temp;
int ch;

/* Initialize curses */
initscr();
start_color();
cbreak () ;

noecho () ;

keypad (stdscr, TRUE) ;

/* Initialize all the colors */
init_pair (1, COLOR_RED, COLOR_BLACK) ;
init_pair (2, COLOR_GREEN, COLOR_BLACK) ;
init_pair (3, COLOR_BLUE, COLOR_BLACK) ;
init_pair (4, COLOR_CYAN, COLOR_BLACK) ;

init_wins (my_wins, 3);

/* Attach a panel to each window */ /* Order is bottom up */
my_panels[0] = new_panel (my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[l] = new_panel (my_wins[1]); /* Push 1, order: stdscr-0-1 */
my_panels[2] = new_panel (my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

/* Initialize panel datas saying that nothing is hidden */
panel_datas[0] .hide = FALSE;
panel_datas[1l].hide = FALSE;
panel_datas[2].hide = FALSE;

set_panel_userptr (my_panels[0], &panel_datas[0]);
set_panel_userptr (my_panels|[l], &panel_datas[1l]);
set_panel_userptr (my_panels|[2], &panel_datas[2]);

/* Update the stacking order. 2nd panel will be on top */
update_panels () ;

/* Show it on the screen */

attron (COLOR_PAIR(4));

mvprintw (LINES - 3, 0, "Show or Hide a window with 'a' (first window) 'b' (Second Window)
mvprintw (LINES - 2, 0, "F1 to Exit");

attroff (COLOR_PAIR (4));
doupdate () ;

while ((ch = getch()) != KEY_F (1))
{ switch (ch)
{ case 'a':
temp = (PANEL_DATA *)panel_userptr (my_panels[0]);
if (temp->hide == FALSE)
{ hide_panel (my_panels[0]);
temp->hide = TRUE;
}
else
{ show_panel (my_panels[0]);
temp->hide = FALSE;
}
break;
case 'b':

16. Panel Library 49

NCURSES Programming HOWTO

temp = (PANEL_DATA *)panel_ userptr (my_panels[1l]);
if (temp->hide == FALSE)
{ hide_panel (my_panels([1l]);

temp->hide = TRUE;

else

{ show_panel (my_panels[1l]);
temp->hide = FALSE;

}

break;

case 'c':

temp = (PANEL_DATA *)panel_userptr (my_panels[2]);

if (temp->hide == FALSE)

{ hide_panel (my_panels([2]);
temp->hide = TRUE;

}

else

{ show_panel (my_panels[2]);
temp->hide = FALSE;

}

break;

}
update_panels () ;
doupdate () ;

}

endwin () ;

return 0;

/* Put all the windows */
void init_wins (WINDOW **wins, int n)
{ int x, vy, 1i;

char label[80];

y = 2;

x = 10;

for(i = 0; 1 < n; ++1)

{ wins[i] = newwin (NLINES, NCOLS, vy, X);

sprintf (label, "Window Number %d", i + 1);
win_show (wins[i], label, i + 1);

y t= 3;

= o= T

/* Show the window with a border and a label */
void win_show (WINDOW *win, char *label, int label_color)
{ int startx, starty, height, width;

getbegyx (win, starty, startx);
getmaxyx (win, height, width);

box (win, 0, 0);

mvwaddch (win, 2, 0, ACS_LTEE) ;

mvwhline (win, 2, 1, ACS_HLINE, width - 2);
2

mvwaddch (win, , width - 1, ACS_RTEE);

print_in middle (win, 1, 0, width, label, COLOR_PAIR(label_color));

void print_in_middle (WINDOW *win, int starty, int startx, int width, char *string, chtype color)
{ int length, x, vy;

16. Panel Library 50

NCURSES Programming HOWTO

float temp;
if (win == NULL)

win = stdscr;
getyx (win, y, x);
if (startx !'= 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = strlen(string);

temp = (width - length)/ 2;

x = startx + (int)temp;

wattron (win, color);

mvwprintw (win, y, x, "%s", string);
wattroff (win, color);

refresh () ;

16.7. panel_above() and panel_below() Functions

The functions panel_above () and panel_below () can be used to find out the panel above and below a
panel. If the argument to these functions is NULL, then they return a pointer to bottom panel and top panel
respectively.

16. Panel Library 51

17. Menus Library

The menus library provides a nice extension to basic curses, through which you can create menus. It provides
a set of functions to create menus. But they have to be customized to give a nicer look, with colors etc. Let's
get into the details.

A menu is a screen display that assists the user to choose some subset of a given set of items. To put it simple,
a menu is a collection of items from which one or more items can be chosen. Some readers might not be
aware of multiple item selection capability. Menu library provides functionality to write menus from which
the user can chose more than one item as the preferred choice. This is dealt with in a later section. Now it is
time for some rudiments.

17.1. The Basics

To create menus, you first create items, and then post the menu to the display. After that, all the pr