Python Library Reference
Release 2.5

Guido van Rossum

Fred L. Drake, Jr., editor

19th September, 2006

Python Software Foundation
Email: docs@python.org

Copyright (©) 2001-2006 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file I/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manual remains the highest authority on syntactic and semantic questions.
Finally, the manual entitled Extending and Embedding the Python Interpreter describes how to add new extensions
to Python and how to embed it in other applications.

../ref/ref.html
../tut/tut.html
../ref/ref.html
../ext/ext.html

CONTENTS

Introduction 1
Built-in Objects 3
2.1 Built-in Functions e 3
2.2 Non-essential Built-in Functions L o 16
2.3 Built-in Exceptions e e 16
24 Built-in Constants o ot e e e e e e e e e e e e e e e e e e e 20
Built-in Types 23
3.1 Truth Value Testing e e 23
3.2 Boolean Operations — and, 0r, NOT« v v v vt v vt e e e e 23
3.3 0 CompariSonS . . . v v v v e 24
3.4 Numeric Types — int, float, long, COmMPlex v v v v v v v v v v e i e oo 24
3.5 Tterator Types e e e 26
3.6 Sequence Types — str,unicode, 1list, tuple,buffer,xrange 27
3.7 SetTypes — set, frozenset e 35
3.8 Mapping Types — dict . . . o o v i i e e e e e e e e e e e e e 36
3.9 FileObjects o i e e e e e e e 38
3.10 Context Manager Types i e 40
3.11 Other Built-in Types o . o o e e e e e e 41
3.12 Special Attributes e e e 43
String Services 45
4.1 string-— Common String Operationso 45
4.2 re — Regular expression operationso i e e e e e e e 50
4.3 struct — Interpret strings as packed binary data Lo 60
44 difflib — Helpers for computingdeltas, 62
45 StringIO—Readand writestringsasfiles L L. 70
4.6 cStringIO—Faster versionof StringIOo 70
47 textwrap — Text wrapping and filling o 71
4.8 codecs — Codecregistry and base classes oo 73
4.9 unicodedata — Unicode Database 85
4.10 stringprep — Internet String Preparation o . 86
4.11 fpformat — Floating point conversions vt 88
Data Types 89
5.1 datetime —Basicdateandtimetypes e 89
5.2 calendar — General calendar-related functions 106
5.3 collections — High-performance container datatypes 109
54 heapg—Heapqueuealgorithm 114
5.5 Dbisect — Array bisection algorithm L L L 116
5.6 array — Efficient arrays of numeric values L oo 117
5.7 sets — Unordered collections of unique elements 120
5.8 sched—Eventscheduler 123

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

mutex — Mutual exclusion support Lo
Queue — A synchronized queue class e
weakref — Weakreferences oL
UserDict — Class wrapper for dictionary objects
UserList — Class wrapper for listobjects
UserString — Class wrapper for string objects
types — Names for built-intypes e
new — Creation of runtime internal objects Lo e
copy — Shallow and deep copy Operations v v v v vt e e e
pprint — Datapretty printer Lo e
repr — Alternate repr () implementation L.

Numeric and Mathematical Modules

6.1 math— Mathematical functions
6.2 cmath — Mathematical functions for complex numbers
6.3 decimal — Decimal floating point arithmetic
6.4 random — Generate pseudo-random numbersol e
6.5 itertools — Functions creating iterators for efficient looping
6.6 functools — Higher order functions and operations on callable objects.
6.7 operator — Standard operators as functions. L L
Internet Data Handling

7.1 email — Anemail and MIME handling package
7.2 mailcap—Mailcapfilehandling. o
7.3 mailbox — Manipulate mailboxes in various formats
74 mhlib—Accessto MHmailboxes
7.5 mimetools — Tools for parsing MIME messages
7.6 mimetypes— Map filenamesto MIME typeso
7.7 MimeWriter — Generic MIME file writer
7.8 mimify — MIME processing of mail messages
7.9 multifile — Support for files containing distinctparts
7.10 rfc822 —Parse RFC 2822 mailheaders
7.11 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
7.12 binhex — Encode and decode binhex4 files L.
7.13 binascii — Convert between binary and ASCIT
7.14 quopri — Encode and decode MIME quoted-printabledata
7.15 uu— Encode and decode uuencode files oo oo

Structured Markup Processing Tools

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

HTMLParser — Simple HTML and XHTML parser
sgmllib — Simple SGML parser i i e e e e
htmllib — A parser for HTML documents
htmlentitydefs — Definitions of HTML general entities
xml.parsers.expat — Fast XML parsing using Expat
xml .dom — The Document Object Model API
xml.dom.minidom— Lightweight DOM implementation
xml.dom.pulldom— Support for building partial DOM trees
xml.sax — Support for SAX2 parsers e e
xml.sax.handler — Base classes for SAX handlers
xml.sax.saxutils — SAXUtilities
xml.sax.xmlreader — Interface for XML parsers
xml.etree.ElementTree — The ElementTree XML API

File Formats

9.1
9.2
9.3
9.4
9.5

csv— CSV File Reading and Writing i
ConfigParser — Configuration file parser
robotparser — Parser forrobots.txt
netrc—netrc file processing e
xdrlib —Encode and decode XDRdata

141
141
143
144
161
164
172
173

181
181
208
209
226
227
229
231
232
233
235
239
240
241
242
243

245
245
247
250
251
252
260
269
273
274
275
279
280
284

10 Cryptographic Services 305
10.1 hashlib — Secure hashes and message digests i 305
10.2 hmac — Keyed-Hashing for Message Authentication 306
10.3 md5 — MDS5 message digest algorithmo 0oL oo 307
10.4 sha — SHA-1 message digest algorithm 308

11 File and Directory Access 311
11.1 os.path — Common pathname manipulations 311
11.2 fileinput — Iterate over lines from multiple input streams 314
11.3 stat —Interpreting stat () results L e 316
114 statvfs —Constants used with os.statvfs () 317
11.5 filecmp — File and Directory Comparisons o v v v v v v v v v 318
11.6 tempfile — Generate temporary files and directories 319
11.7 glob — UNIX style pathname pattern expansiono v .. 321
11.8 fnmatch — UNIX filename pattern matching 322
11.9 linecache —Randomaccesstotextlines 322
11.10 shutil — High-level file operations 323
11.11 dircache — Cached directory listings 324

12 Data Compression and Archiving 327
12.1 zlib — Compression compatible withgzip 327
12.2 gzip—Supportforgzipfiles 329
12.3 bz2 — Compression compatible withbzip2 330
124 zipfile— Work with ZIP archives e 332
12.5 tarfile —Read and write tar archivefileso oo, 335

13 Data Persistence 341
13.1 pickle — Python object serialization 341
13.2 cPickle —Afasterpickle e e e e 351
13.3 copy_reg— Register pickle support functions 351
13.4 shelve — Pythonobjectpersistence e 352
13.5 marshal — Internal Python object serialization 354
13.6 anydbm — Generic access to DBM-style databases 355
13.7 whichdb — Guess which DBM module created a database 356
13.8 dbm — Simple “database” interface e 356
13.9 gdbm— GNU’s reinterpretationof dbm o oL oo 357
13.10 dbhash — DBM-style interface to the BSD database library 358
13.11 bsddb — Interface to Berkeley DB library 359
13.12 dumbdbm — Portable DBM implementationo 361
13.13 sglite3 — DB-API 2.0 interface for SQLite databases 362

14 Generic Operating System Services 373
14.1 os — Miscellaneous operating system interfaces 373
142 time — Time access and CONVEISIONS« . v v v v v v vttt e e e e e e 392
14.3 optparse — More powerful command line option parser 396
144 getopt — Parser for command lineoptions L oL 421
14.5 logging — Logging facility for Python L oo, 423
14.6 getpass — Portable passwordinput o 444
14.7 curses — Terminal handling for character-cell displays 444
14.8 curses.textpad — Text input widget for curses programs 458
149 curses.wrapper — Terminal handler for curses programs 459
14.10 curses.ascii — Utilities for ASCII characters 459
14.11 curses.panel — A panel stack extension forcurses. 461
14.12 plat form — Access to underlying platform’s identifying data. 463
14.13 errno — Standard errno system symbols L L 465
14.14 ctypes — A foreign function library for Python.00 470

15 Optional Operating System Services 503
15.1 select — Waiting forI/Ocompletion 503

15.2 thread —Multiple threads of control
15.3 threading — Higher-level threading interface
154 dummy_thread — Drop-in replacement for the threadmodule
15.5 dummy_threading — Drop-in replacement for the threadingmodule
15.6 mmap — Memory-mapped file support
157 readline —GNUreadlineinterface
15.8 rlcompleter — Completion function for GNU readline

16 Unix Specific Services

16.1 posix — The most common POSIX systemcalls
16.2 pwd—The password database e e
16.3 spwd — The shadow password database
164 grp—The groupdatabase
16.5 crypt — Function to check UNIX passwords
16.6 d1 — Call C functions in shared objects
16.7 termios —POSIXstylettycontrol e
16.8 tty— Terminal control functions
16.9 pty — Pseudo-terminal utilities oL e
16.10 fcntl —The fcntl () and ioctl () systemealls
16.11 pipes — Interface to shell pipelines
16.12 posixfile — File-like objects with locking support,
16.13 resource — Resource usage information Lo
16.14 nis — Interface to Sun’s NIS (Yellow Pages)
16.15 syslog— UNIX syslog library routines
16.16 commands — Utilities for running commands

17 Interprocess Communication and Networking

17.1 subprocess — Subprocess management
17.2 socket — Low-level networking interface
17.3 signal — Set handlers for asynchronous events
17.4 popen2 — Subprocesses with accessible [/O streams
17.5 asyncore — Asynchronous sockethandler
17.6 asynchat — Asynchronous socket command/response handler

18 Internet Protocols and Support

18.1 webbrowser — Convenient Web-browser controller
18.2 cgi — Common Gateway Interface support. L.
18.3 cgitb — Traceback manager for CGI scripts
18.4 wsgiref — WSGI Utilities and Reference Implementation
18.5 urllib — Open arbitrary resourcesby URL
18.6 urllib2 — extensible library foropening URLs
18.7 httplib—HTTPprotocolclient
18.8 ftplib—FTPprotocolclient e
18.9 gopherlib — Gopher protocolclient
18.10 poplib — POP3 protocol client e
18.11 imaplib —IMAP4 protocolclient L
18.12 nntplib — NNTP protocolclient
18.13 smtplib — SMTP protocol client e
18.14 smtpd — SMTP Server e e e e
18.15 telnetlib —Telnetclient e
18.16 uuid — UUID objects accordingto RFC 4122,
18.17 urlparse — Parse URLs into components v v i ..
18.18 SocketServer — A framework for network servers Lo
18.19 BaseHTTPServer — Basic HTTPserver
18.20 SimpleHTTPServer — Simple HTTP request handler
18.21 CGIHTTPServer — CGl-capable HTTP requesthandler
18.22 cookielib — Cookie handling for HTTP clients
18.23 Cookie — HTTP state management oot v i it
18.24 xmlrpclib — XML-RPCclientaccess o v v v i v i it e it e et e e e

521
521
522
523
523
524
525
526
527
527
528
530
531
533
535
535
536

539
539
544
554
556
558
561

18.25 SimpleXMLRPCServer — Basic XML-RPCserver 649

18.26 DocXMLRPCServer — Self-documenting XML-RPCserver 652
19 Multimedia Services 655
19.1 audioop — Manipulate raw audiodatao oL 655
19.2 imageop — Manipulate raw imagedatao 658
19.3 aifc—Read and write AIFF and AIFCfiles 659
19.4 sunau—Readand write Sun AUfiles L oo 661
19.5 wave —Readand write WAV files L 663
19.6 chunk —ReadIFFchunkeddata 665
19.7 colorsys — Conversions between color Systems o oot 666
19.8 rgbimg— Read and write “SGIRGB” files 667
19.9 imghdr — Determine the type of animage 667
19.10 sndhdr — Determine type of sound file 668
19.11 ossaudiodev — Access to OSS-compatible audio devices 668
20 Graphical User Interfaces with Tk 673
20.1 Tkinter — Pythoninterfaceto Tcl/Tk 673
20.2 Tix —Extensionwidgetsfor Tk 684
20.3 ScrolledText — Scrolled Text Widget 689
20.4 turtle — Turtle graphicsfor Tk 689
20.5 Idle 692
20.6 Other Graphical User Interface Packages 695
21 Internationalization 697
21.1 gettext — Multilingual internationalization services 697
21.2 locale — Internationalization SEIViCes v vt it i e 706
22 Program Frameworks 713
22.1 cmd — Support for line-oriented command interpreters oL L 713
22.2 shlex — Simple lexical analysis 715
23 Development Tools 719
23.1 pydoc — Documentation generator and online helpsystem 719
23.2 doctest — Testinteractive Pythonexamples L. 720
23.3 unittest — Unittesting framework L oL 744
23.4 test — Regression tests package forPython. Lo L. 755
23.5 test.test_support — Utility functions fortests 757
24 The Python Debugger 759
24.1 Debugger Commands i it e e e e e e e e e e e e e e 760
242 How It Works o e e e 763
25 The Python Profilers 765
25.1 Introductiontothe profilers e e e 765
25.2 Instant User’s Manual e 766
25.3 What Is Deterministic Profiling? 767
25.4 Reference Manual —profileand cProfile 768
25.5 LIimitationso e e e 771
25.6 Calibration 771
25.7 Extensions — Deriving Better Profilers 0 oL o oL 772
25.8 hotshot — High performance logging profiler 772
259 timeit — Measure execution time of small code snippets 774
25.10 trace — Trace or track Python statement execution 777
26 Python Runtime Services 779
26.1 sys — System-specific parameters and functions oo o oL L. 779
262 __builtin___ —Builtsinobjects 785
26.3 __main__ — Top-level script environment 786

27

28

29

30

31

32

33

34

264 warnings—Warningcontrol e
26.5 contextlib — Utilities for with-statement contexts. o
26.6 atexit —Exithandlers e
26.7 traceback — Print or retrieve a stack traceback oL 0oL
26.8 _ future_ — Future statement definitions
26.9 gc — Garbage Collectorinterface
26.10 inspect — Inspectlive objects e e e
26.11 site — Site-specific configurationhooko oo
26.12 user — User-specific configurationhook o oL
26.13 fpectl — Floating point exception control

Custom Python Interpreters
27.1 code —Interpreter base classes L. Lo e
27.2 codeop — Compile Pythoncode

Restricted Execution
28.1 rexec — Restricted execution framework
28.2 Bastion — Restricting access to Objects

Importing Modules

29.1 imp — Accessthe importinternals Lo
29.2 zipimport — Import modules from Zip archives
29.3 pkgutil — Package extension utility oL o
29.4 modulefinder — Find modules used by ascript
29.5 runpy — Locating and executing Python modules.

Python Language Services

30.1 parser — Access Pythonparsetrees e
30.2 symbol — Constants used with Python parsetrees
30.3 token — Constants used with Python parsetrees
30.4 keyword — Testing for Python keywords L
30.5 tokenize — Tokenizer for Pythonsource. L.
30.6 tabnanny — Detection of ambiguous indentation
30.7 pyclbr — Pythonclass browser support Lo
30.8 py_compile — Compile Python source files
30.9 compileall — Byte-compile Python libraries
30.10 dis — Disassembler for Pythonbytecode L.
30.11 pickletools — Tools for pickle developers.
30.12 distutils — Building and installing Pythonmodules

Python compiler package

31.1 Thebasicinterface L e
31.2 Limitations e e e e e e e e e e e
31.3 Python Abstract Syntax e
31.4 Using Visitors to Walk ASTS o e
31.5 Bytecode Generationo e e e e e e e e

Abstract Syntax Trees
32.1 Abstract Grammar e

Miscellaneous Services
33.1 formatter — Generic output formatting oo o oL

SGI IRIX Specific Services

341 al —Audiofunctionsonthe SGI
342 AL — Constants used withthe al module
343 cd—CD-ROM access on SGIsystems o . ittt
344 £1 — FORMS library for graphical user interfaces
345 FL —Constantsused withthe f1module

805
805
807

809
809
812

815
815
818
820
820
820

823
823
832
832
833
833
834
835
836
836
837
844
844

847
847
848
848
853
854

855
855

859
859

Vi

35

34.6 flp— Functions for loading stored FORMS designs
347 fm— Font Managerinterface L. e e e e e e
34.8 gl — Graphics Library interface e
349 DEVICE — Constants used withthe gl module
34.10 GL — Constants used withthe gl module
34.11 imgfile — Support for SGLimglib files
34.12 jpeg—Read and write JPEG files

SunOS Specific Services
35.1 sunaudiodev — Access to Sun audio hardware
35.2 SUNAUDIODEV — Constants used with sunaudiodev

36 MS Windows Specific Services
36.1 msilib — Read and write Microsoft Installer files
36.2 msvcrt — Useful routines from the MS VC++runtime
36.3 _winreg— Windows regiStry acCess v v v v v it e e e e e e e e e e e e
36.4 winsound — Sound-playing interface for Windowso oL
A Undocumented Modules
Al Frameworks e e e e e e e
A.2 Miscellaneous useful utilities
A.3 Platform specificmodules
A4 Multimedia e
AS Obsolete e
A.6 SGl-specific Extension modules L
B Reporting Bugs
C History and License
C.1 Historyofthe software e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software
Module Index
Index

879
879
880

881
881
887
888
892

895
895
895
895
895
896
896

897

899
899
900
902

911

915

vii

viii

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.'

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of the Python Reference Manual for the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import_ (name[, globals[, locals[, fromlist[, level]]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semantics of the import statement. For
examples of why and how you would do this, see the standard library modules 1hooks and rexec. See
also the built-in module imp, which defines some useful operations out of which you can build your own
_ import__ () function.

For example, the statement ‘import spam’ results in the following call: __ _import__ (' spam’,
globals (), locals(), [], —1); the statement ‘from spam.ham import eggs’ results
in‘__import__ (’spam.ham’, globals(), locals(), [‘eggs’], -1)’. Note that even
though locals () and [’ eggs’] are passed in as arguments, the __import__ () function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not use its locals argument at all, and uses its globals only to

determine the package context of the import statement.)

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when using ‘import spam.ham.eggs’, the top-level
package spam must be placed in the importing namespace, but when using ‘from spam.ham import
eggs’, the spam.ham subpackage must be used to find the eggs variable. As a workaround for this
behavior, use getattr () to extract the desired components. For example, you could define the following
helper:

def my_import (name) :
mod = __import__ (name)
components = name.split (’.’)
for comp in components[l:]:
mod = getattr (mod, comp)
return mod

Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

../ref/ref.html

level specifies whether to use absolute or relative imports. The default is —1 which indicates both absolute
and relative imports will be attempted. O means only perform absolute imports. Positive values for level
indicate the number of parent directories to search relative to the directory of the module calling __ -
import__. Changed in version 2.5: The level parameter was added. Changed in version 2.5: Keyword
support for parameters was added.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true. Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. Equivalent to:

def any (iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring()
This abstract type is the superclass for st r and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance (obj, basestring)
is equivalentto isinstance (obj, (str, unicode)). New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True.

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function returns False.

callable (object)
Return true if the object argument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they havea ___call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord (). The argument must be in the range [0..255], inclusive; ValueError
will be raised if i is outside that range.

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

4 Chapter 2. Built-in Objects

The @classmethod form is a function decorator — see the description of function definitions in chapter 7
of the Python Reference Manual for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in chapter
3 of the Python Reference Manual (at the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

cmp (X, y)

Compare the two objects x and y and return an integer according to the outcome. The return value is negative
ifx < y,zeroif x == y and strictly positive if x > y.

compile (string, filename, kind [ﬂags[, dont,inherit]])

Compile the string into a code object. Code objects can be executed by an exec statement or evaluated by
a call to eval (). The filename argument should give the file from which the code was read; pass some
recognizable value if it wasn’t read from a file (<string>’ is commonly used). The kind argument spec-
ifies what kind of code must be compiled; it can be ’ exec’ if string consists of a sequence of statements,
"eval’ if it consists of a single expression, or ’ single’ if it consists of a single interactive statement
(in the latter case, expression statements that evaluate to something else than None will be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character (\n’), and the input must be terminated by at least one newline character. If line
endings are represented by / \r\n’, use the string replace () method to change them into " \n"’ .

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilation of string. If neither is present (or both are zero) the code is compiled
with those future statements that are in effect in the code that is calling compile. If the flags argument is
given and dont_inherit is not (or is zero) then the future statements specified by the flags argument are used
in addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument
is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Feature instance inthe __ future__ module.

complex ([real[, imag]])

Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int (), long () and float (). If both arguments are omitted, returns
073.

delattr (object, name)

This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalentto del x.foobar.

dict ([mapping—or—sequence])

Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value

2.1.

Built-in Functions 5

../ref/ref.html
../ref/types.html

associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to

{"one": 2, "two": 3}:
edict ({"one’: 2, ’"two’: 3})
edict ({"one’: 2, ’"two’: 3}.items())
edict ({"one’: 2, ’"two’: 3}.iteritems{())
edict (zip(("one’, 'two’), (2, 3)))
edict ([['two’, 3], ['one’, 211])

edict (one=2, two=3)

edict ([([’one’, 'two’][i-2], i) for i in (2, 3)1)

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])

Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the object’s __dict__ -
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir ()

["__builtins_ ', ’'__doc_ ', "__name_ ', ’'struct’]

>>> dir (struct)

["_doc__ ', "_name__', 'calcsize’, ’'error’, ’'pack’, ’unpack’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

divmod (q, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the resultis the same as (¢ // b, a % b). Forfloating point numbers
the resultis (¢, a % b), where g is usually math.floor (¢ / b) but may be 1 less than that. In any
caseq » b + a % bisveryclosetoa,ifa % bisnon-zeroithas the same signasb,and 0 <= abs (a
$ b) < abs(b).

Changed in version 2.3: Using divmod () with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The next () method of the iterator returned by enumerate () returns a tuple containing a
count (from zero) and the corresponding value obtained from iterating over iterable. enumerate () is
useful for obtaining an indexed series: (0, seq[0]), (1, seql[ll), (2, seql[2]),.... Newin
version 2.3.

eval (expression [globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a
dictionary.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local name space. If the globals dictionary
is present and lacks ’__builtins__’, the current globals are copied into globals before expression is parsed.
This means that expression normally has full access to the standard __builtin__ module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both

6 Chapter 2. Built-in Objects

dictionaries are omitted, the expression is executed in the environment where eval is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval ('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. The code object must have been compiled passing ' eval’
as the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile().

execfile (filename [, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using the globals and locals dictionaries as global and local
namespace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was
required to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where execfile () is called. The
return value is None.

Warning: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of
the code on locals after function execfile () returns. execfile () cannot be used reliably to modify
a function’s locals.

file (ﬁlename[, mode [bufsize]])
Constructor function for the £ile type, described further in section 3.9, “File Objects”. The constructor’s
arguments are the same as those of the open () built-in function described below.

When opening a file, it’s preferable to use open () instead of invoking this constructor directly. £ile is
more suited to type testing (for example, writing ‘isinstance (£, file)’).

New in version 2.2.

filter (function, list)
Construct a list from those elements of list for which function returns true. list may be either a sequence,
a container which supports iteration, or an iterator, If /ist is a string or a tuple, the result also has that type;
otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements of list
that are false are removed.

Note that filter (function, list) is equivalent to [item for item in [list if
function (item)] if function is not None and [item for item in l[list if item] if
function is None.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a
plain or long integer or a floating point number, and a floating point number with the same value (within
Python’s floating point precision) is returned. If no argument is given, returns 0. 0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

frozenset ([iterable])
Return a frozenset object whose elements are taken from iterable. Frozensets are sets that have no up-
date methods but can be hashed and used as members of other sets or as dictionary keys. The elements

21t is used relatively rarely so does not warrant being made into a statement.

2.1. Built-in Functions 7

bltin-file-objects.html

of a frozenset must be immutable themselves. To represent sets of sets, the inner sets should also be
frozenset objects. If iterable is not specified, returns a new empty set, frozenset ([]). New
in version 2.4.

getattr (object, name [, default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent to eval (raw_input (prompt)). Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxErroxr will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int ([x[, mdix]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The radix parameter
gives the base for the conversion and may be any integer in the range [2, 36], or zero. If radix is zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and x is not a string, TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, returns 0.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect)
subclass thereof. Also return true if classinfo is a type object and object is an object of that type. If object

8 Chapter 2. Built-in Objects

is not a class instance or an object of the given type, the function always returns false. If classinfo is neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted). If classinfo is not a class, type, or tuple of classes,
types, and such tuples, a TypeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfo)

Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (0[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, o must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the ___getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then o must be a callable object. The iterator created in
this case will call o with no arguments for each call to its next () method; if the value returned is equal to
sentinel, StopIteration will be raised, otherwise the value will be returned. New in version 2.2.

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequence])

Return a list whose items are the same and in the same order as sequence’s items. sequence may be either
a sequence, a container that supports iteration, or an iterator object. If sequence is already a list, a copy is
made and returned, similar to sequence [: 1. For instance, 1ist (' abc’) returns ["a’, 'b’, ’'c’]
and 1ist ((1, 2, 3)) returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

locals ()

Update and return a dictionary representing the current local symbol table. Warning: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long([x[, mdix]])

Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace. The radix argument is interpreted in the same
way as for int (), and may only be given when x is a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given, returns 0L.

map (function, list, ...)

Apply function to every item of list and return a list of the results. If additional list arguments are passed,
function must take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended with None items. If function is None, the identity function
is assumed; if there are multiple list arguments, map () returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). The list arguments may be any kind of
sequence; the result is always a list.

max (s[, args...] [key])

With a single argument s, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().
The key argument, if supplied, must be in keyword form (for example, ‘max (a, b, c, key=func)’).
Changed in version 2.5: Added support for the optional key argument.

min (s[, args...] [key])

With a single argument s, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().

2.1.

Built-in Functions 9

The key argument, if supplied, must be in keyword form (for example, ‘min (a, b, c, key=£func)’).
Changed in version 2.5: Added support for the optional key argument.

object ()
Return a new featureless object. object is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal.

open (ﬁlename[, mode [bufsize]])
Open a file, returning an object of the £ile type described in section 3.9, “File Objects”. If the file cannot
be opened, IOError is raised. When opening a file, it’s preferable to use open () instead of invoking the
file constructor directly.

The first two arguments are the same as for stdio’s fopen () : filename is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are ’ r’ for reading, ’ w’ for writing (truncating the file if it
already exists), and ” a’ for appending (which on some UNIX systems means that all writes append to the
end of the file regardless of the current seek position). If mode is omitted, it defaults to * r’ . When opening
a binary file, you should append " b’ to the mode value to open the file in binary mode, which will improve
portability. (Appending ’ b’ is useful even on systems that don’t treat binary and text files differently, where
it serves as documentation.) See below for more possible values of mode.

The optional bufsize argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line
buffered, any other positive value means use a buffer of (approximately) that size. A negative bufsize means
to use the system default, which is usually line buffered for tty devices and fully buffered for other files. If
omitted, the system default is used.?

Modes ' r+’, "w+’ and ’ a+’ open the file for updating (note that ’ w+’ truncates the file). Append ' b’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files; on
systems that don’t have this distinction, adding the * b’ has no effect.

In addition to the standard fopen () values mode may be ' U’ or ' rU’. Python is usually built with
universal newline support; supplying ’ U’ opens the file as a text file, but lines may be terminated by any of
the following: the UNIX end-of-line convention ” \n’, the Macintosh convention ’ \r’, or the Windows
convention ’ \r\n’. All of these external representations are seen as ' \n’ by the Python program. If
Python is built without universal newline support a mode with * U’ is the same as normal text mode. Note
that file objects so opened also have an attribute called newlines which has a value of None (if no
newlines have yet been seen), " \n’, " \r’, " \r\n’, or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping ' U’ , begins with " r’, "w’ or " a’.

Changed in version 2.5: Restriction on first letter of mode string introduced.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (”a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for
8-bit strings and of unichr () for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, and a TypeError will be raised.

pow (x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, y) % z). The two-argument form pow (x, y) is equivalent to using the power operator: xx xy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)

3Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the buffer size is not
done using a method that calls setvbuf (), because that may dump core when called after any I/O has been performed, and there’s no
reliable way to determine whether this is the case.

10 Chapter 2. Built-in Objects

bltin-file-objects.html

unless the second argument is negative; in that case, all arguments are converted to float and a float result
is delivered. For example, 102 returns 100, but 10 «—2 returns 0. 01. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted.
If z is present, x and y must be of integer types, and y must be non-negative. (This restriction was added
in Python 2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results
depending on floating-point rounding accidents.)

property ([fget[, fset[, fdel [doc]]]])

Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def _ _init__ (self): self.___x = None
def getx(self): return self._x
def setx(self, value): self._x = value
def delx(self): del self._x
x = property(getx, setx, delx, "I'm the ’"x’ property.")

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot (object) :
def _ _init__ (self):
self._voltage = 100000

@property

def voltage (self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

New in version 2.2. Changed in version 2.5: Use fget’s docstring if no doc given.

range ([start,] stop[, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in for
loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step,
start + 2 x step, ...]. If step is positive, the last element is the largest start + i » step less than
stop; if step is negative, the last element is the smallest start + i = step greater than sfop. step must not
be zero (or else ValueError is raised). Example:

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range (1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(o, -1, -2, -3, -4, -5, -0, -7, -8, -9]
>>> range (0)

>>> range (1, 0)

raw_input ([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The function

2.1.

Built-in Functions 11

then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF
isread, EOFError is raised. Example:

>>> s = raw_input ('--> ")
——> Monty Python’s Flying Circus
>>> 5

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, sequence [initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce
the sequence to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 51)
calculates ((((1+2)+3)+4) +5). The left argument, x, is the accumulated value and the right argument,
v, is the update value from the sequence. If the optional initializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the sequence is empty. If initializer is not
given and sequence contains only one item, the first item is returned.

reload (module)

Reload a previously imported module. The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as the module argument).

When reload (module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary. The init function of extension modules
is not called a second time.

e As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

eThe names in the module namespace are updated to point to any new or changed objects.

oOther references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the
module you must first import it again (this will bind the name to the partially initialized module object)
before you can reload () it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys,__main__and __builtin__. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload () for
the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to use import and qualified names (module.name) instead.

12

Chapter 2. Built-in Objects

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (object)

Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed to eval ().

reversed (seq)

Return a reverse iterator. seq must be an object which supports the sequence protocol (the __len__() method
and the __getitem__ () method with integer arguments starting at 0). New in version 2.4.

round (x[, n])

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minus n; if two multiples are equally close, rounding is done away from 0 (so. for example, round (0.5)
is 1.0 and round (-0.5) is —=1.0).

set ([iterable])

Return a set whose elements are taken from iterable. The elements must be immutable. To represent sets
of sets, the inner sets should be frozenset objects. If iterable is not specified, returns a new empty set,
set ([]). New in version 2.4.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar =
123.

slice ([start,] stop[, step])

Return a slice object representing the set of indices specified by range (start, stop, step). The start and
step arguments default to None. Slice objects have read-only data attributes start, stop and step which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: ‘a [start:stop:step]’ or ‘a[start:stop, 1]’

sorted (iterable[, cmp [key[, reverse]]])

Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort ()
method (described in section 3.6.4).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a
negative, zero or positive number depending on whether the first argument is considered smaller than, equal
to, or larger than the second argument: ‘cmp=lambda x,y: cmp(x.lower (), y.lower())’

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower’

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch each
element only once.

New in version 2.4.

staticmethod (function)

Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

2.1.

Built-in Functions 13

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in chapter
7 of the Python Reference Manual for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in chapter
3 of the Python Reference Manual (at the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

str([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference with repr (object) is that str (object) does not always attempt to return a string
that is acceptable to eval (); its goal is to return a printable string. If no argument is given, returns the
empty string, ’ .

sum (sequence [, start])

Sums start and the items of a sequence, from left to right, and returns the total. start defaults to 0. The se-
quence’s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by calling * 7 . join (sequence) . Note that sum (range (n) , m) is equivalent to
reduce (operator.add, range (n), m) New in version 2.3.

super (fype [object—or—type])

Return the superclass of type. If the second argument is omitted the super object returned is unbound. If the
second argument is an object, isinstance (0bj, type) must be true. If the second argument is a type,
issubclass (fype2, type) must be true. super () only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super (C, self) .meth(arg)

Note that super is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super (C, self).__getitem__ (name)’. Accordingly, super is undefined for implicit lookups
using statements or operators such as ‘super (C, self) [name]’. New in version 2.2.

tuple ([sequence])

Return a tuple whose items are the same and in the same order as sequence’s items. sequence may be
a sequence, a container that supports iteration, or an iterator object. If sequence is already a tuple, it is
returned unchanged. For instance, tuple (' abc’) returns (‘a’, 'b’, ’c’) and tuple([1, 2,
3]1) returns (1, 2, 3).Ifnoargument is given, returns a new empty tuple, ().

type (object)

Return the type of an object. The return value is a type object. The isinstance () built-in function is
recommended for testing the type of an object.

With three arguments, t ype functions as a constructor as detailed below.

type (name, bases, dict)

Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases__ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict__ attribute. For example, the following two statements create identical type
objects:

14

Chapter 2. Built-in Objects

../ref/function.html
../ref/types.html

>>> class X (object) :
a=1

>>> X = type(’X’, (object,), dict(a=1))
New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u’ a’. This is the inverse of ord () for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. New in version 2.0.

unicode ([object[, encoding [errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of
an encoding; if the encoding is not known, LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is
"strict’ (the default),a ValueError is raised on errors, while a value of / ignore’ causes errors to
be silently ignored, and a value of replace’ causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encoding in ’ strict’ mode.

New in version 2.0. Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has a __dict___ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefined.*

xrange ([start,] stop[, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage of xrange () over range () is minimal (since xrange () still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

Note: xrange () is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs (’short” Python integers),
and also requires that the number of elements fit in a native C long.

zip ([iterable,])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argu-
ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same length, zip () is similar to map ()
with an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list. New in version 2.0.

Changed in version 2.4: Formerly, zip () required at least one argument and zip () raised a TypeError
instead of returning an empty list.

“In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

2.1. Built-in Functions 15

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, args [, keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or a class
object) and the args argument must be a sequence. The function is called with args as the argument list; the
number of arguments is the length of the tuple. If the optional keywords argument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply () is different from just calling function (args) , since in that case there is always exactly
one argument. The use of apply () is equivalent to function («args, *~keywords). Use of apply () is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.3. Use the extended call syntax instead, as described above.

buffer (object[, oﬁset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which references the object argument. The buffer object will
be a slice from the beginning of object (or from the specified offser). The slice will extend to the end of
object (or will have a length given by the size argument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return value of intern () around to benefit from it.

2.3 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise a DeprecationWarning in Python 2.5 and newer. In future versions, support for string exceptions will
be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, in a t ry statement with an except clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value

16 Chapter 2. Built-in Objects

is the second argument to the raise statement. For string exceptions, the associated value itself will be stored
in the variable named as the second argument of the except clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard root class BaseException,
the associated value is present as the exception instance’s args attribute. If there is a single argument (as is
preferred), it is bound to the message attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception class and not BaseException. More information on defining
exceptions is available in the Python Tutorial under the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exception BaseException

The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that use Exception). If str () or unicode () is called on an instance of this class, the representation
of the argument(s) to the instance are returned or the emptry string when there were no arguments. If only
a single argument is passed in, it is stored in the message attribute. If more than one argument is passed
in, message is set to the empty string. These semantics are meant to reflect the fact that message is to
store a text message explaining why the exception had been raised. If more data needs to be attached to the
exception, attach it through arbitrary attributes on the instance. All arguments are also stored in args as a
tuple, but it will eventually be deprecated and thus its use is discouraged. New in version 2.5.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class. Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except StopIteration, GeneratorExit,
KeyboardInterrupt and SystemExit. StandardError itself is derived from Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError, KeyError. This can be raised directly by sys.setdefaultencoding ().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s e r rno attribute
(it is assumed to be an error number), and the second item is available on the st rerror attribute (it is
usually the associated error message). The tuple itself is also available on the args attribute. New in
version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the £ilename attribute. However, for backwards compatibility,
the args attribute contains only a 2-tuple of the first two constructor arguments.

The f£ilename attribute is None when this exception is created with other than 3 arguments. The errno
and strerror attributes are also None when the instance was created with other than 2 or 3 arguments.
In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at all, TypeError is raised.)

2.3. Built-in Exceptions 17

../tut/tut.html

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the read () and readline () methods of file objects return an empty
string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined in
the ‘pyconfig.h’ file.

exception GeneratorExit
Raise when a generator’s close () method is called. It directly inherits from Exception instead of
StandardError since it is technically not an error. New in version 2.5.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open () function or a method of a
file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or whena from ... import fails
to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Cont rol1-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in function input () or raw_input ()
is waiting for input also raise this exception. The exception inherits from BaseException so as to not
be accidentally caught by code that catches Exception and thus prevent the interpreter from exiting.
Changed in version 2.5: Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecture (C’s malloc () function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

18 Chapter 2. Built-in Objects

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy () function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see the weakref module. New in version 2.2: Previously known as the
weakref.ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator’s next () method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval () or input (), or when reading the initial script or
standard input (also interactively).

Instances of this class have attributes filename, 1ineno, offset and text for easier access to the
details. str () of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version; it is also printed at the start of an interactive Python session),
the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly from BaseException and not StandardError, since it
is not technically an error.

Acallto sys.exit () istranslated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of StandardError or Exception so thatitis
not accidentally caught by code that catches Exception. This allows the exception to properly propagate
up and cause the interpreter to exit. Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError. New
in version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

2.3. Built-in Exceptions 19

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New
in version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. The winerror and strerror values are created from the return values of the
GetLastError () and FormatMessage () functions from the Windows Platform API. The errno
value maps the winerror value to corresponding errno.h values. This is a subclass of OSError.
New in version 2.0. Changed in version 2.5: Previous versions put the Get LastError () codes into
errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

The class hierarchy for built-in exceptions is:

_hierarchy.txt

2.4 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the bool type. New in version 2.3.

20 Chapter 2. Built-in Objects

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq___ (), __1t__ (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

2.4. Built-in Constants 21

22

CHAPTER
THREE

Built-in Types

The following sections describe the standard types that are built into the interpreter. Note: Historically (until
release 2.2), Python’s built-in types have differed from user-defined types because it was not possible to use the
built-in types as the basis for object-oriented inheritance. This limitation does not exist any longer.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the repr () function or the slightly different str () function).
The latter function is implicitly used when an object is written by the print statement. (Information on the
print statement and other language statements can be found in the Python Reference Manual and the Python
Tutorial.)

3.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

e zero of any numeric type, for example, 0, 0L, 0.0, 07.
e any empty sequence, for example, * 7, (), [].

e any empty mapping, for example, { }.

e instances of user-defined classes, if the class defines a _ _nonzero_ () or __len__ () method, when
that method returns the integer zero or bool value False.!

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True
for true, unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

3.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X or y if x is false, then y, else x @))

x and y | if xis false, then x, else y (D
not x if x is false, then True, else False 2)

! Additional information on these special methods may be found in the Python Reference Manual.

23

../ref/print.html
../ref/ref.html
../tut/tut.html
../tut/tut.html
../ref/ref.html

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
anda == not b is asyntax error.

3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox <
y and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < yis
found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

I= not equal (1)

<> not equal @))]

is object identity

is not | negated object identity

Notes:
(1) <> and != are alternate spellings for the same operator. ! = is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and
>= operators will raise a TypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer to
the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence types
(below).

3.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are implemented
using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum
plain integer value for the current platform, the minimum value is —sys.maxint - 1). Long integers have
unlimited precision. Floating point numbers are implemented using double in C. All bets on their precision are
off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract
these parts from a complex number z, use z. real and z. imag.

24 Chapter 3. Built-in Types

../ref/customization.html

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer. Integer literals with an ‘L’ or ‘1’ suffix yield
long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appending ‘3’ or ‘J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rule.? The constructors int (), long (), float (), and complex () can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum of x and y
by y difference of x and y
X *xy product of x and y
x/y quotient of x and y (D
x //y (floored) quotient of x and y (@)
X%y remainder of x / y (@)
-X x negated
+x x unchanged
abs (x) absolute value or magnitude of x
int (x) x converted to integer 2)
long (x) x converted to long integer 2)
float (x) x converted to floating point
complex (re,im) | acomplex number with real part re, imaginary part im. im defaults to zero.
c.conjugate () | conjugate of the complex number ¢
divmod (x, y) the pair (x // y, x % y) 3@
pow (x, y) X to the power y
X *x%x y X to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor () and ceil () in the math module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, and divmod () .

Deprecated since release 2.3. Instead convert to float using abs () if appropriate.

(5) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

3.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

2Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

3.4. Numeric Types — int, float, long, complex 25

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the

comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations (‘+’ and ‘-’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same

priority):
Operation | Result Notes
x|y bitwise or of x and y
x "y bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n | x shifted left by n bits D, 2)
x >> n | x shifted right by n bits D, 3
X the bits of x inverted
Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n) without overflow check.

(3) A right shift by # bits is equivalent to division by pow (2, n) without overflow check.

3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C APIL.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C APIL

next ()
Return the next item from the container. If there are no further items, raise the StopIterat ion exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __—
iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__ () and next () methods.

26 Chapter 3. Built-in Types

3.6 Sequence Types — str, unicode, list, tuple, buffer,
xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotes: ’'xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceding ‘u’ character: u’ abc’, u"def". Lists are constructed with square brackets, separating
items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a, b,
cor (). A single item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer (). They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
the xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in,min ()
or max () on them is inefficient.

Most sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+° and ‘»’ operations have the same priority as the corresponding numeric
operations.’

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s True if an item of s is equal to x, else False @))
x not in s | False if anitem of s is equal to x, else True @))
s+t the concatenation of s and ¢ (6)
s = n, n = s | nshallow copies of s concatenated 2)
sli] i’th item of s, origin O 3)
s[i:j] slice of s from i to j 3), @
sli:j:k] slice of s from i to j with step k 3), (5)
len (s) length of s
min (s) smallest item of s
max (s) largest item of s

Notes:

(1) When s is a string or Unicode string object the in and not in operations act like a substring test. In Python
versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any
length.

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] = 3
>>> lists

ey, 01, 111
>>> lists[0].append(3)
>>> lists

(e31, 31, 311

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[1] = 3 are (pointers to) this single empty list. Modifying any of the elements of 11ist s modifies this
single list. You can create a list of different lists this way:

3They must have since the parser can’t tell the type of the operands.

3.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 27

../ref/strings.html
../ref/strings.html

>>> lists = [[] for i in range(3)]
>>> 1lists[0].append(3)

>>> lists[1l].append(5)

>>> lists[2].append(7)

>>> lists

(e31, 51, [711]

(3) If i orj is negative, the index is relative to the end of the string: len (s) + ior len (s) + jis substituted.
But note that —0 is still O.

(4) The slice of s from i to j is defined as the sequence of items with index k such thati <= k < j. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If
i is greater than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + nxk such that
0<n< % In other words, the indices are 1, 1+k, 1+2*k, 1+3+k and so on, stopping when j is reached
(but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None, they
become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated
like 1.

(6) If s and 7 are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the form s=s+¢ or s+=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For perfor-
mance sensitive code, it is preferable to use the str.join () method which assures consistent linear
concatenation performance across versions and implementations. Changed in version 2.4: Formerly, string
concatenation never occurred in-place.

3.6.1 String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize ()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width [ﬁllchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count (sub[, start[, end]])
Return the number of occurrences of substring sub in string S [start : end]. Optional arguments start and
end are interpreted as in slice notation.

decode ([encoding [, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is * strict’, meaning that
encoding errors raise UnicodeError. Other possible values are ignore’, ' replace’ and any other
name registered via codecs.register_error, see section 4.8.1. New in version 2.2. Changed in
version 2.3: Support for other error handling schemes added.

encode ([encoding [,errors]])

Return an encoded version of the string. Default encoding is the current default string encoding. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,
meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, 'xmlcharrefreplace’, 'backslashreplace’ and any other name registered via
codecs.register_error, see section 4.8.1. For a list of possible encodings, see section 4.8.3.
New in version 2.0. Changed in version 2.3: Support for 'xmlcharrefreplace’ and
"backslashreplace’ and other error handling schemes added.

28 Chapter 3. Built-in Types

endswith (suﬁix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position.

Changed in version 2.5: Accept tuples as suffix.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not given, a tab
size of 8 characters is assumed.

find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the range
[start, end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

index (sub[, start[, end]])
Like £ind (), but raise ValueError when the substring is not found.

isalnum
Retuili true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle ()
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.
isupper ()

Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator between elements
is the string providing this method.

1just (width|, fillchar |)
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than 1en (s). Changed in version 2.4: Support
for the fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

3.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 29

1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious ".1lstrip()

" spacious !

>>> "www.example.com’ .lstrip (/' cmowz.”’)
"example.com’

Changed in version 2.2.2: Support for the chars argument.

partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings. New in version 2.5.

replace (0ld, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub [,start [,end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

rjust (width[, fillchar |)
Return the string right justified in a string of length widrh. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than 1len (s). Changed in version 2.4:
Support for the fillchar argument.

rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep [,maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.
Except for splitting from the right, rsplit () behaves like split () which is described in detail below.
New in version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

split ([sep [,maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most
maxsplit splits are done. (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified,
then there is no limit on the number of splits (all possible splits are made). Consecutive delimiters are not
grouped together and are deemed to delimit empty strings (for example, ‘1, ,2’ .split (’,’)’ returns
‘{r1r, *7, '2'1’). The sep argument may consist of multiple characters (for example, "1, 2,
37 .split (", ")’ returns ‘["1’, ’'2', '3"1’°). Splitting an empty string with a specified separator

)

returns ‘[’ 7] .

30 Chapter 3. Built-in Types

If sep is not specified or is None, a different splitting algorithm is applied. First, whitespace characters
(spaces, tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by
arbitrary length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single
delimiter (/1 2 3’ .split ()’ returns ‘[’1’, ’"2’, ’3’7’). Splitting an empty string or a string
consisting of just whitespace returns an empty list.

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of suffixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position.

Changed in version 2.5: Accept tuples as prefix.

strip ([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " .strip()

" spacious’

>>> 'www.example.com’ .strip (’/ cmowz.”)
"example’

Changed in version 2.2.2: Support for the chars argument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, the translate () method does not accept the optional deletechars argument. In-
stead, it returns a copy of the s where all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None. Unmapped
characters are left untouched. Characters mapped to None are deleted. Note, a more flexible approach is
to create a custom character mapping codec using the codecs module (see encodings.cpl251 for an
example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

z£ill (width)
Return the numeric string left filled with zeros in a string of length width. The original string is returned if
width is less than 1en (s). New in version 2.2.2.

3.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format %values (where format is a string or Unicode object),

3.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 31

% conversion specifications in format are replaced with zero or more elements of values. The effect is similar to
the using sprintf () in the C language. If format is a Unicode object, or if any of the objects being converted
using the $s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object.* Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:
1. The ‘%’ character, which marks the start of the specifier.
2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ‘»’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ‘.’ (dot) followed by the precision. If specified as ‘x’ (an asterisk), the
actual width is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the ‘%’ character. The mapping key
selects the value to be formatted from the mapping. For example:

o o

>>> print ’%(language)s has % (#)03d quote types.’ % \
{’language’ : "Python", "#": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘4> | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides the ‘0’ conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+” | A sign character (‘+° or ‘=) will precede the conversion (overrides a ”space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python.

The conversion types are:

4To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

32 Chapter 3. Built-in Types

Conversion | Meaning

el Signed integer decimal.
‘1’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘x’ Unsigned hexadecimal (lowercase).
X’ Unsigned hexadecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘B’ Floating point exponential format (uppercase).
‘£ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Floating point format. Uses exponential format if exponent is greater than -4 or less than precision, decimal format
‘G’ Floating point format. Uses exponential format if exponent is greater than -4 or less than precision, decimal format
‘e’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr ()).
‘s’ String (converts any python object using str ()).
‘%’ No argument is converted, results in a ‘%’ character in the result.

Notes:

(1) The alternate form causes a leading zero (‘0’) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leading * Ox’ or * 0X’ (depending on whether the ‘x’ or ‘X’ format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to
6.

(5) The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

(6) If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

Since Python strings have an explicit length, $s conversions do not assume that / \ 0" is the end of the string.

For safety reasons, floating point precisions are clipped to 50; $ £ conversions for numbers whose absolute value
is over 1e25 are replaced by $g conversions.” All other errors raise exceptions.

Additional string operations are defined in standard modules st ring and re.

3.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange
type is that an xrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

SThese numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

3.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 33

3.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
quence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (where x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
slizj] =t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:j] same as s[i:j] = []
slizj:k] =t the elements of s [i:j: k] are replaced by those of ¢ Q)
del s[i:j:k] removes the elements of s [i:j: k] from the list
s.append (x) same as s[len(s) :len(s)] = [x] 2)
s.extend (x) sameas s[len(s) :len(s)] = x 3)
s.count (x) return number of i’s for which s [i] == x
s.index (x[, i[, j]]) return smallest k such that s (k] == xandi <= k < j “)
s.insert (i, x) same as s[i:i] = [Xx] 5)
s.pop([i]) sameasx = s[i]; del s[i]; return x (6)
s.remove (x) same as del s[s.index (x)] 4)
s.reverse () reverses the items of s in place @)
s.sort ([cmp[, key[, reverse]]]) sort the items of s in place (), (8), (9), (10)

Notes:

(1) ¢ must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) x can be any iterable object.

(4) Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index () method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments
for specifying start and stop positions.

(5) When a negative index is passed as the first parameter to the insert () method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) The pop () method is only supported by the list and array types. The optional argument i defaults to -1, so
that by default the last item is removed and returned.

(7) The sort () and reverse () methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

(8) The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument: ‘cmp=lambda x,y: cmp(x.lower(), y.lower())’

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower’

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch each
element only once.

34 Chapter 3. Built-in Types

Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.

Changed in version 2.4: Support for key and reverse was added.

(9) Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined.
The C implementation of Python 2.3 and newer makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

3.7 Set Types — set, frozenset

A set object is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. New in version 2.4.

Like other collections, sets support x in set, len (set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two builtin set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another
set.

Instances of set and frozenset provide the following operations:

Operation Equivalent | Result
len (s) cardinality of set s
x in s test x for membership in s
x not in s test x for non-membership in s
s.issubset (1) s <=t test whether every element in s is in ¢
s.issuperset (1) s >=t test whether every element in ¢ is in s
s.union () s—t new set with elements from both s and ¢
s.intersection () s&t new set with elements common to s and ¢
s.difference (1) s-t new set with elements in s but not in ¢
s.symmetric_difference (f) s™t new set with elements in either s or ¢ but not both
s.copy () new set with a shallow copy of s
Note, the non-operator versions of union (), intersection(), difference (), and symmetric_-

difference (), issubset (), and issuperset () methods will accept any iterable as an argument. In
contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone construc-
tions like set (" abc’) & ’cbs’ in favor of the more readable set (’ abc’) .intersection ('’ cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first
set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if
the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members.
‘set ("abc’) == frozenset ('abc’)’ returns True.

For example,

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or
a>b. Accordingly, sets do not implement the __cmp___ method.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is unde-
fined for lists of sets.

3.7. Set Types — set, frozenset 35

Set elements are like dictionary keys; they need to define both __hash___and __eq___ methods.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
‘frozenset ("ab’) | set ('bc’)’ returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

Operation Equivalent | Result
s.update (1) s—=1 update set s, adding elements from ¢
s.intersection_update (¢) s &=t update set s, keeping only elements found in both s and ¢
s.difference_update (1) s-=t update set s, removing elements found in ¢
s.symmetric_difference_update (f) s'=t update set s, keeping only elements found in either s or ¢ but not i
s.add (x) add element x to set s
s.remove (x) remove x from set s; raises KeyError if not present
s.discard (x) removes x from set s if present
s.pop () remove and return an arbitrary element from s; raises KeyError
s.clear () remove all elements from set s

Note, the non-operator versions of the update (), intersection_update (),difference_update (),
and symmetric_difference_update () methods will accept any iterable as an argument.

The design of the set types was based on lessons learned from the set s module.
See Also:

Comparison to the built-in set types
Differences between the set s module and the built-in set types.

3.8 Mapping Types — dict

A mapping object maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (such as 1 and 1. 0) then they can be used interchangeably to index the same dictionary
entry.

Dictionaries are created by placing a comma-separated list of key: value pairs within braces, for example:
{’ jack’ : 4098, ’sjoerd’: 4127} or {4098 "jack’, 4127: "sjoerd’ }.

The following operations are defined on mappings (where a and b are mappings, & is a key, and v and x are arbitrary
objects):

36 Chapter 3. Built-in Types

comparison-to-builtin-set.html

Operation Result Notes

len (a) the number of items in a
alk] the item of a with key k (1), (10)
alk] = v setalk] tov
del alk] remove a [k] from a (D
a.clear () remove all items from a
a.copy () a (shallow) copy of a
k in a True if a has akey k, else False 2)
k not in a Equivalent to not kina 2)
a.has_key (k) Equivalent to k in a, use that form in new code
a.items () a copy of a’s list of (key, value) pairs 3)
a.keys () a copy of a’s list of keys 3)
a.update ([b]) updates (and overwrites) key/value pairs from b)
a.fromkeys (seq[, value]) | Creates a new dictionary with keys from seq and values set to value @)
a.values () a copy of a’s list of values 3)
a.get (k[, x] alk] ifk in a,elsex)
a.setdefault (k[, x]) alk] ifk in a, else x (also setting it) (®)]
a.pop(k[, x]) alk] ifk in a, else x (and remove k) ®)
a.popitem/() remove and return an arbitrary (key, value) pair (6)
a.iteritems () return an iterator over (key, value) pairs 2), (3)
a.iterkeys|() return an iterator over the mapping’s keys 2),(3)
a.itervalues () return an iterator over the mapping’s values), (3)

Notes:

(1) Raises a KeyError exception if k is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletions. If items (), keys (), values (),
iteritems (), iterkeys (), and itervalues () are called with no intervening modifications to the
dictionary, the lists will directly correspond. This allows the creation of (value, key) pairs using zip ():
‘pairs = zip(a.values (), a.keys())’. The same relationship holds for the iterkeys ()
and itervalues () methods: ‘pairs = zip(a.itervalues (), a.iterkeys())’ provides
the same value for pairs. Another way to create the same listis ‘pairs = [(v, k) for (k, v)

b}

in a.iteritems ()]’.

(4) Never raises an exception if k is not in the map, instead it returns x. x is optional; when x is not provided and
k is not in the map, None is returned.

(5) setdefault () islike get (), except that if k is missing, x is both returned and inserted into the dictionary
as the value of k. x defaults to None.

(6) popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictio-
nary is empty, calling popitem () raises a KeyError.

(7) fromkeys () is aclass method that returns a new dictionary. value defaults to None. New in version 2.3.
(8) pop () raises a KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update () accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable
of length two). If keyword arguments are specified, the mapping is then is updated with those key/value
pairs: ‘d.update (red=1, blue=2)’. Changed in version 2.4: Allowed the argument to be an iterable
of key/value pairs and allowed keyword arguments.

(10) If a subclass of dict defines a method __missing__, if the key k is not present, the a[k] operation calls
that method with the key k as argument. The a[k] operation then returns or raises whatever is returned
or raised by the __missing__ (k) call if the key is not present. No other operations or methods invoke

_ missing_ (). If _ missing__ is not defined, KeyError is raised. _ missing__ must be a
method; it cannot be an instance variable. For an example, see collections.defaultdict. New in
version 2.5.

3.8. Mapping Types — dict 37

3.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in constructor £ile ()
described in section 2.1, “Built-in Functions.”® File objects are also returned by some other built-in functions and
methods, such as os .popen () and os . fdopen () and the makefile () method of socket objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations
where the operation is not defined for some reason, like seek () on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise a ValueError after the file has been closed. Calling close () more than once is
allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For
example, the following code will automatically close £ when the with block is exited:

from ___future__ import with_statement

with open("hello.txt") as f:
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close ()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If
your code is intended to work with any file-like object, you can use the closing () function in the
contextlib module instead of using the object directly. See section 26.5 for details.

flush ()
Flush the internal buffer, like stdio’s £f1ush (). This may be a no-op on some file-like objects.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as the fcnt 1 module or os.read () and friends. Note: File-like objects which do not have a real file
descriptor should not provide this method!

isatty ()
Return True if the file is connected to a tty(-like) device, else False. Note: If a file-like object is not
associated with a real file, this method should not be implemented.

next ()

A file object is its own iterator, for example iter (f) returns f (unless f is closed). When a file is used
as an iterator, typically in a for loop (for example, for line in f: print line), the next ()
method is called repeatedly. This method returns the next input line, or raises StopIteration when EOF
is hit. In order to make a for loop the most efficient way of looping over the lines of a file (a very common
operation), the next () method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combining next () with other file methods (like readline ()) does not work right. However,
using seek () to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

6file () is new in Python 2.2. The older built-in open () is an alias for file ().

38 Chapter 3. Built-in Types

read ([size])

Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size
argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object.
An empty string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after an EOF is hit.) Note that this method may call the underlying C function
fread () more than once in an effort to acquire as close to size bytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, even if no size parameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line).” If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
only when EOF is encountered immediately. Note: Unlike stdio’s fgets (), the returned string contains
null characters (* \ 0) if they occurred in the input.

readlines ([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thing as iter (£). New in version 2.1. Deprecated since release 2.3. Use
‘for line in file’ instead.

seek (oﬁ‘set[, whence])

Set the file’s current position, like stdio’s fseek (). The whence argument is optional and defaults to 0
(absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (mode * a’ or ' a+'),
any seek () operations will be undone at the next write. If the file is only opened for writing in append
mode (mode ’ a’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (mode ’ a+’). If the file is opened in text mode (without ’ b’), only offsets returned
by tell () are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, like stdio’s ftell ().

Note: On Windows, tell () can return illegal values (after an fgets ()) when reading files with UNIX-
style line-endings. Use binary mode (’ rb’) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, many UNIX variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until the £1ush () or close () method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to match readlines ();writelines ()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as file. readline (), and iteration ends
when the readline () method returns an empty string.

"The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

3.9. File Objects 39

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attribute; the close () method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may also be None,
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The I/0O mode for the file. If the file was created using the open () built-in function, this will be the value
of the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created using open (), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<. . .>’. This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the --with-universal-newlines option to configure (the default) this read-only
attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are * \r’, *\n’, " \r\n’, None (unknown,
no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline
conventions were encountered. For files not opened in universal newline read mode the value of this attribute
will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a writable softspace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writable soft space attribute. Note: This attribute is not used to control the print statement, but to
allow the implementation of print to keep track of its internal state.

3.10 Context Manager Types

New in version 2.5.

Python’s with statement supports the concept of a runtime context defined by a context manager. This is im-
plemented using two separate methods that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context manager
object to define a runtime context:

__enter_ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.Context.get_manager (). These managers set the active decimal context to a copy of
the original decimal context and then return the copy. This allows changes to be made to the current deci-

40 Chapter 3. Built-in Types

mal context in the body of the with statement without affecting code outside the with statement.

__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any expection that occurred should be
suppressed. If an exception occurred while executing the body of the with statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and
continue execution with the statement immediately following the with statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception.
This allows context management code (such as contextlib.nested) to easily detect whether or not an
__exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol.

Python’s generators and the contextlib.contextfactory decorator provide a convenient way to imple-
ment these protocols. If a generator function is decorated with the contextlib.context factory decorator,
it will return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

3.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

3.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a
name defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not,
strictly speaking, an operation on a module object; import foo does not require a module object named foo to
exist, rather it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment tothe ___dict_-
__ attribute is not possible (you can write m.__dict__ ["a’] = 1, which defines m.a to be 1, but you can’t
write m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. Ifloaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/python2.5/0os.pyc’>.

3.11.2 Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

3.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list) .

3.11. Other Built-in Types 41

../ref/ref.html

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

See the Python Reference Manual for more information.

3.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m . im_self is the object on
which the method operates, and m. im_func is the function implementing the method. Calling m (arg-1, arg-
2, ..., arg-n) is completely equivalent to calling m.im_func (m.im_self, arg-1, arg-2, ..., arg-
n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an
instance or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an

explicit self object must be passed as the first argument. In this case, self must be an instance of the unbound
method’s class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In
order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self) :
pass

c =C(
c.method.im_func.whoami = 'my name is c’

See the Python Reference Manual for more information.

3.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile () function and can be extracted from function
objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement or the
built-in eval () function.

See the Python Reference Manual for more information.

3.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type ().
There are no special operations on types. The standard module types defines names for all standard built-in

types.
Types are written like this: <type ’int’>.

3.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

42 Chapter 3. Built-in Types

../ref/ref.html
../ref/ref.html
../ref/ref.html

It is written as None.

3.11.8 The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special operations.
There is exactly one ellipsis object, named E11ipsis (a built-in name).

Itis writtenas E11ipsis.

3.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be
used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

3.11.10 Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects, and
slice objects.

3.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the dir () built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

_ _methods_
Deprecated since release 2.2. Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

__ _members_
Deprecated since release 2.2. Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

__class__
The class to which a class instance belongs.

_ _bases_
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name___
The name of the class or type.

3.12. Special Attributes 43

../ref/ref.html
../ref/ref.html

44

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
StringIO Read and write strings as if they were files.
cStringIO Faster version of St ringIO, but not subclassable.
textwrap Text wrapping and filling
encodings.utf-8-sig UTF-8 codec with BOM signature
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

fpformat General floating point formatting functions.

Information on the methods of string objects can be found in section 3.6.1, “String Methods.”

4.1 string— Common string operations

The string module contains a number of useful constants and classes, as well as some deprecated legacy
functions that are also available as methods on strings. See the module re for string functions based on regular
expressions.

4.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letters ' abcdefghijklmnopgrstuvwxyz’. This value is not locale-dependent and
will not change.

ascii_uppercase
The uppercase letters * ABCDEFGHIJKLMNOPQRSTUVWXYZ’ . This value is not locale-dependent and will
not change.

digits
The string 7 0123456789".

hexdigits
The string 0123456789%abcde fABCDEF' .

letters
The concatenation of the strings lowercase and uppercase described below. The specific value is

45

locale-dependent, and will be updated when locale.setlocale () is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string ' abcdefghijklmnopgrstuvwxyz’. Do not change its definition — the effect on the routines
upper () and swapcase () is undefined. The specific value is locale-dependent, and will be updated
when locale.setlocale () is called.

octdigits
The string ' 01234567

punctuation
String of ASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string * ABCDEFGHIJKLMNOPQRSTUVWXYZ' . Do not change its definition — the effect on the routines
lower () and swapcase () is undefined. The specific value is locale-dependent, and will be updated
when locale.setlocale () is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on
the routines strip () and split () is undefined.

4.1.2 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal ‘%’-based substitu-
tions, Templates support ‘$’-based substitutions, using the following rules:

e ‘$$’ is an escape; it is replaced with a single ‘$°.

e ‘Sidentifier’ names a substitution placeholder matching a mapping key of “identifier”. By default,
”identifier” must spell a Python identifier. The first non-identifier character after the ‘$’ character terminates
this placeholder specification.

e ‘S{identifier}’ isequivalentto ‘Sidentifier’. Itis required when valid identifier characters fol-
low the placeholder but are not part of the placeholder, such as ”${noun}ification”.

Any other appearance of ‘$’ in the string will result in a ValueError being raised.
New in version 2.4.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping[, **kws])
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kws are given and there are duplicates, the
placeholders from kws take precedence.

safe_substitute (mapping[, **kws])
Like substitute (), except that if placeholders are missing from mapping and kws, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the ‘S’ will simply return ‘$’ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute () may be

46 Chapter 4. String Services

anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('’ $who likes S$what’)

>>> g.substitute (who=’'tim’, what=’'kung pao’)

"tim likes kung pao’

>>> d = dict (who="tim’)

>>> Template ('Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (' Swho likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’‘what’

>>> Template (' $Swho likes S$what’) .safe_substitute (d)
"tim likes S$what’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

e delimiter — This is the literal string describing a placeholder introducing delimiter. The default value ‘$’.
Note that this should not be a regular expression, as the implementation will call re.escape () on this
string as needed.

e idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces
will be added automatically as appropriate). The default value is the regular expression ‘[_a-z] [_—
a-z0-97«".

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

e escaped — This group matches the escape sequence, e.g. ‘$$’, in the default pattern.

e named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

4.1.3 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

4.1. string — Common string operations 47

capwords (s)
Split the argument into words using split (), capitalize each word using capitalize (), and join the
capitalized words using join (). Note that this replaces runs of whitespace characters by a single space,
and removes leading and trailing whitespace.

maketrans (from, to)
Return a translation table suitable for passing to translate () or regex.compile (), that will map
each character in from into the character at the same position in fo; from and to must have the same length.

Warning: Don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower () and upper ().

4.1.4 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see “String Methods”
(section 3.6.1) for more information on those. You should consider these functions as deprecated, although they
will not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since release 2.0. Use the f1oat () built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point
literal in Python, optionally preceded by a sign (‘+’ or ‘-’). Note that this behaves identical to the built-in
function float () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s[, base])

Deprecated since release 2.0. Use the int () built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits, optionally
preceded by a sign (‘+° or ‘=’). The base defaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sign): ‘Ox’ or ‘0X’ means 16, ‘0’ means 8,
anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted, though not required. This
behaves identically to the built-in function int () when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in function eval ().)

atol (s[, base])
Deprecated since release 2.0. Use the 1ong () built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘=’). The base argument has the same meaning as for atoi (). A trailing ‘1’ or
‘L’ is not allowed, except if the base is 0. Note that when invoked without base or with base set to 10, this
behaves identical to the built-in function 1ong () when passed a string.

capitalize (word)
Return a copy of word with only its first character capitalized.

expandtabs (s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t
understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s [start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

rfind (s, sub[, start[, end]])
Like £ind () but find the highest index.

index (s, sub[, start[, end]])
Like £ind () butraise ValueError when the substring is not found.

48 Chapter 4. String Services

rindex (s, sub[, start[, end]])
Like rfind () butraise ValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start: end] . Defaults for
start and end and interpretation of negative values are the same as for slices.

lower (s)
Return a copy of s, but with upper case letters converted to lower case.

split (s[, sep[, maxsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argument sep is present and not None, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argument maxsplit defaults to 0. If it is nonzero, at most maxsplit number
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at most maxsplit+1 elements).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing
one element which is an empty string.

rsplit (s[, sep[, maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting
list of words is the same as returned by split (), except when the optional third argument maxsplit is ex-
plicitly specified and nonzero. When maxsplit is nonzero, at most maxsplit number of splits — the rightmost
ones — occur, and the remainder of the string is returned as the first element of the list (thus, the list will
have at most maxsplit+1 elements). New in version 2.4.

splitfields (s[, sep[, maxsplit]])
This function behaves identically to split (). (In the past, split () was only used with one argument,
while splitfields () was only used with two arguments.)

join (words [sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that ‘string. join (string.split (s, sep), sep)’ equalss.

joinfields (words[, sep])
This function behaves identically to join () . (Inthe past, join () was only used with one argument, while
joinfields () was only used with two arguments.) Note that there is no joinfields () method on
string objects; use the join () method instead.

lstrip (s[, chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.3: The chars
parameter was added. The chars parameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.3: The chars parameter
was added. The chars parameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None,
whitespace characters are removed. If given and not None, chars must be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
The chars parameter was added. The chars parameter cannot be passed in earlier 2.2 versions.

swapcase (s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechars])

4.1. string — Common string operations 49

Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

1just (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at least width characters wide, created by padding the string s with spaces until the
given width on the right, left or both sides. The string is never truncated.

zf£ill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, new[, maxreplace])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte using the \number notation. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit strings. The re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special characters to
be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the
pattern string, because the regular expression must be ‘\\’, and each backslash must be expressed as ‘\\’ inside
a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in
any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string containing ‘\’ and ‘n’,
while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code
using this raw string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second edition of the book no
longer covers Python at all, but the first edition covered writing good regular expression patterns in great
detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string pg
will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and B;
or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

50 Chapter 4. String Services

http://www.python.org/doc/howto/

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so M ast)matches the string ’ 1ast’ . (In the rest of this section, we’ll write RE’sin this special style,,
usually without quotes, and strings to be matched * in single quotes’.)

Some characters, like ‘|’ or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

The special characters are:

¢.” (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been
specified, this matches any character including a newline.

¢*> (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each
newline.

¢$> Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode
also matches before a newline. 'f ooy matches both *foo’ and *foobar’, while the regular expression 'foo$)
matches only *foo’. More interestingly, searching for 'foo . $;in *fool\nfoo2\n’ matches *f002’ normally,
but *fool’ in MULTILINE mode.

‘x’ Causes the resulting RE to match O or more repetitions of the preceding RE, as many repetitions as are
possible. 'abx; will match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. 'ab+ will match ’a’ followed by
any non-zero number of ’b’s; it will not match just ’a’.

2’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. 'ab?; will match either ’a’ or *ab’.

*?,+?,?2? The ‘x’, “+’, and ‘?’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. »>is matched against / <H1>title</H1>", it will match the entire
string, and not just <H1>’. Adding ‘2’ after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using !. x ?)in the previous expression will
match only * <H1>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example, 'a { 6 }; will match exactly six ‘a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example, 'a {3, 5}, will match from 3 to 5 ‘a’ characters. Omitting m
specifies a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, 'a {4, } b
will match aaaab or a thousand ‘a’ characters followed by a b, but not aaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string ’ aaaaaa’, 'a{3, 5}, will match 5 ‘a’ characters, while 'a {3, 5} 2 will only match 3
characters.

‘\’ Either escapes special characters (permitting you to match characters like ‘+’, *2’, and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it’s highly recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them by a ‘~’. Special characters are not active inside
sets. For example, [akm$], will match any of the characters ‘a’, ‘k’, ‘m’, or ‘$’; '[a—z]; will match
any lowercase letter, and [a—zA-Z0-9] matches any letter or digit. Character classes such as \w or \'S
(defined below) are also acceptable inside a range. If you want to include a ‘]’ or a ‘-’ inside a set, precede
it with a backslash, or place it as the first character. The pattern '[]], will match ’], for example.

4.2. re — Regular expression operations 51

You can match the characters not within a range by complementing the set. This is indicated by including a
‘~7 as the first character of the set; elsewhere will simply match the character. For example, [“51;

Cn~o

will match any character except ‘5, and [~ ~ 1, will match any character except ‘~’.

C~o c~

‘|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by the |’ in this way. This can be used inside groups (see below)
as well. As the target string is scanned, REs separated by ‘|’ are tried from left to right. When one pattern
completely matches, that branch is accepted. This means that once A matches, B will not be tested further,
even if it would produce a longer overall match. In other words, the ‘|’ operator is never greedy. To match
aliteral |, use "\ |}, or enclose it inside a character class, asin [|]..

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \numben special sequence, described below. To match the literals ¢ (* or ¢)’, use N\ (j or
N)}, or enclose them inside a character class: '[(] [) 1.

(?...) This is an extension notation (a ‘2’ following a ‘ (’ is not meaningful otherwise). The first character
after the ‘2’ determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new group; '(?P<name> . . .)is the only exception to this rule. Following are the currently
supported extensions.

crs o« LIS B)

(?iLmsux) (One or more letters from the set ‘1i’, ‘L’°, ‘m’, ‘s’, ‘u’, ‘x’.) The group matches the empty string;
the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing a flag argument to the compile () function.

Note that the "(?x); flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
grouping g p g p
parentheses, but the substring matched by the group cannot be retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must
be defined only once within a regular expression. A symbolic group is also a numbered group, just as if
the group were not named. So the group named ’id’ in the example above can also be referenced as the
numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\wx), the group can be referenced by its name in
arguments to methods of match objects, such as m.group (' 1d’) orm.end (’ 1d’), and also by name
in pattern text (for example, '(?P=1d))) and replacement text (such as \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if . . . matches next, but doesn’t consume any of the string. This is called a lookahead as-
sertion. For example, Tsaac (?=Asimov),will match ’ Isaac ’ only if it’s followed by ’ Asimov’.

(?!'...) Matchesif ". .. doesn’t match next. This is a negative lookahead assertion. For example, Tsaac
(?!'Asimov)will match * Isaac ’ only if it’s not followed by ’ Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for . . ., that ends at the current
position. This is called a positive lookbehind assertion. "(?<=abc) def) will find a match in ‘abcdef’,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaning that 'abc or 'a | b are allowed, but 'a) and
'a {3, 4}, are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to use the search () function rather than
the match () function:

52 Chapter 4. String Services

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’abcdef’)
>>> m.group (0)
"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\w+’, ’spam-egg’)
>>> m.group (0)
’ egg’

(?<!...) Matches if the current position in the string is not preceded by a match for . . .). This is called a
negative lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(? (id/name) yes-pattern|no—pattern) Will try to match with 'yes-pattern if the group with
given id or name exists, and with no-pattern if it doesn’t. [|no-pattern is optional and can
be omitted. For example, (<) ? (\w+@\w+ (2 :\.\w+) +) (2 (1)>))is a poor email matching pat-
tern, which will match with ’ <user@host.com>’ as well as "user@host.com’, but not with
’<user@host.com’. New in version 2.4.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, "\ $; matches the character ‘$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1, matches ' the the’ or’55 55/, butnot ' the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
number is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal value number. Inside the ‘[’ and ‘]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of al-
phanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note that \b is defined as the boundary between \w and \W, so the precise set of
characters deemed to be alphanumeric depends on the values of the UNICODE and LOCALE flags. Inside a
character range, "\l represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite
of \b, so is also subject to the settings of LOCALE and UNICODE.

\d When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [0-9]..
With UNICODE, it will match whatever is classified as a digit in the Unicode character properties database.

\D When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set
1~0-91, With UNICODE, it will match anything other than character marked as digits in the Unicode
character properties database.

\s When the LOCALE and UNICODE flags are not specified, matches any whitespace character; this is equivalent
to the set '[\t\n\r\f\v], With LOCALE, it will match this set plus whatever characters are defined
as space for the current locale. If UNICODE is set, this will match the characters '[\t\n\r\£f\v],plus
whatever is classified as space in the Unicode character properties database.

\S When the LOCALE and UNICODE flags are not specified, matches any non-whitespace character; this is
equivalent to the set '[~ \t\n\r\f\v], With LOCALE, it will match any character not in this set, and
not defined as space in the current locale. If UNICODE is set, this will match anything other than [
\t\n\r\f£\v]and characters marked as space in the Unicode character properties database.

4.2. re — Regular expression operations 53

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and the under-
score; this is equivalent to the set [[a—zA-70-9_1],. With LOCALE, it will match the set '[0—9_], plus
whatever characters are defined as alphanumeric for the current locale. If UNICODE is set, this will match
the characters '[0-9_ 1, plus whatever is classified as alphanumeric in the Unicode character properties
database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character; this is
equivalent to the set '[“a-zA-20-9_];. With LOCALE, it will match any character not in the set [0-9_—
11, and not defined as alphanumeric for the current locale. If UNICODE is set, this will match anything other
than [0—9_]; and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
AR

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are
accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search () function and
corresponding method of compiled regular expression objects.

3

Note that match may differ from search using a regular expression beginning with ‘~’: *~” matches only at the start
of the string, or in MULTILINE mode also immediately following a newline. The “match” operation succeeds
only if the pattern matches at the start of the string regardless of mode, or at the starting position given by the
optional pos argument regardless of whether a newline precedes it.

succeeds
fails; ’a’ not at start
fails; "a’ not at start
succeeds
fails; no preceding \n

re.compile ("a") .match ("ba", 1)
re.compile(""a") .search("ba", 1)
re.compile(""a").search("\na", 1)
re.compile(""a", re.M).search("\na", 1)
re.compile(""a", re.M).search("ba", 1)

e

4.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern[, ﬂags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
itsmatch () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pat)
result = prog.match(str)

54 Chapter 4. String Services

is equivalent to

result = re.match(pat, str)

but the version using compile () is more efficient when the expression will be used several times in a
single program.

I

IGNORECASE
Perform case-insensitive matching; expressions like "[A-71; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make "\wj, \w, \bj, \Bj, \'s;and "\ S| dependent on the current locale.

M

MULTILINE
When specified, the pattern character ‘~’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ‘~’ matches only at the beginning
of the string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of
the string.

S

DOTALL
Make the ‘.’ special character match any character at all, including a newline; without this flag, .’ will
match anything except a newline.

U

UNICODE
Make N\w;, \w, \by, \B;, \d, \Dj, \'sjand "\ S| dependent on the Unicode character properties database.
New in version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’
through the end of the line are ignored.

search (pattern, string[, ﬂags])
Scan through string looking for a location where the regular expression pattern produces a match, and return
a corresponding MatchObject instance. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string[, ﬂags])
If zero or more characters at the beginning of string match the regular expression pattern, return a corre-
sponding Mat chOb ject instance. Return None if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

split (pattern, string[, maxsplit = 0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 release, maxsplit was ignored. This has been fixed in later releases.)

4.2. re — Regular expression operations 55

>>> re.split (' \W+’, ’Words, words, words.’)
["Words’, ’'words’, ’'words’, '’]

>>> re.split (/ (\W+)’, ’'Words, words, words.’)
["Words'", ', ', '"words’, ', ', '"words’, ’'.’, "]
>>> re.split (" \W+’, ’Words, words, words.’, 1)
["Words’, ’"words, words.’]

findall (pattern, string[, ﬂags])
Return a list of all non-overlapping matches of pattern in string. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty
matches are included in the result unless they touch the beginning of another match. New in version 1.5.2.
Changed in version 2.4: Added the optional flags argument.

finditer (pattern, string[, ﬂags])
Return an iterator over all non-overlapping matches for the RE pattern in string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2. Changed in version 2.4: Added the optional flags argument.

sub (pattern, repl, string[, count])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by
the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single
newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\ j’ are left
alone. Backreferences, such as ‘\ 6’, are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(r’def\s+([a-zA-Z_] [a—-zA-Z_0-9]*)\s*x\ (\s*\):’,
r’static PyObjectx\npy_\1(void)\n{’,

e "def myfunc():")

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobij) :

if matchobj.group(0) == "-': return ' '
. else: return -’
>>> re.sub(’-{1,2}’, dashrepl, ’'pro----gram-files’)

"pro-—-gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for example, ‘sub (" (?1i)b+", "x", "bbbb
BBBB") returns ' x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous match, so ‘sub (' x*x’, ’-', ’abc’)’ returns
"—a-b-c-'.

In addition to character escapes and backreferences as described above, ‘\ g<name>’ will use the substring
matched by the group named ‘name’, as defined by the "(?P<name>. . .);syntax. ‘\g<number>’ uses
the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\ 2’, but isn’t ambiguous in a replace-
ment such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a reference to group 2
followed by the literal character ‘0°. The backreference ‘\g<0>’ substitutes in the entire substring matched
by the RE.

subn (pattern, repl, string[, count])
Perform the same operation as sub (), but return a tuple (new_string, number_of-subs_made) .

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal

56 Chapter 4. String Services

string that may have regular expression metacharacters in it.

exception error

Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string [, pos[, endpos]])

If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different
from a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’ */ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos — 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.match (string, 0, 50) isequivalent to rx.match (string[:50], 0).

search (string[, pos [, endpos]])

Scan through string looking for a location where this regular expression produces a match, and return a
corresponding Mat chOb ject instance. Return None if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the mat ch () method.

split (string[, maxsplit = 0])

Identical to the split () function, using the compiled pattern.

findall (string[, pos [endpos]])

Identical to the findall () function, using the compiled pattern.

finditer (string[, pos [, endpos]])

Identical to the finditer () function, using the compiled pattern.

sub (repl, string[, count = 0])

Identical to the sub () function, using the compiled pattern.

subn (repl, string [count = O])

Identical to the subn () function, using the compiled pattern.

flags

The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groupindex

A dictionary mapping any symbolic group names defined by " (?P<id>) | to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern

The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (femplate)

Return the string obtained by doing backslash substitution on the template string femplate, as done by the

4.2. re — Regular expression operations 57

sub () method. Escapes such as ‘\n’ are converted to the appropriate characters, and numeric backrefer-
ences (‘\1’°, ‘\2’) and named backreferences (‘\g<1>’, ‘\g<name>’) are replaced by the contents of the
corresponding group.

group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, group/
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, an IndexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding result is None. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

If the regular expression uses the '(?P<name>. . .), syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

m = re.match (r" (?P<int>\d+)\. (\d*)", 73.14")

After performing this match, m.group (1) is '3, as is m.group (' int’), and m.group (2) is
r14r,

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None.

start ([group])

end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group (g))is

m.string[m.start (g) :m.end(g)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
after m = re.search('b(c?)’, ’'cba’), m.start(0) is 1, m.end (0) is 2, m.start (1)
and m.end (1) are both 2, and m.start (2) raises an IndexError exception.

span ([group])
For MatchObject m, return the 2-tuple (m.start (group), m.end (group)). Note that if group did
not contribute to the match, thisis (-1, -1). Again, group defaults to zero.

pos
The value of pos which was passed to the search () or match () method of the RegexObject. This
is the index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search () or match () method of the RegexObject.
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions "(a) by, '((a) (b))}, and T((ab)), will have lastindex == 1 if applied to the string
" ab’, while the expression '(a) (b);will have lastindex == 2, if applied to the same string.

58 Chapter 4. String Services

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whose match () or search () method produced this MatchObject in-
stance.

string

The string passed to match () or search ().

4.2.6 Examples
Simulating scanf ()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful,
though also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent
mappings between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%c M

%5¢ r {5}

%d M-+]12\d+

%e, $E, $f,%g | '[—+12 (\d+ (\.\d*) 2 [\.\d+) ([eE] [-+]2\d+) 2,
%1 M-+12(0[xX] [\dA-Fa-f]+|0[0=7]*|\d+)]

%0 0[0-71%

$s NS+

Su Nd+

$x, $X 0[xX] [\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%s — %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> import re
>>> s = 'Begin ’ + 1000%’a very long string ’ + ‘end’
>>> re.match ('Begin (\w|)=*? end’, s).end()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.5/re.py", line 132, in match
return _compile (pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

4.2. re — Regular expression operations 59

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of the '« ?) pattern are special-cased to avoid recursion. Thus, the above reg-
ular expression can avoid recursion by being recast as Begin [a-zA-20-9_]*?end. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format strings (explained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fint, vI, v2,...)
Return a string containing the values v/, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

unpack (fint, string)
Unpack the string (presumably packed by pack (fmt, ...)) according to the given format. The result is
a tuple even if it contains exactly one item. The string must contain exactly the amount of data required by
the format (1en (string) must equal calcsize (fint)).

calcsize (fint)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

Format | C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘©’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘i’ int integer
‘T unsigned int long
‘1 long integer
‘n unsigned long long
‘g’ long long long (D
‘Q’ unsigned long long | long (1)
‘£ float float
el double float
‘s’ char|[] string
‘©’ char[] string
‘P’ void * integer

Notes:

(1) The ‘g’ and ‘Q’ conversion codes are available in native mode only if the platform C compiler supports C
long long, or, on Windows, ___int 64. They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the format string ’ 4h’ means
exactly the same as * hhhh'.

60 Chapter 4. String Services

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for example, 10s’ means a single 10-byte string, while 10c’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special case, ' 0s’ means a single, empty string
(while * 0c’ means 0 characters).

The ‘p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer than
the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note that for unpack (), the ‘p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

For the ‘I’, ‘L, ‘g’ and ‘Q’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned as the Python
integer 0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
=’ native standard
‘< little-endian standard
>’ big-endian standard
‘e network (= big-endian) | standard

If the first character is not one of these,

‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes; int and long are 4 bytes; long long (__int64 on Windows) is 8 bytes; float and
double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference between ‘@ and ‘=": both use native byte order, but the size and alignment of the latter is
standardized.
The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte order is

big-endian or little-endian.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ‘<’ or *>’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the ‘@’
byte order character). The byte order character ‘=" chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, so the ‘P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

4.3. struct — Interpret strings as packed binary data 61

>>> from struct import =

>>> pack(’hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ("hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('hhl’)

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the format * 11h01’ specifies two pad bytes at the end,
assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.6):

Packed binary storage of homogeneous data.

Module xdr1ib (section 9.5):

Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

class SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk’ elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

class Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning

r— line unique to sequence 1

4+ line unique to sequence 2

r line common to both sequences

*2 ' | line not present in either input sequence

Lines beginning with *? ’ attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

class HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

62

Chapter 4. String Services

__init__ ([tabsize] [, wrapcolumn] [, linejunk] [, charjunk])
Initializes instance of Htm1Diff.
tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by HtmlDiff
to generate the side by side HTML differences). See ndiff () documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines [fmmdesc] [todesc] [context] [numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.
fromdesc and todesc are optional keyword arguments to specify from/to file column header strings
(both default to an empty string).
context and numlines are both optional keyword arguments. Set confext to True when contextual
differences are to be shown, else the default is False to show the full files. numlines defaults to 5.
When context is True numlines controls the number of context lines which surround the difference
highlights. When context is False numlines controls the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines [, fromdesc] [, todesc] [, context] [, numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.
‘“Tools/scripts/diff.py’ is a command-line front-end to this class and contains a good example of its use.

New in version 2.4.

context_diff (a, b[, [fromfile] [tofile] [[fromfiledate] [tofiledate] [n] [lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with »+« or ——-) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the format returned by time.ctime (). If not specified, the strings default to
blanks.

‘“Tools/scripts/diff.py’ is a command-line front-end for this function.

New in version 2.3.

get_close_matches (word, possibilities[, n] [cutoff])
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than
0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

4.4. difflib — Helpers for computing deltas 63

>>> get_close_matches ("appel’, ['ape’, ’"apple’, ’'peach’, "puppy’l)
["apple’, "ape’]

>>> import keyword

>>> get_close_matches (' wheel’, keyword.kwlist)

["while’]

>>> get_close_matches (’apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

ndiff (a, b[, linejunk] [, charjunk])
Compare a and b (lists of strings); return a Di f fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is (None), starting with Python 2.3. Before then, the default was the module-level function
IS_LINE_JUNK (), which filters out lines without visible characters, except for at most one pound char-
acter (‘47). As of Python 2.3, the underlying SequenceMat cher class does a dynamic analysis of which
lines are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

“Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff (' one\ntwo\nthree\n’.splitlines (1),
... "ore\ntree\nemu\n’ .splitlines (1))
>>> print '’/ .join(diff),

- one

5 -

+ +
t
[n}
()
()

restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (' one\ntwo\nthree\n’ .splitlines (1),
... "ore\ntree\nemu\n’ .splitlines (1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print '’ .Jjoin(restore(diff, 1)),

one

two

three

>>> print '’ .Jjoin(restore(diff, 2)),

ore

tree

emu

unified diff (a, b[, [fromfile] [tofile] [[fromfiledate] [tofiledate] [n] [lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

64 Chapter 4. String Services

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are
normally expressed in the format returned by time.ctime (). If not specified, the strings default to
blanks.

‘“Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.
IS_LINE_JUNK (line)

Return true for ignorable lines. The line line is ignorable if /ine is blank or contains a single ‘#’, otherwise
it is not ignorable. Used as a default for parameter linejunk in ndiff () before Python 2.3.

IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in Dr. Dobb’s
Journal in July, 1988.

4.41 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class SequenceMatcher ([isjunk[, a[, b]]])
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk
is equivalent to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.
The optional arguments a and b are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seq2 () to set the commonly used sequence once and
call set_seql () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

4.4. difflib — Helpers for computing deltas 65

http://www.ddj.com/documents/s=1103/ddj8807c/
http://www.ddj.com/
http://www.ddj.com/

find_longest_match (alo, ahi, blo, bhi)

Find longest matching block in a [alo : ahi] and b [blo : bhi] .

If isjunk was omitted or None, get_longest_match () returns (i, j, k) suchthata[i:i+k] isequal
to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (i’, j’, k’)
meeting those conditions, the additional conditions & >= k’, i <= i{’, and if i == §’,j <= j’ are also
met. In other words, of all maximal matching blocks, return one that starts earliest in a, and of all those
maximal matching blocks that start earliest in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ’ abcd’ from
matching the * abcd’ at the tail end of the second sequence directly. Instead only the " abcd’ can
match, and matches the leftmost abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns (alo, blo, 0).

get_matching blocks ()

Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and means
thata[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n ==
0.

If (i, j, n) and (i’, j’, n’) are adjacent triples in the list, and the second is not the last triple in the
list, then i+n != i’ or j+n != j’; in other words, adjacent triples always describe non-adjacent equal
blocks. Changed in version 2.5: The guarantee that adjacent triples always describe non-adjacent blocks
was implemented.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[0, 0, 2), (3, 2, 2), (5, 4, 0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (rag, il, i2, jI, j2).
The first tuple has i/ == jlI == 0, and remaining tuples have i/ equal to the i2 from the preceding tuple,
and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value | Meaning

"replace’ | alil:i2] should be replaced by b [jI:j2].

"delete’ a[il :i2] should be deleted. Note that jI == ;2 in this case.

"insert’ b[jl:j2] should be inserted at a [i] :il]. Note that i/ == i2 in this case.
"equal’ alil:i2] == b[jl:j2] (the sub-sequences are equal).

For example:

66

Chapter 4. String Services

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, jl, J2 in s.get_opcodes|() :
print ("$7s al[%d:%d] (%s) b[%d:%d] (%s)" %
(tag, 11, i2, afil:i21, 31, j2, bl[jl:321))

delete a[0:1] (g) b[0:0] ()
equal af[l:3] (ab) bl[0:2] (ab)

replace al[3:4] (x) b[2:3] (y)
equal af[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return a generator of groups with up to z lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same format as get _opcodes (). New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0¥*M
/'T. Note that this is 1. 0 if the sequences are identical, and 0. 0 if they have nothing in common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () first to get an
upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute than either
ratio () orquick_ratio().

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_quick_ratio () are always at least as large
asratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

4.4. difflib — Helpers for computing deltas 67

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio ()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio (), 3)
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks():
print "a[%d] and b[%d] match for %d elements" % block
] and b[0] match for 8 elements
] and b[17] match for 6 elements
4] and b[23] match for 15 elements
9

[0
[8
[1
[29] and b[38] match for 0 elements

a
a
a
a

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len (b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes|() :
.. print "%$6s al[%d:%d] b[%d:%d]" % opcode
equal af[0:8] b[0:8]
insert a[8:8] b[8:17]
equal af[8:14] b[17:23]
equal af[l4:29] b[23:38]

See also the function get_close_matches () in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

The Differ class has this constructor:

class Differ ([linejunk[, charjunk]])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be
obtained from the readlines () method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

68 Chapter 4. String Services

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with

newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = '’’’ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
77 . splitlines (1)
>>> len (textl)

4

>>> textl[0] [-1]

’ \nl

>>> text2 =’’’ 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

rrr splitlines (1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Di f fer object we may pass functions to filter out line and character “junk.” See

the Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

" - 2. Explicit is better than implicit.\n’,

r— 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

"? ++ \n’,

i 4. Complex is better than complicated.\n’,

e - -—— " A\n’,
"+ 4. Complicated is better than complex.\n’,

e +4+++ 7 ~ \n’,

r+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

4.4, difflib — Helpers for computing deltas

69

>>> import sys

>>> gys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
- ~ .
+ 4. Complicated is better than complex.
? 4+ -
+ 5. Flat is better than nested.

4.5 StringI0O— Read and write strings as files

This module implements a file-like class, St ringIO, that reads and writes a string buffer (also known as memory
files). See the description of file objects for operations (section 3.9).

class StringIO ([buﬁ‘er])
When a StringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, the St ringIO will start empty. In both cases, the initial file position
starts at zero.

The St ringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised when getvalue () is called.

The following methods of St ringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before the St ringIO object’s close () method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to raise UnicodeError.

close ()
Free the memory buffer.

Example usage:

import StringIO

output = StringIO.StringIO()
output.write ('First line.\n’)
print >>output, ’Second line.’

Retrieve file contents —-- this will be
'First line.\nSecond line.\n’
contents = output.getvalue()

Close object and discard memory buffer —-
.getvalue() will now raise an exception.
output.close ()

4.6 cStringIO— Faster version of StringIO

70 Chapter 4. String Services

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function St ringIO () from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. Use the original St ringIO module in that case.

Unlike the memory files implemented by the St ringIO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as plain ASCII strings.

Another difference from the St ringIO module is that calling StringIO () with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These
objects are not generally visible. They turn up in tracebacks as St ringI and StringO.

The following data objects are provided as well:

InputType
The type object of the objects created by calling St ringIO with a string parameter.

OutputType
The type object of the objects returned by calling St ringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import cStringIO

output = cStringIO.StringIO ()

output .write ('First line.\n’)
print >>output, ’Second line.’

Retrieve file contents —-- this will be
'First line.\nSecond line.\n’
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close ()

4.7 textwrap — Text wrapping and filling

New in version 2.3.

The textwrap module provides two convenience functions, wrap () and £111 (), as well as TextWrapper,
the class that does all the work, and a utility function dedent (). If you're just wrapping or filling one or
two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (text[, width [,]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

£i11 (text[, widh[, ... 1]
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 ()
is shorthand for

"\n".join (wrap (text, ...))

In particular, £i11 () accepts exactly the same keyword arguments as wrap () .

4.7. textwrap — Text wrapping and filling 71

Both wrap () and £111 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (rext)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:

def test():
end first line with \ to avoid the empty line!
S:III\
hello
world
rrr
print repr(s) # prints ’ hello\n world\n ’

print repr(dedent(s)) # prints ’'hello\n world\n’

class TextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the expandtabs ()
method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by st ring.whitespace) remaining after
tab expansion will be replaced by a single space. Note: If expand_tabs is false and replace_-
whitespace is true, each tab character will be replaced by a single space, which is not the same as tab
expansion.

initial_ indent
(default: * 7) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent_indent
(default: ’ 7) String that will be prepended to all lines of wrapped output except the first. Counts towards

72 Chapter 4. String Services

the length of each line except the first.

fix sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase

[N

letter followed by one of *.’, “!’, or ‘?’, possibly followed by one of ‘"’ or ‘’’, followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_ long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines are
longer than width. If it is false, long words will not be broken, and some lines may be longer than width.
(Long words will be put on a line by themselves, in order to minimize the amount by which width is
exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

4.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding name
in all lower case letters, and return a CodecInfo object having the following attributes:

ename The name of the encoding;

eencoder The stateless encoding function;

edecoder The stateless decoding function;

eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;

estreamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

4.8. codecs — Codec registry and base classes 73

encoder and decoder: These must be functions or methods which have the same interface as the
encode () /decode () methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

incrementalencoder and incrementalencoder: These have to be factory functions providing the following
interface:

factory (errors=’ strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalEncoder, respectively. Incremental codecs can maintain
state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory (stream, errors=' strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are * strict’ (raise an exception in case of an encoding error), ' replace’ (re-
place malformed data with a suitable replacement marker, such as ‘?’), * ignore’ (ignore malformed data
and continue without further notice), ' xmlcharrefreplace’ (replace with the appropriate XML char-
acter reference (for encoding only)) and ' backslashreplace’ (replace with backslashed escape se-
quences (for encoding only)) as well as any other error handling name defined via register_error ().

In case a search function cannot find a given encoding, it should return None.

lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo
object is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use lookup ()
for the codec lookup:

getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder. New in version 2.5.

getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder. New in version 2.5.

getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
register_error (name, error_handler)

Register the error handling function error_handler under the name name. error_handler will be called
during encoding and decoding in case of an error, when name is specified as the errors parameter.

74 Chapter 4. String Services

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

strict_errors (exception)
Implements the st rict error handling.

replace_errors (exception)
Implements the replace error handling.

ignore_errors (exception)
Implements the ignore error handling.

xmlcharrefreplace_errors_errors (exception)
Implements the xmlcharrefreplace error handling.

backslashreplace_errors_errors (exception)
Implements the backslashreplace error handling.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode [encoding[, errors [buﬁ‘ering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding.
Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’ strict’ which causes a ValueError
to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

EncodedFile (file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then written to
the original file as strings using the output encoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to ” strict’, which causes ValueError to
be raised in case an encoding error occurs.

iterencode (iterable, encoding[, errors])
Uses an incremental encoder to iteratively encode the input provided by iterable. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental encoder. New in
version 2.5.

iterdecode (iterable, encoding[, errors])
Uses an incremental decoder to iteratively decode the input provided by iterable. This function is a genera-
tor. errors (as well as any other keyword argument) is passed through to the incremental encoder. New in
version 2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

4.8. codecs — Codec registry and base classes 75

BOM

BOM_BE

BOM_LE

BOM_UTFS8

BOM _UTF16

BOM _UTF16_BE

BOM UTF16_LE

BOM_UTF32

BOM _UTF32_BE

BOM _UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte or-
der, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE.
The others represent the BOM in UTF-8 and UTF-32 encodings.

4.8.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write
you own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different
error handling schemes by providing the errors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

" ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMI]
"xmlcharrefreplace’ | Replace with the appropriate XML character reference (only for encoding).
"backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register_error.

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (e.g., cp1252 or iso—-8859-1).

errors defines the error handling to apply. It defaults to * strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

76 Chapter 4. String Services

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to ’ strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode/decode method of the incremental encoder/decoder. The incre-
mental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode/decode method is the same as if all the single inputs were joined into
one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5.

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following
methods which every incremental encoder must define in order to be compatible with the Python codec registry.

class IncrementalEncoder ([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

o’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character

o’ xmlcharrefreplace’ Replace with the appropriate XML character reference

e’ backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for the errors argument can be extended with register_error ().
encode (object[, ﬁnal])

Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

class IncrementalDecoder ([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

4.8. codecs — Codec registry and base classes 77

The IncrementalDecoder may implement different error handling schemes by providing the errors
keyword argument. These parameters are predefined:

o’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for the errors argument can be extended with register_error ().

decode (object[, ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode final must be true (the default is false). If final is true the decoder
must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of incomplete
byte sequences at the end of the input) it must initiate error handling just like in the stateless case (which
might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. See encodings.ut f_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class StreamWriter (stream [errors])
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by providing the errors keyword
argument. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

o’ replace’ Replace with a suitable replacement character

o’ xmlcharrefreplace’ Replace with the appropriate XML character reference

e’ backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter
object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

78 Chapter 4. String Services

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWr iter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class StreamReader (stream[, errors])
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors keyword
argument. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register_error ().
read ([size [chars, [ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than
chars characters, but it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

Changed in version 2.4: chars argument added. Changed in version 2.4.2: firstline argument added.

readline ([size [keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.
If keepends is false line-endings will be stripped from the lines returned.

Changed in version 2.4: keepends argument added.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

4.8. codecs — Codec registry and base classes 79

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class StreamReaderWriter (stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the
instance.

class St reamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work
on the frontend (the input to read () and output of write ()) while Reader and Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and StreamWriter classes.
They inherit all other methods and attributes from the underlying stream.

4.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). De-
pending on the way Python is compiled (either via --enable-unicode=ucs2 or --enable-unicode=ucs4, with the
former being the default) Py_UNICODE is either a 16-bit or 32-bit data type. Once a Unicode object is used
outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Trans-
forming a unicode object into a sequence of bytes is called encoding and recreating the unicode object from
the sequence of bytes is known as decoding. There are many different methods for how this transformation

80 Chapter 4. String Services

can be done (these methods are also called encodings). The simplest method is to map the codepoints 0-255 to
the bytes 0x0-0xff. This means that a unicode object that contains codepoints above U+00FF can’t be en-
coded with this method (which is called 1atin-1’ or ' iso—8859-1"). unicode.encode () will raise
aUnicodeEncodeError that looks like this: ‘UnicodeEncodeError: ‘“latin-1’ codec can’t
encode character u’\ul234’ in position 3: ordinal not in range(256)’.

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the bytes 0x0-0xf£f. To see how this is done simply open
e.g. ‘encodings/cp1252.py’ (which is an encoding that is used primarily on Windows). There’s a string constant
with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive
bytes. There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings
are called UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a
little endian machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the "Byte Order Mark™). This is the Unicode character U+FEFF. This character will be prepended
to every UTF-16 byte sequence. The byte swapped version of this character (OxFFFE) is an illegal character
that may not appear in a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had
a second purpose as a ‘ZERO WIDTH NO-BREAK SPACE’: A character that has no width and doesn’t allow a
word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as
a ‘ZERO WIDTH NO-BREAK SPACE’ has been deprecated (with U+2060 (‘WORD JOINER’) assuming this
role). Nevertheless Unicode software still must be able to handle U+FEFF in both roles: As a BOM it’s a device
to determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been decoded into
a Unicode string; as a ‘ZERO WIDTH NO-BREAK SPACE’ it’s a normal character that will be decoded like any
other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
six 1 bits followed by a O bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XxXXXxX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX

U-00010000 ... U-001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

U-00200000 ... U-03FFFFFF | 111110xx 10xxxxxx 10xxxxxX 10xxxXXX 10XXXXXX
U-04000000 ... U=7FFFFFFF | 1111110x 10xxxxxx 10xxxxxx 10xxxxxXx 10xxxxxXxX 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded Unicode string
(even if it’s the first character) is treated as a ‘ZERO WIDTH NO-BREAK SPACE’.

Without external information it’s impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTEF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequence. To increase the
reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python
2.5 calls "ut£-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a
UTF-8 encoded BOM (which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather
improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 150-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte

4.8. codecs — Codec registry and base classes 81

sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
Oxef, Oxbb, Oxbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file.

4.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.
Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

¢ an IBM EBCDIC code page

¢ an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English

big5 big5-tw, csbig5 Traditional Cl
bigShkscs big5-hkscs, hkscs Traditional Ct
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Euro
cp737 Greek

cp775 IBM775 Baltic languag
cp850 850, IBM850 Western Euroj
cp852 852, IBMS852 Central and E
cp855 855, IBMS855 Bulgarian, By
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBMS861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic

cp865 865, IBM865 Danish, Norw
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek

cp874 Thai

cp875 Greek

cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Ct
cpl1006 Urdu

cpl026 ibm1026 Turkish
cpl140 ibm1140 Western Euroj
cpl1250 windows-1250 Central and E

82 Chapter 4. String Services

Codec

Aliases

Languages

cpl251
cpl252
cpl253
cpl254
cpl255
cpl256
cpl257
cpl258
euc_jp
euc_jis_2004
euc_jisx0213
euc_kr
gb2312

gbk
gb18030

hz
1502022_jp
1502022 _jp-1
1502022_jp-2
1502022_jp-2004
1502022_jp-3
1502022_jp_ext
1502022 _kr
latin_1
15088592
15088593
1508859_4
1s08859_5
1508859_6
15088597
1508859_8
15088599
1s08859_10
1508859_13
1s08859_14
is08859_15
johab

koi8_r
koi8_u
mac_cyrillic
mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf_16
utf_16_be
utf_16_le
utf_7

utf_§
utf_8_sig

windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows1256
windows-1257
windows-1258
eucjp, ujis, u-jis
jisx0213, eucjis2004
eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001

chinese, csis058gb231280, euc-cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso-ir-58

936, cp936, ms936

gb18030-2000

hzgb, hz-gb, hz-gb-2312
¢sis02022jp, 1s02022jp, is0-2022-jp
1802022jp-1, is0-2022-jp-1
1502022jp-2, is0-2022-jp-2
1802022jp-2004, is0-2022-jp-2004
1802022jp-3, is0-2022-jp-3
1502022jp-ext, is0-2022-jp-ext
¢s81802022kr, 1s02022kr, is0-2022-kr
180-8859-1, is08859-1, 8859, cp819, latin, latinl, L.1
180-8859-2, 1atin2, L2

1s0-8859-3, latin3, L3

1s0-8859-4, latin4, L4

180-8859-5, cyrillic

180-8859-6, arabic

1s0-8859-7, greek, greek8
150-8859-8, hebrew

18s0-8859-9, 1atin5, L5

180-8859-10, latin6, L6

i80-8859-13

150-8859-14, 1atin8, L8

180-8859-15

cpl361, ms1361

maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman

macturkish

csptep154, pt154, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U16, utf16

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

4.8. codecs — Codec registry and base classes

83

Bulgarian, By
Western Euroj
Greek
Turkish
Hebrew
Arabic

Baltic languag
Vietnamese
Japanese
Japanese
Japanese
Korean
Simplified Ch
Unified Chine
Unified Chine
Simplified Ch
Japanese
Japanese
Japanese, Kor
Japanese
Japanese
Japanese
Korean

West Europe
Central and E
Esperanto, M:
Baltic languag
Bulgarian, By
Arabic

Greek
Hebrew
Turkish
Nordic langua
Baltic languag
Celtic languag
Western Euroj
Korean
Russian
Ukrainian
Bulgarian, By
Greek
Icelandic
Central and E
Western Euroj
Turkish
Kazakh
Japanese
Japanese
Japanese

all languages
all languages
all languages
all languages
all languages
all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose

base64_codec base64, base-64 byte string Convert operand to MIME base64
bz2_codec bz2 byte string Compress the operand using bz2

hex_codec hex byte string Convert operand to hexadecimal representati
idna Unicode string | Implements RFC 3490. New in version 2.3.
mbcs dbcs Unicode string | Windows only: Encode operand according tc
palmos Unicode string | Encoding of PalmOS 3.5

punycode Unicode string | Implements RFC 3492. New in version 2.3.

quopri_codec
raw_unicode_escape

quopri, quoted-printable, quotedprintable

byte string
Unicode string

Convert operand to MIME quoted printable
Produce a string that is suitable as raw Unicc

rot_13 rotl3 Unicode string | Returns the Caesar-cypher encryption of the
string_escape byte string Produce a string that is suitable as string lite:
undefined any Raise an exception for all conversions. Can t
unicode_escape Unicode string | Produce a string that is suitable as Unicode 1
unicode_internal Unicode string | Return the internal representation of the oper
uu_codec uu byte string Convert the operand using uuencode
zlib_codec 7ip, zlib byte string Compress the operand using gzip

484 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name contain-
ing non-ASCII characters (such as “www.Alliancefrangaise.nu”) is converted into an ASCII-compatible encoding
(ACE, such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places
where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host: fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should trans-
parently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before
presenting them to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the
ACE. Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, such as httplib and ftplib, accept Unicode
host names (httplib then also transparently sends an IDNA hostname in the Host: field if it sends that field at
all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version of label.
AllowUnassigned is true.

The implementation currently assumes query strings, so

ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

84 Chapter 4. String Services

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.8.5 encodings.utf_8_sig— UTF-8 codec with BOM signature

New in version 2.5.

This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will be prepended
to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream).
For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the ‘UnicodeData.txt’ file version 4.1.0 which is publicly available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 4.1.0 (see
http://www.unicode.org/Public/4.1.0/ucd/UCD.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found, KeyError is raised.

name (unichr[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default is
returned, or, if not given, ValueError is raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0 if no
combining class is defined.

east_asian_width (unichr)
Returns the east asian width assigned to the Unicode character unichr as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the character
has been identified as a “mirrored” character in bidirectional text, O otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An empty
string is returned in case no such mapping is defined.

normalize (form, unistr)

4.9. unicodedata — Unicode Database 85

ftp://ftp.unicode.org/
http://www.unicode.org/Public/4.1.0/ucd/UCD.html

Return the normal form form for the Unicode string unistr. Valid values for form are "NFC’, "NFKC’,
’NFD’, and 'NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata_version
The version of the Unicode database used in this module.

New in version 2.3.

ued_3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

New in version 2.5.

Examples:

>>> unicodedata.lookup (' LEFT CURLY BRACKET')
u’ {’
>>> unicodedata.name (u’ /")
" SOLIDUS’
>>> unicodedata.decimal (u’9”)
9
>>> unicodedata.decimal (u’a’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: not a decimal

>>> unicodedata.category (u’A’) # ’'L’etter, ’'u’ppercase

ILuI

>>> unicodedata.bidirectional (u’\u0660’) # ’"A’rabic, ’N’umber
IANI

410 stringprep — Internet String Preparation

New in version 2.3.

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

86 Chapter 4. String Services

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep
profile is nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated using the mkstringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

in_table_ bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

in_table_cll (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

in_table _cll cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in_table_ c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

in_table_ c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

in_table_ c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

4.10. stringprep — Internet String Preparation 87

in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

411 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python. Note: This module is unneeded: everything here could be done via the % string interpolation operator.

The fpformat module defines the following functions and an exception:

fix (x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

sci (x, digs)
Formatx as [-]d.dddE [+-]ddd with digs digits after the point and exactly one digit before. If digs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception Not ANumber
Exception raised when a string passed to £ix () or sci () asthe x parameter does not look like a number.
This is a subclass of ValueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
r1.27

88 Chapter 4. String Services

CHAPTER
FIVE

Data Types

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

The following modules are documented in this chapter:

datetime Basic date and time types.

calendar Functions for working with calendars, including some emulation of the UNIX cal program.
collections High-performance datatypes

heapgq Heap queue algorithm (a.k.a. priority queue).

bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

sched General purpose event scheduler.

mutex Lock and queue for mutual exclusion.

Queue A synchronized queue class.

weakref Support for weak references and weak dictionaries.
UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

types Names for built-in types.

new Interface to the creation of runtime implementation objects.
copy Shallow and deep copy operations.

pprint Data pretty printer.

repr Alternate repr () implementation with size limits.

5.1

datetime — Basic date and time types

New in version 2.3.

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naive datetime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it’s up to the program whether a particular number represents
metres, miles, or mass. Naive datet ime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring more, datet ime and t ime objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract t zinfo class. These t zinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that no concrete t zinfo classes are supplied by the datet ime module. Supporting timezones at whatever
level of detail is required is up to the application. The rules for time adjustment across the world are more political

89

than rational, and there is no standard suitable for every application.
The datet ime module exports the following constants:

MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See Also:

Module calendar (section 5.2):
General calendar related functions.

Module t ime (section 14.2):
Time access and conversions.

5.1.1 Available Types

class date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class time
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of "leap seconds” here). Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class timedelta
A duration expressing the difference between two date, time, or datet ime instances to microsecond
resolution.

class tzinfo
An abstract base class for time zone information objects. These are used by the datetime and time
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

Objects of these types are immutable.
Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset (d) does not return None. If d.tzinfo is None, orif d.tzinfo is not None but
d.tzinfo.utcoffset (d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to t imedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

90 Chapter 5. Data Types

5.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class timedelta ([days [seconds[, microseconds[, milliseconds[, minutes[, hours [weeks]]]]]]])
All arguments are optional and default to 0. Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

e A millisecond is converted to 1000 microseconds.
oA minute is converted to 60 seconds.
e An hour is converted to 3600 seconds.

e A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with

0 <= microseconds < 1000000
e0 <= seconds < 3600x24 (the number of seconds in one day)

©-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:
min
The most negative t imedelta object, timedelta (-999999999).

max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, t imedelta.max >-timedelta.min. ~timedelta.max is not rep-
resentable as a t imedelta object.

Instance attributes (read-only):

Attribute | Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive

microseconds | Between 0 and 999999 inclusive

Supported operations:

5.1. datetime — Basic date and time types 91

Operation

Result

tl

t1
tl = 12 %

t]
Notes:

(1) This is exact, but may overflow.

=12 + 13
=12 - 13
i or tl =
=12 // i
+t1
—tl
abs (1)

i * 12

Sum of ¢2 and 3. Afterwards ¢/-t2 ==t3 and t1-t3 == 12 are true. (1)

Difference of 12 and 3. Afterwards t/ == 12 - t3 and 12 == t1 + 3 are true. (1)
Delta multiplied by an integer or long. Afterwards ¢/ // i == 12 is true, provided i
In general, t1 *1i==1tI * (i-1) + ¢/ is true. (1)

The floor is computed and the remainder (if any) is thrown away. (3)

Returns a t imedelta object with the same value. (2)

equivalent to t imedelta(-tl.days, -tl.seconds, -t1.microseconds), and to t1* -1. (1)(4)
equivalent to +f when t .days >= 0, and to -f when t .days < 0. (2)

= 0.

(2) This is exact, and cannot overflow.

(3) Division by O raises ZeroDivisionError.

(4) -timedelta.max is not representable as a t imedelta object.

In addition to the operations listed above t imedelta objects support certain additions and subtractions with
date and datetime objects (see below).

Comparisons of timedelta objects are supported with the t imedelta object representing the smaller dura-
tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a t imedelta object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
a timedelta object is considered to be true if and only if it isn’t equal to t imedelta (0).

5.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

class date (year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

eMINYEAR <= year <= MAXYEAR

el <= month <= 12

el <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

today ()

Return the current local date. This is equivalent to date.fromtimestamp (time.time ()).

fromtimestamp (fimestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time ().
This may raise ValueError, if the timestamp is out of the range of values supported by the platform
C localtime () function. It’s common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored by fromtimestamp ().

92

Chapter 5. Data Types

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordi-
nal 1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal()) == d.

Class attributes:
min
The earliest representable date, date (MINYEAR, 1, 1).

max
The latest representable date, date (MAXYEAR, 12, 31).

resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation | Result
date2 = datel + timedelta | date? is timedelta . days days removed from datel. (1)
date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)
timedelta = datel - date2 | (3)
datel < date2 datel is considered less than date2 when datel precedes date2 in time. (4)

Notes:

(1) date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days < 0. Afterward
date2 - datel == timedelta.days. timedelta.seconds and timedelta .microseconds are ignored.
OverflowError is raised if date2 . year would be smaller than MINYEAR or larger than MAXYEAR.

(2) This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where
datel - timedelta does not. timedelta . seconds and timedelta .microseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

(4) In other words, datel < date2 if and only if datel .toordinal () < date2.toordinal (). In
order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raises TypeError if the other comparand isn’t also a date object. However,
NotImplemented is returned instead if the other comparand has a t imetuple attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or
!'=. The latter cases return False or True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.
Instance methods:

replace (year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example, if d == date (2002, 12, 31),thend.replace (day=26)
== date (2002, 12, 26).

5.1. datetime — Basic date and time types 93

timetuple ()
Return a time. struct_time such as returned by time.localtime (). The hours, minutes and sec-
onds are 0, and the DST flagis-1. d.timetuple () isequivalentto time.struct_time ((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() - date(d.year, 1,
1) .toordinal() + 1, -1))

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal ()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4).weekday () == 2,a Wednesday. See also isoweekday ().
isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3,a Wednesday. See also weekday (), isocalendar ().
isocalendar ()

Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/ vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003

and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29).isocalendar () == (2004, 1,
1) and date (2004, 1, 4) .isocalendar () == (2004, 1, 7).

isoformat ()
Return a string representing the date in ISO 8601 format, ’YYYY-MM-DD’. For example, date (2002,
12, 4) .isoformat () == "2002-12-04".

__str ()

For a date d, str (d) isequivalenttod.isoformat ().

ctime ()
Return a string representing the date, for example date(2002, 12, 4).ctime() == "Wed Dec 4 00:00:00 2002’.
d.ctime () is equivalent to time.ctime (time.mktime (d.timetuple ())) on platforms where

the native C ctime () function (which time.ctime () invokes, but which date.ctime () does not
invoke) conforms to the C standard.

strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see O values. See section 5.1.7 — strftime () behavior.

5.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object.
Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a time
object, datet ime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime (year, month, day[, hour[, minute [, second [, microsecond [, tzinfo]]]]])
The year, month and day arguments are required. #zinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

eMINYEAR <= year <= MAXYEAR
el <= month <= 12

el <= day <= number of days in the given month and year

94 Chapter 5. Data Types

http://www.phys.uu.nl/protect unhbox voidb@x penalty @M {}vgent/calendar/isocalendar.htm

o0 <= hour < 24
o0 <= minute < 60
o0 <= second < 60

o0 <= microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

today ()

Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

now ([tz])

Return the current local date and time. If optional argument #z is None or not specified, this is
like today (), but, if possible, supplies more precision than can be gotten from going through
a time.time () timestamp (for example, this may be possible on platforms supplying the C
gettimeofday () function).

Else tz must be an instance of a class tzinfo subclass, and the current date
and time are converted to fz’s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

utcnow ()

Return the current UTC date and time, with tzinfo None. This is like now (), but returns the current
UTC date and time, as a naive datet ime object. See also now () .

fromtimestamp (timestamp [, 1z])

Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time (). If optional argument ¢z is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returned datet ime object is naive.

Else 1tz must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to s time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime () or gmtime () functions. It’s common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored by fromtimestamp (), and then it’s possible to have two timestamps
differing by a second that yield identical datetime objects. See also utcfromtimestamp ().

utcfromtimestamp (timestamp)

Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmt ime () func-
tion. It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp ().

fromordinal (ordinal)

Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1. ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The
hour, minute, second and microsecond of the result are all 0, and t zinfo is None.

combine (date, time)

Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d
== datetime.combine (d.date (), d.timetz()). If date is a datetime object, its time and
tzinfo members are ignored.

strptime (date_string, format)

Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if
the date_string and format can’t be parsed by time.strptime () or if it returns a value which isn’t a
time tuple.

New in version 2.5.

5.1.

datetime — Basic date and time types 95

Class attributes:

min
The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

resolution

The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range (24).

minute
In range (60).

second
In range (60).

microsecond
In range (1000000).

tzinfo
The object passed as the 7zinfo argument to the datet ime constructor, or None if none was passed.

Supported operations:

Operation | Result
datetime2 = datetimel + timedelta | (1)
datetime2 = datetimel - timedelta | (2)
timedelta = datetimel - datetime2 | (3)
datetimel < datetime2 Compares datetime to datetime. (4)

(1) datetime? is a duration of timedelta removed from datetimel, moving forward in time if timedelta . days ¢, 0,
or backward if timedelta.days j 0. The result has the same t zinfo member as the input datetime, and
datetime?2 - datetimel == timedelta after. OverflowError is raised if datetime2.year would be smaller
than MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is
an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the
same tzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t z1info member, the t zinfo members are ignored,
and the result is a t imedelta object ¢ such that datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different t zinfo members, a-b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset())

96 Chapter 5. Data Types

- (b.replace (tzinfo=None) - b.utcoffset ()) except that the implementation never over-
flows.

(4) datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware, and
have the same t zinfo member, the common t zinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have different t zinfo members, the comparands are first adjusted
by subtracting their UTC offsets (obtained from self.utcoffset ()). Note: In order to stop compari-
son from falling back to the default scheme of comparing object addresses, datetime comparison normally
raises TypeError if the other comparand isn’t also a datet ime object. However, Not Implemented
is returned instead if the other comparand has a t imetuple attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a datetime object is compared
to an object of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases
return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to
be true.

Instance methods:

date ()
Return date object with same year, month and day.

time ()
Return t ime object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz ().

timetz ()
Return t ime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time ().

replace ([year[, month [day[, hour[, minute [second[, microsecond[, tzinfo]]]]]]]])
Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

astimezone (17)
Return a datetime object with new tzinfo member fz, adjusting the date and time members so the
result is the same UTC time as self, but in 7z’s local time.

tz must be an instance of a t zinfo subclass, and its utcoffset () and dst () methods must not return
None. self must be aware (self .t zinfo must not be None, and self .utcoffset () must not return
None).

If self .tzinfo is tz, self .astimezone (#z) is equal to self: no adjustment of date or time members is
performed. Else the result is local time in time zone fz, representing the same UTC time as self: after astz =
dt.astimezone (1z), astz — astz.utcoffset () will usually have the same date and time members
asdt — dt.utcoffset (). The discussion of class t zinfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue only if 7z models both standard and daylight
time).

If you merely want to attach a time zone object #z to a datetime d¢ without adjustment of date and time
members, use dt. replace (tzinfo=tz). If you merely want to remove the time zone object from an
aware datetime dt without conversion of date and time members, use df. replace (tzinfo=None).

Note that the default tzinfo. fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, ast imezone () acts like:

5.1. datetime — Basic date and time types 97

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc (utc)

utcoffset ()
If tzinfo is None, returns None, else returns self . tzinfo.utcoffset (self), and raises an excep-
tion if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returns None, else returns self .tzinfo.dst (self), and raises an exception if
the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returns None, else returns self . tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

timetuple ()
Return a time.struct_time such as returned by time.localtime (). d.timetuple() is
equivalent to time.struct_time ((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday (), d.toordinal() - date(d.year, 1, 1).toordinal() +
1, dst)) The tm_isdst flag of the result is set according to the dst () method: tzinfo is None or
dst () returns None, tm_isdst is set to —1; else if dst () returns a non-zero value, tm_isdst is set
to 1;else tm_isdst is setto O.

utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_1isdst is forced
to 0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (), and a time.struct_-
time for the normalized time is returned. tm_isdst is forced to 0. Note that the result’s tm_year
member may be MINYEAR-1 or MAXYEAR+1, if d.year was MINYEAR or MAXYEAR and UTC adjustment
spills over a year boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

weekday ()
Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date () .isocalendar ().

isoformat ([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, if microsecondis 0, YYYY-MM-DDTHH:MM:SS

Ifutcoffset () doesnotreturn None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS. mmmmmm+HH:MM or, if microsecondis0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default T’) is a one-character separator, placed between the date and time
portions of the result. For example,

98 Chapter 5. Data Types

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo) :
def utcoffset (self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ')
"2002-12-25 00:00:00-06:39"

__str_ ()
For a datetime instance d, str (d) is equivalenttod.isoformat (*).

ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4,
20, 30, 40).ctime() == ’'Wed Dec 4 20:30:40 2002’. d.ctime () is equivalent to

time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () func-
tion (which time.ctime () invokes, but which datetime.ctime () does not invoke) conforms to the
C standard.

strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See section 5.1.7 —
strftime () behavior.

5.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class time (hour[, minute [, second [, microsecond [, tzinfo]]]])
All arguments are optional. #zinfo may be None, or an instance of a tzinfo subclass. The remaining
arguments may be ints or longs, in the following ranges:

0 <= hour < 24

o0 <= minute < 60

e0 <= second < 60

0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

min
The earliest representable t ime, time (0, 0, 0, 0).

max
The latest representable t ime, time (23, 59, 59, 999999).

resolution
The smallest possible difference between non-equal t ime objects, t imedelta (microseconds=1),
although note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

hour
In range (24).

minute
In range (60).

second
In range (60).

microsecond
In range (1000000).

5.1. datetime — Basic date and time types 99

tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

e comparison of time to time, where a is considered less than b when a precedes b in time. If one com-
parand is naive and the other is aware, TypeError is raised. If both comparands are aware, and have the
same t zinfo member, the common t zinfo member is ignored and the base times are compared. If both
comparands are aware and have different t zinfo members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, when a t ime object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False
or True, respectively.

e hash, use as dict key
e efficient pickling

¢ in Boolean contexts, a t ime object is considered to be true if and only if, after converting it to minutes and
subtracting ut coffset () (or 0 if that’s None), the result is non-zero.

Instance methods:

replace ([hour[, minule[, second [, microsecond [, tzinfo]]]]])
Return a t ime with the same value, except for those members given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware
t ime, without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

str_ ()
For atime ¢, str (f) is equivalentto 7. isoformat ().

strftime (format)
Return a string representing the time, controlled by an explicit format string. See section 5.1.7 —
strftime () behavior.

utcoffset ()
If tzinfo is None, returns None, else returns self .tzinfo.utcoffset (None), and raises an ex-
ception if the latter doesn’t return None or a t imedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returns None, else returns self .tzinfo.dst (None), and raises an exception if
the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returns None, else returns self . tzinfo.tzname (None), or raises an exception if
the latter doesn’t return None or a string object.

5.1.6 tzinfo Objects

tzinfo is an abstract base clase, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the standard t zinfo methods needed by the
datetime methods you use. The datet ime module does not supply any concrete subclasses of tzinfo.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time
objects. The latter objects view their members as being in local time, and the t zinfo object supports methods

100 Chapter 5. Data Types

revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: A tzinfo subclass must have an ___init___ method that can be called with
no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be
relaxed in the future.

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

utcoffset (self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo object
represents both time zone and DST adjustments, ut cof £set () should return their sum. If the UTC offset
isn’t known, return None. Else the value returned must be a t imede 1t a object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementations of ut coffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.

The default implementation of utcoffset () raises Not ImplementedError.

dst (self, dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information
isn’t known. Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (see utcoffset () for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned by utcoffset (), so there’s no need to consult dst () unless you're
interested in obtaining DST info separately. For example, datetime.timetuple () callsits tzinfo
member’s dst () method to determine how the tm_isdst flag should be set, and t zinfo . fromutc ()
calls dst () to account for DST changes when crossing time zones.

An instance 7z of a t zinfo subclass that models both standard and daylight times must be consistent in

this sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datetime df withdr.tzinfo == tzForsane t zinfo subclasses,

this expression yields the time zone’s “’standard offset”, which should not depend on the date or the time,
but only on geographic location. The implementation of datetime.astimezone () relies on this, but
cannot detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot
guarantee this, it may be able to override the default implementation of tzinfo.fromutc () to work
correctly with ast imezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn’t account for DST
return timedelta (0)

or

def dst (self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

5.1. datetime — Basic date and time types 101

tzname (self, dt)
Return the time zone name corresponding to the datetime object dt, as a string. Nothing about string
names is defined by the datet ime module, and there’s no requirement that it mean anything in particular.
For example, "GMT”, "UTC”, ”-500”, ”-5:00”, "EDT”, "US/Eastern”, ”America/New York™ are all valid
replies. Return None if a string name isn’t known. Note that this is a method rather than a fixed string
primarily because some tzinfo subclasses will wish to return different names depending on the specific
value of dt passed, especially if the t zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datet ime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as
self. tzinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the
tzinfo methods interpret df as being in local time, and not need worry about objects in other timezones.

There is one more t zinfo method that a subclass may wish to override:

fromutc (self, dt)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt’s date and time members are to be viewed as expressing a UTC time. The
purpose of fromutc () is to adjust the date and time members, returning an equivalent datetime in self’s
local time.

Most t zinfo subclasses should be able to inherit the default fromutc () implementation without prob-
lems. It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the default fromutc () implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementations of astimezone () and fromutc () may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta (0)
HOUR = timedelta (hours=1)

102 Chapter 5. Data Types

A UTC class.

class UTC (tzinfo) :
nn "UTC" nn

def utcoffset (self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()
A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTIC") is a different way to build a

UTC tzinfo object.

class FixedOffset (tzinfo) :
"""Fixed offset in minutes east from UTC."""

def _ _init_ (self, offset, name):
self._ offset = timedelta (minutes = offset)
self._ name = name

def utcoffset (self, dt):
return self._ offset

def tzname(self, dt):
return self._ name

def dst(self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

class LocalTimezone (tzinfo) :

def utcoffset (self, dt):
if self._isdst (dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self._isdst (dt):
return DSTDIFF
else:
return ZERO

def tzname(self, dt):

5.1. datetime — Basic date and time types 103

return _time.tzname[self._ isdst (dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt .weekday (), 0, -1)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):
days_to_go = 6 - dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

In the US, DST starts at 2am (standard time) on the first Sunday in April.
DSTSTART = datetime (1, 4, 1, 2)

and ends at 2am (DST time; lam standard time) on the last Sunday of Oct.

which is the first Sunday on or after Oct 25.

DSTEND = datetime (1, 10, 25, 1)

class USTimeZone (tzinfo) :

def __init__ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__ (self):
return self.reprname

def tzname(self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find first Sunday in April & the last in October.
start = first_sunday_on_or_after (DSTSTART.replace (year=dt.year))
end = first_sunday_on_or_after (DSTEND.replace (year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:

104

Chapter 5. Data Types

return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "CsST", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pPST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last
Sunday in October:

UuTcC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM :MM :MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

o
fa
\S)

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so ast imezone (Eastern) won’t deliver a result with hour == 2 on
the day DST begins. In order for astimezone () to make this guarantee, the rzinfo.dst () method must
consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. astimezone () mimics the local clock’s behavior by mapping
two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In order for ast imezone () to make this guarantee,
the tzinfo.dst () method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t zinfo subclasses; there are no ambi-
guities when using UTC, or any other fixed-offset t zinfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

51.7 strftime () Behavior

date, datetime, and t ime objects all support a strftime (format) method, to create a string representing
the time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the t ime
module’s time.strftime (fmt, d.timetuple ()) although not all objects support a timetuple ()
method.

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 0 for the month and day.

For date objects, the format codes for hours, minutes, and seconds should not be used, as date objects have no
such values. If they’re used anyway, O is substituted for them.

For a naive object, the $z and %7 format codes are replaced by empty strings.
For an aware object:
%z utcoffset () is transformed into a S-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC

offset minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30),
%z is replaced with the string * —0330".

5.1. datetime — Basic date and time types 105

%7 If tzname () returns None, %Z is replaced by an empty string. Otherwise %7 is replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common. The documentation for Python’s t ime module
lists the format codes that the C standard (1989 version) requires, and those work on all platforms with a standard
C implementation. Note that the 1999 version of the C standard added additional format codes.

The exact range of years for which strftime () works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

5.1.8 Examples
Creating Datetime Objects from Formatted Strings

The datetime class does not directly support parsing formatted time strings. You can use time.strptime
to do the parsing and create a datet ime object from the tuple it returns:

>>> s = "2005-12-06T12:13:14"

>>> from datetime import datetime

>>> from time import strptime

>>> datetime (xstrptime (s, "$Y-%$m-%dT%H:%M:%S") [0:6])
datetime.datetime (2005, 12, 6, 12, 13, 14)

5.2 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Use set firstweekday () to set the first day of the week to Sunday (6) or to
any other weekday. Parameters that specify dates are given as integers.

Most of these functions and classses rely on the datet ime module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Grego-
rian” calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all
computations.

class Calendar ([ﬁrstweekday])
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. O is Monday
(the default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for format-
ting. This class doesn’t do any formatting itself. This is the job of subclasses. New in version 2.5.

Calendar instances have the following methods:

iterweekdays (weekday)
Return an iterator for the week day numbers that will be used for one week. The first number from the
iterator will be the same as the number returned by firstweekday ().

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will be tuples consisting of a day number and a week day number.

106 Chapter 5. Data Types

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year month[, width])
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks and
each week contains 1-7 days. Days are datetime.date objects.

yeardays2calendar (year, month[, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
ZEero.

yeardayscalendar (year month[, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class TextCalendar ([ﬁrstweekday])
This class can be used to generate plain text calendars.

New in version 2.5.
TextCalendar instances have the following methods:

formatmonth (theyear, themonth[, w[, []])
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If [is given, it specifies the number of lines that each week will use. Depends on the
first weekday as set by setfirstweekday ().

prmonth (theyear, themonth[, w[, l]])
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, themonth[, w[, l[, c[, m]]]])
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [/, and c are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as set by setfirstweekday (). The earliest year for which a calendar can be
generated is platform-dependent.

pryear (theyear[, w[, l[, c[, m]]]])
Print the calendar for an entire year as returned by formatyear ().

class HTMLCalendar ([ﬁrstweekday])
This class can be used to generate HTML calendars.

New in version 2.5.
HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth[, withyear])
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, themonth[, width])
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per row.

5.2. calendar — General calendar-related functions 107

formatyearpage (theyear, themonth [, width [, css[, encoding]]])
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of months
per row. css is the name for the cascading style sheet to be used. None can be passed if no style sheet
should be used. encoding specifies the encoding to be used for the output (defaulting to the system default
encoding).

class LocaleTextCalendar ([ﬁrstweekday[, locale]])
This subclass of Text Calendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

class LocaleHTMLCalendar ([ﬁrstweekday[, locale]])
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

For simple text calendars this module provides the following functions.

setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (year)
Returns True if year is a leap year, otherwise False.

leapdays (y1, y2)
Returns the number of leap years in the range [y/...y2), where y/ and y2 are years. Changed in version
2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

prmonth (theyear, themonth[, w[, l]])
Prints a month’s calendar as returned by month ().

month (theyear, themonth [w[, l]])
Returns a month’s calendar in a multi-line string using the formatmonth of the TextCalendar class.
New in version 2.0.

prcal (year[, w[, l[c]]])
Prints the calendar for an entire year as returned by calendar ().

calendar (year[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear of the
TextCalendar class. New in version 2.0.

timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the

108 Chapter 5. Data Types

t ime module, and returns the corresponding UNIX timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, time.gmtime () and timegm () are each others’ inverse. New in version
2.0.

The calendar module exports the following data attributes:

day_ name
An array that represents the days of the week in the current locale.

day_abbr
An array that represents the abbreviated days of the week in the current locale.

month name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13 and month_name [0] is the empty string.

month abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty
string.

See Also:

Module datet ime (section 5.1):
Object-oriented interface to dates and times with similar functionality to the t ime module.

Module t ime (section 14.2):
Low-level time related functions.

5.3 collections — High-performance container datatypes

New in version 2.4.

This module implements high-performance container datatypes. Currently, there are two datatypes, deque and
defaultdict. Future additions may include balanced trees and ordered dictionaries. =~ Changed in version 2.5:
Added defaultdict.

5.3.1 deque objects

deque ([itemble])
Returns a new deque objected initialized left-to-right (using append ()) with data from iterable. If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O (1) performance in either direction.

Though 1ist objects support similar operations, they are optimized for fast fixed-length operations and
incur O (n) memory movement costs for ‘pop (0) > and ‘insert (0, v)’ operations which change both
the size and position of the underlying data representation. New in version 2.4.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

5.3. collections — High-performance container datatypes 109

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Removed the first occurrence of value. If not found, raises a ValueError. New in version 2.5.

rotate (n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: ‘d.appendleft (d.pop())’ .

’

In addition to the above, deques support iteration, pickling, ‘len (d)’, ‘reversed(d)’, ‘copy.copy (d)’,

‘copy .deepcopy (d)’, membership testing with the in operator, and subscript references such as ‘d[-1]".

Example:

110 Chapter 5. Data Types

>>> from collections import deque

>>> d = deque (’ghi’) # make a new deque with three items

>>> for elem in d: # iterate over the deque’s elements
print elem.upper ()

G

H

I

>>> d.append(’j") # add a new entry to the right side

>>> d.appendleft (' £") # add a new entry to the left side

>>> d # show the representation of the deque

deque (["£", "g’, '"h", "i", "3'])

>>> d.pop () # return and remove the rightmost item

Ijl

>>> d.popleft () # return and remove the leftmost item

Ifl

>>> list (d) # list the contents of the deque

["g’, 'h’, "i’]

>>> d[0] # peek at leftmost item

Igl

>>> d[-1] # peek at rightmost item

Iil

>>> list (reversed(d)) # list the contents of a deque in reverse

[vi’, 'h’, "'g’l

>>> 'h'’ in d # search the deque

True

>>> d.extend(’ jkl1’) # add multiple elements at once

>>> d

deque(['g", "h", "i", 3", 'k', "1'])

>>> d.rotate (1) # right rotation

>>> d

deque (["1", "g", 'h", 71", "3", 'k’'])

>>> d.rotate (-1) # left rotation

>>> d

deque(['g’, "h", "i", 3", 'k'", "1'])

>>> deque (reversed(d)) # make a new deque in reverse order

deque (["1", "k’, "3, "i", 'h', "g'])

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ("abc’) # extendleft () reverses the input order
>>> d
deque(['c’, 'b’, 'a’l)

Recipes

This section shows various approaches to working with deques.

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

5.3. collections — High-performance container datatypes 111

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left
side of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the
rotation.

With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup,
drop, swap, over, pick, rot,and rol1l.

A roundrobin task server can be built from a deque using popleft () to select the current task and append ()
to add it back to the tasklist if the input stream is not exhausted:

def roundrobin (xiterables):
pending = deque (iter (i) for i in iterables)
while pending:
task = pending.popleft ()
try:
yield task.next ()
except Stoplteration:
continue
pending.append (task)

>>> for value in roundrobin(’abc’, 'd’, "efgh’):
print value

oWQ QOO0 QW

Multi-pass data reduction algorithms can be succinctly expressed and efficiently coded by extracting elements
with multiple calls to popleft (), applying the reduction function, and calling append () to add the result
back to the queue.

For example, building a balanced binary tree of nested lists entails reducing two adjacent nodes into one by
grouping them in a list:

def maketree (iterable):
d = deque (iterable)
while len(d) > 1:
pair = [d.popleft (), d.popleft ()]
d.append (pair)
return list (d)

>>> print maketree (’abcdefgh’)
(reerar, w1, ('ce’y rd’ 11, [l'e’, "£71, ['g’, "h']111]

112 Chapter 5. Data Types

5.3.2 defaultdict objects

defaultdict ([defaultjactory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the builtin dict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None.
All remaining arguments are treated the same as if they were passed to the dict constructor, including
keyword arguments.

New in version 2.5.
defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises an KeyError exception with the key as argu-
ment.

If default_factory isnot None, it is called without arguments to provide a default value for the given
key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the _ _getitem__ method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__ .

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the ___missing__ method; it is initialized from the first argument to the con-
structor, if present, or to None, if absent.

defaultdict Examples

Using 1ist as the default_factory, itis easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s = [('yellow’, 1), ('blue’, 2), ('yellow’, 3), ("blue’, 4), ('red’, 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> d.items ()
[("blue’, [2, 4]1), ("red’, [1]), ("yellow’, [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The 1ist.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict .setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []) .append(v)

>>> d.items ()

[("blue’, [2, 4]), (‘red’, [1]), ("yellow’, [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset
in other languages):

5.3. collections — High-performance container datatypes 113

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> d.items ()
(¢rir, 4, (s, 2), (s, 4), ('m", 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls
int () to supply a default count of zero. The increment operation then builds up the count for each letter. This
technique makes counting simpler and faster than an equivalent technique using dict .get ():

>>> d = {}
>>> for k in s:
d[k] = d.get(k, 0) + 1

>>> d.items ()
(¢rir, 4), ('p"y 2), (!s’, 4), ('m", 1)]

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red’, 1), ("blue’, 2), ('red’, 3), ("blue’, 4), ('red’', 1), ('blue’,
>>> d = defaultdict (set)
>>> for k, v in s:

d[k].add(v)

>>> d.items ()
[("blue’, set([2, 4])), ('red’, set([1l, 3]))]

5.4 heapg— Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for which heap [k] <= heap [2+k+1] and heap [k] <= heap [2+k+2] for all k, counting el-
ements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is that heap [0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a ’min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest
item, and heap . sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heappop (heap)

114 Chapter 5. Data Types

Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapify (x)
Transform list x into a heap, in-place, in linear time.

heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new ifem. The heap size doesn’t
change. If the heap is empty, IndexError is raised. This is more efficient than heappop () followed by
heappush (), and can be more appropriate when using a fixed-size heap. Note that the value returned may
be larger than ifem! That constrains reasonable uses of this routine unless written as part of a conditional
replacement:

if item > heap[0]:
item = heapreplace (heap, item)

Example of use:

>>> from heapg import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush (heap, item)

>>> sorted = []
>>> while heap:
sorted.append (heappop (heap))

>>> print sorted

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort ()

>>> print data == sorted

True

>>>

The module also offers two general purpose functions based on heaps.

nlargest (n, iterable[, key])
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
‘key=str.lower’ Equivalentto: ‘sorted (iterable, key=key, reverse=True) [:n] New
in version 2.4. Changed in version 2.5: Added the optional key argument.

nsmallest (n, iterable[, key])
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, speci-
fies a function of one argument that is used to extract a comparison key from each element in the iter-
able: ‘key=str.lower’ Equivalentto: ‘sorted (iterable, key=key) [:n]’ New in version 2.4.
Changed in version 2.5: Added the optional key argument.

Both functions perform best for smaller values of n. For larger values, it is more efficient to use the sorted ()
function. Also, when n==1, it is more efficient to use the builtin min () and max () functions.

5.4.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for which a [k] <= a[2+k+1] and a[k] <= a[2xk+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below are k, not a [k]:

5.4. heapg — Heap queue algorithm 115

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2 «k+1 and 2xk+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell "wins” over the
two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0
position, and then percolate this new O down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not "better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer

).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organised'. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value ”wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more

I'The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at ”progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

116 Chapter 5. Data Types

common approach. The module is called bisect because it uses a basic bisection algorithm to do its work.
The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect_left (list, item[, lo[, hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters /o and ki may be
used to specify a subset of the list which should be considered; by default the entire list is used. If item is
already present in /ist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parameter to list. insert (). This assumes that list is already sorted. New
in version 2.1.

bisect_right (/ist, item[, lo [hi]])
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of item in list. New in version 2.1.

bisect (...)
Alias for bisect_right ().

insort_left (list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent to list. insert (bisect.bisect_left (list,
item, lo, hi), item). This assumes that /ist is already sorted. New in version 2.1.

insort_right (/ist, item[, 10[, hi]])
Similar to insort_left (), but inserting item in list after any existing entries of ifem. New in version
2.1.

insort (...)
Alias for insort_right ().

5.5.1 Examples

The bisect () function is generally useful for categorizing numeric data. This example uses bisect () to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’,
75..841is a ‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect (breakpoints, total)]

>>> grade (66)

ICI

>>> map (grade, [33, 99, 77, 44, 12, 88])
[VEI, VAI, VBV, VDV, ’FV, ’AVJ

5.6 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

5.6. array — Efficient arrays of numeric values 117

Type code | C Type Python Type Minimum size in bytes
rc! char character 1
"o’ signed char int 1
"B’ unsigned char | int 1
ru’ Py_UNICODE | Unicode character 2
"h' signed short int 2
"H! unsigned short | int 2
rir signed int int 2
"I’ unsigned int long 2
r1r signed long int 4
N unsigned long | long 4
rE! float float 4
ey double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed through the itemsize attribute. The values stored for ' L” and
" I’ items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecode [initializer])
Return a new array whose items are restricted by fypecode, and initialized from the optional initializer
value, which must be a list, string, or iterable over elements of the appropriate type. Changed in version
2.4: Formerly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new
array’s fromlist (), fromstring (), or fromunicode () method (see below) to add initial items to
the array. Otherwise, the iterable initializer is passed to the extend () method.

ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
cases, TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value x to the end of the array.

buffer_info ()
Return a tuple (address, length) giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as ar-
ray.buffer_info () [1] * array.itemsize. This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl () op-
erations. The returned numbers are valid as long as the array exists and no length-changing operations are
applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in the Python/C API Reference Manual.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of values, Runt imeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

118 Chapter 5. Data Types

../api/newTypes.html

count (x)
Return the number of occurrences of x in the array.

extend (iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could
only be another array.

fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
Jf must be a real built-in file object; something else with a read () method won’t do.

fromlist (/ist)
Append items from the list. This is equivalent to ‘for x in list: a.append (x)’ except that if there
is a type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’ u’ array; otherwise a
ValueError israised. Use ‘array.fromstring (ustr.decode (enc))’ to append Unicode data
to an array of some other type.

index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to
the end of the array.

pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to —1, so
that by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.1. Use the fromfile () method.

Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else with a read () method won’t do.

remove (x)
Remove the first occurrence of x from the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object f.

tolist ()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by the tofile () method.)

tounicode ()
Convert the array to a unicode string. The array must be a type ’ u’ array; otherwise a ValueError is
raised. Use ‘array.tostring() .decode (enc)’ to obtain a unicode string from an array of some
other type.

5.6. array — Efficient arrays of numeric values 119

write (f)
Deprecated since release 1.5.1. Use the tofile () method.

Write all items (as machine values) to the file object f.

When an array object is printed or converted to a string, it is represented as array (typecode, initializer) . The
initializer is omitted if the array is empty, otherwise it is a string if the fypecode is ' c’, otherwise it is a list
of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using reverse quotes (* ‘), so long as the array () function has been imported using from array import
array. Examples:

array ('1")

array(’'c’, '"hello world’)

array (‘u’, u’hello \textbackslash u2641’)
array (1", [1, 2, 3, 4, 5])

array('d’, [1.0, 2.0, 3.141])

See Also:

Module st ruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Module xdr1ib (section 9.5):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)
The Numeric Python extension (NumPy) defines another array type; see http:/numpy.sourceforge.net/
for further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.7 sets — Unordered collections of unique elements

New in version 2.3.

The sets module provides classes for constructing and manipulating unordered collections of unique elements.
Common uses include membership testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets support x in sef, len (set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

Most set applications use the Set class which provides every set method except for __hash__ (). For advanced
applications requiring a hash method, the ImmutableSet classaddsa___hash__ () method but omits methods
which alter the contents of the set. Both Set and ImmutableSet derive from BaseSet, an abstract class useful
for determining whether something is a set: isinstance (0bj, BaseSet).

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines both __eq _ and __hash__. As a result,
sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable col-
lections such as tuples or instances of ImmutableSet. For convenience in implementing sets of sets, inner
sets are automatically converted to immutable form, for example, Set ([Set ([’ dog’ 1) 1) is transformed to
Set ([ImmutableSet (["dog’]1)]).

class Set ([iterable])
Constructs a new empty Set object. If the optional iterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elements in iterable should be immutable or be transformable
to an immutable using the protocol described in section 5.7.3.

class ImmutableSet ([iterable])

120 Chapter 5. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

Constructs a new empty ImmutableSet object. If the optional iterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elements in iferable should be immutable or be
transformable to an immutable using the protocol described in section 5.7.3.

Because ImmutableSet objects provide a___hash__ () method, they can be used as set elements or as
dictionary keys. ImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

5.7.1 Set Objects

Instances of Set and ImmutableSet both provide the following operations:

Operation Equivalent | Result
len (s) cardinality of set s
x in s test x for membership in s
X not in s test x for non-membership in s
s.issubset (1) s <=t test whether every element in s is in ¢
s.issuperset (t) s >=t test whether every element in ¢ is in s
s.union () st new set with elements from both s and ¢
s.intersection (1) s&t new set with elements common to s and ¢
s.difference (t) s-t new set with elements in s but not in ¢
s.symmetric_difference (t) st new set with elements in either s or ¢ but not both
s.copy () new set with a shallow copy of s

Note, the non-operator versions of union (), intersection (), difference (), and symmetric_-
difference () will accept any iterable as an argument. In contrast, their operator based counterparts require
their arguments to be sets. This precludes error-prone constructions like Set (" abc’) & ’cbs’ in favor of the
more readable Set (’ abc’) .intersection (’cbs’). Changed in version 2.3.1: Formerly all arguments
were required to be sets.

In addition, both Set and ImmutableSet support set to set comparisons. Two sets are equal if and only if
every element of each set is contained in the other (each is a subset of the other). A set is less than another set
if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than
another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or
a>b. Accordingly, sets do not implement the ___cmp___ method.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is unde-
fined for lists of sets.

The following table lists operations available in ImmutableSet but not found in Set:

Operation | Result
hash (s) ‘ returns a hash value for s

The following table lists operations available in Set but not found in ImmutableSet:

Operation Equivalent | Result
s.update (1) s|=t return set s with elements added from ¢
s.intersection_update (t) s &=t return set s keeping only elements also found in ¢
s.difference_update (¢) s-=t return set s after removing elements found in ¢
s.symmetric_difference_update (t) s'=t return set s with elements from s or # but not both
s.add (x) add element x to set s
s.remove (x) remove x from set s; raises KeyError if not present
s.discard (x) removes x from set s if present
s.pop () remove and return an arbitrary element from s; raises KeyError
s.clear () remove all elements from set s

5.7. sets — Unordered collections of unique elements 121

Note, the non-operator versions of update (), intersection_update (),difference_update (), and
symmetric_difference_update () will accept any iterable as an argument. Changed in version 2.3.1:
Formerly all arguments were required to be sets.

Also note, the module also includes a union_update () method which is an alias for update (). The method
is included for backwards compatibility. Programmers should prefer the update () method because it is sup-
ported by the builtin set () and frozenset () types.

5.7.2 Example

>>> from sets import Set

>>> engineers = Set ([’John’, ’Jane’, ’'Jack’, ’"Janice’])

>>> programmers = Set ([’Jack’, ’Sam’, ’'Susan’, ’'Janice’])

>>> managers = Set ([’Jane’, ’"Jack’, ’'Susan’, ’'Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection

>>> fulltime_management = managers — engineers - programmers # difference

>>> engineers.add(’Marvin’) # add element

>>> print engineers

Set ([’ Jane’, ’'Marvin’, ’Janice’, ’'John’, ’Jack’])

>>> employees.issuperset (engineers) # superset test

False

>>> employees.union_update (engineers) # update from another set

>>> employees.issuperset (engineers)

True

>>> for group in [engineers, programmers, managers, employees]:
group.discard(’ Susan’) # unconditionally remove element
print group

Set (["Jane’, ’'Marvin’, ’Janice’, ’'John’, ’'Jack’])

Set ([’ Janice’, ’"Jack’, ’'Sam’])

Set (["Jane’, 'Zack’, '"Jack’])

Set ([’ Jack’, ’'Sam’, ’"Jane’, ’'Marvin’, ’Janice’, ’'John’, ’'Zack’])

5.7.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, mutable Set objects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has
an__as_immutable__ () method which returns an immutable equivalent.

Since Set objects have a __as_immutable__ () method returning an instance of ImmutableSet, it is
possible to construct sets of sets.

A similar mechanism is needed by the __contains__ () and remove () methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily_immutable__ () method which returns the element wrapped by a class that provides
temporary methods for __hash__ (),__eq (),and __ne__ ().

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the __as_temporarily_ immutable__ () method which returns the Set object
wrapped by a new class _TemporarilyImmutableSet.

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyImmutableSet. In other words, sets of mutable sets are not thread-safe.

122 Chapter 5. Data Types

5.7.4 Comparison to the built-in set types

The built-in set and frozenset types were designed based on lessons learned from the sets module. The
key differences are:

e Set and ImmutableSet were renamed to set and frozenset.

e There is no equivalent to BaseSet. Instead, use isinstance (x, (set, frozenset)).

e The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.
e The built-in versions have more space efficient pickles.

e The built-in versions do not have a union_update () method. Instead, use the update () method
which is equivalent.

e The built-in versions do not have a _repr (sorted=True) method. Instead, use the built-in repr ()
and sorted () functions: repr (sorted(s)).

e The built-in version does not have a protocol for automatic conversion to immutable. Many found this
feature to be confusing and no one in the community reported having found real uses for it.

5.8 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

class scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” — timefunc should be callable without arguments, and return a number (the
“time”, in any units whatsoever). The delayfunc function should be callable with one argument, compatible
with the output of timefunc, and should delay that many time units. delayfunc will also be called with the
argument O after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> g=gched.scheduler (time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time ()

>>> def print_some_times() :
print time.time ()
s.enter (5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run ()
print time.time ()

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

5.8.1 Scheduler Objects

scheduler instances have the following methods:

5.8. sched — Event scheduler 123

enterabs (time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return value of
the timefunc function passed to the constructor. Events scheduled for the same time will be executed in the
order of their priority.

Executing the event means executing action (xargument) . argument must be a sequence holding the pa-
rameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel ()).

enter (delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect
and the return value are the same as those for enterabs ().

cancel (event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
RuntimeError.

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using the de 1ay func function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raised by action, the event will not be attempted in
future calls to run ().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

5.9 mutex — Mutual exclusion support

The mutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not
require (or imply) threading or multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or more (function, argument) pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and its function (argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interface for 1ock (), where a function is called
once the lock is acquired.

5.9.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return True, otherwise, return False.

lock (function, argument)
Execute function (argument) , unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. See unlock for explanation of when function (argument) is executed in that case.

124 Chapter 5. Data Types

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

5.10 Queue — A synchronized queue class

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple threads. The Queue class in this
module implements all the required locking semantics. It depends on the availability of thread support in Python.

The Queue module defines the following class and exception:

class Queue (maxsize)
Constructor for the class. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. If maxsize is less than or equal to zero, the queue size is infinite.

exception Empty
Exception raised when non-blocking get () (or get_nowait ()) is called on a Queue object which is
empty.

exception Full
Exception raised when non-blocking put () (or put_nowait ()) is called on a Queue object which is
full.

5.10.1 Queue Objects

Class Queue implements queue objects and has the methods described below. This class can be derived from in
order to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See
the source code for details. The public methods are:

gsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Return True if the queue is empty, False otherwise. Because of multithreading semantics, this is not
reliable.

full ()
Return True if the queue is full, False otherwise. Because of multithreading semantics, this is not
reliable.

put (item[, block[, timeout]])
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary
until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the
Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the
queue if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case).

New in version 2.3: the timeout parameter.

put_nowait (item)
Equivalent to put (item, False).

get ([block[, timeout]])
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If fimeout is a positive number, it blocks at most timeout
seconds and raises the Empty exception if no item was available within that time. Otherwise (block is
false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in
that case).

New in version 2.3: the timeout parameter.

get_nowait ()
Equivalent to get (False).

5.10. Queue — A synchronized queue class 125

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon con-
sumer threads.

task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get ()
used to fetch a task, a subsequent call to task_done () tells the queue that the processing on the task is
complete.

If a join () is currently blocking, it will resume when all items have been processed (meaning that a
task_done () call was received for every item that had been put () into the queue).

Raises a ValueError if called more times than there were items placed in the queue. New in version
2.5.
join ()
Blocks until all items in the queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down

whenever a consumer thread calls task_done () to indicate that the item was retrieved and all work on it
is complete. When the count of unfinished tasks drops to zero, join() unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker () :
while True:
item = g.get ()
do_work (item)
qg.task_done ()

g = Queue ()

for 1 in range (num_worker_threads) :
t = Thread(target=worker)
t.setDaemon (True)
t.start ()

for item in source():
g.put (item)

g.join () # block until all tasks are done

511 weakref — Weak references

New in version 2.1.
The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it’s
desired that a large object not be kept alive solely because it appears in a cache or mapping. For example, if you
have a number of large binary image objects, you may wish to associate a name with each. If you used a Python
dictionary to map names to images, or images to names, the image objects would remain alive just because they
appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDictionary
classes supplied by the weakref module are an alternative, using weak references to construct mappings that
don’t keep objects alive solely because they appear in the mapping objects. If, for example, an image object is a
value in a WeakValueDictionary, then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in
weak mappings are simply deleted.

126 Chapter 5. Data Types

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting
up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it’s not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed by the weakre £ module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type ob-
jects, DBcursor objects from the bsddb module, sockets, arrays, deques, and regular expression pattern objects.
Changed in version 2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict):
pass

obj = Dict (red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see “Weak Reference Support” in Extending and
Embedding the Python Interpreter.

class ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardless of the callback). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derives from
object.

proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of either ProxyType or CallableProxyType, depending on whether object is callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionary keys. callback is the same as the parameter
of the same name to the ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with

5.11. weakref — Weak references 127

../ext/weakref-support.html
../ext/ext.html
../ext/ext.html

objects that override attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish ”by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the
references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

iterkeyrefs ()
Return an iterator that yields the weak references to the keys. New in version 2.5.

keyrefs ()
Return a list of weak references to the keys. New in version 2.5.

class WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
asthe iterkeyrefs () and keyrefs () methods of WeakKeyDictionary objects.

itervaluerefs ()
Return an iterator that yields the weak references to the values. New in version 2.5.

valuerefs ()
Return a list of weak references to the values. New in version 2.5.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standard ReferenceError exception.

See Also:

PEP 0205, “Weak References”
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

5.11.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

128 Chapter 5. Data Types

>>> import weakref
>>> class Object:
pass

>>> o = Object ()

>>> r = weakref.ref (0)
>>> 02 = r()

>>> o 1s 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o=r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can’t frobnicate."
else:
print "Object is still live!"
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of
the WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect
the value that’s returned when the referent is accessed:

5.11. weakref — Weak references 129

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, =**annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.iteritems{() :
setattr(self, k, v)

def _ call__ (self):
"""Return a pair containing the referent and the number of

times the reference has been called.
nmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self._ counter += 1

ob = (ob, self.__ counter)

return ob

5.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obij(oid) :
return _id2obj_dict[oid]

5.12 UserDict — Class wrapper for dictionary objects

The module defines a mixin, DictMixin, defining all dictionary methods for classes that already have a mini-
mum mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This also module defines a class, UserDict, that acts as a wrapper around dictionary objects. The need for this
class has been largely supplanted by the ability to subclass directly from dict (a feature that became available
starting with Python version 2.2). Prior to the introduction of dict, the UserDict class was used to create
dictionary-like sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

The UserDict module defines the UserDict class and DictMixin:

class UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its
contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes. Note:
For backward compatibility, instances of UserDict are not iterable.

130 Chapter 5. Data Types

class IterableUserDict ([initialdata])
Subclass of UserDict that supports direct iteration (e.g. for key in myDict).

In addition to supporting the methods and operations of mappings (see section 3.8), UserDict and
IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

class DictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__ (),__ _setitem__ (),_ _delitem__ (),and keys ().

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but __delitem__ will preclude only pop and popitem from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defining __contains_-
(),__iter_ (),and iteritems ().

Since the mixin has no knowledge of the subclass constructor, it does notdefine __init__ () orcopy ().

5.13 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-in 1ist

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

class UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be either a regular Python list, or an instance of UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 3.6), UserLi st instances
provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

5.14 Userstring — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-

5.13. UserList — Class wrapper for list objects 131

classing directly from the built-in str type instead of using UserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case for MutableString.

The UserString module defines the following classes:

class UserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via the dat a attribute of UserSt ring instances. The instance’s
contents are initially set to a copy of sequence. sequence can be either a regular Python string or Unicode
string, an instance of UserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-in st r () function.

class MutableString ([sequence])
This class is derived from the UserString above and redefines strings to be mutable. Mutable strings
can’t be used as dictionary keys, because dictionaries require immutable objects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the _—
_hash___ () method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 3.6.1, “String
Methods”), UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

5.15 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such as the 1istiterator type. Itis safe touse ‘from types import =’ — the module does
not export any names besides the ones listed here. New names exported by future versions of this module will all
endin ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import =
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove (item)

Starting in Python 2.2, built-in factory functions such as int () and str () are also names for the corresponding
types. This is now the preferred way to access the type instead of using the t ypes module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance (item, int):
del mylist[item]
else:
mylist.remove (item)

132 Chapter 5. Data Types

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type ()).

BooleanType
The type of the bool values True and False; this is an alias of the built-in bool () function. New in
version 2.3.

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1. 0).

ComplexType
The type of complex numbers (e.g. 1. 07j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e.g. * Spam’).

UnicodeType
The type of Unicode character strings (e.g. u’ Spam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).
ListType
The type of lists (e.g. [0, 1, 2, 31).
DictType
The type of dictionaries (e.g. {” Bacon’: 1, 'Ham’: O0}).
DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returned by compile ().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like 1len () or sys.exit ().

5.15. types — Names for built-in types 133

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys . stdout.

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice ().

EllipsisType
The type of E11ipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

DictProxyType
The type of dict proxies, such as TypeType.__dict__.

NotImplementedType
The type of Not Implemented

GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
orarray.array.typecode. This constant is not defined in implementations of Python that do not have
such extension types, so for portable code use hasattr (types, ’GetSetDescriptorType’).
New in version 2.5.

MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This constant is not defined in implementations of
Python that do not have such extension types, so for portable code use hasattr (types,
"MemberDescriptorType’). New in version 2.5.

StringTypes
A sequence containing St ringType and UnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only contains UnicodeType if it has been built in the running version of Python. For example:
isinstance (s, types.StringTypes). New in version 2.2.

5.16 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in
marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

instance (class[, dict])
This function creates an instance of class with dictionary dict without callingthe __init__ () constructor.
If dict is omitted or None, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

134 Chapter 5. Data Types

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None. function must
be callable.

function (code, globals[, name [, argdefs [, closure]]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string or None.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code .co_name. If argdefs is given, it must be a tuple and will be used to determine the default values of
parameters. If closure is given, it must be None or a tuple of cell objects containing objects to bind to the
names in code .co_freevars.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

Inotab)
This function is an interface to the PyCode_New () C function.

module (name/, doc])
This function returns a new module object with name name. name must be a string. The optional doc
argument can have any type.

classobj (name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should be a
tuple of classes) and with namespace dict.

5.17 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X = copy.copy(y) # make a shallow copy of y
copy .deepcopy (v) # make a deep copy of y

by
1

For module specific errors, copy .error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts references into
it to the objects found in the original.

e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

e Because deep copy copies everything it may copy too much, e.g., administrative data structures that should
be shared even between copies.

The deepcopy () function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

¢ letting user-defined classes override the copying operation or the set of components copied.

5.17. copy — Shallow and deep copy operations 135

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated by the pickle module. Changed in version 2.5:
Added copying functions.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of
module pickle for information on these methods. The copy module does not use the copy_ reg registration
module.

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and
__deepcopy___ (). The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the __deepcopy__ () implementation needs to make a deep copy of a component, it should call
the deepcopy () function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle (section 13.1):
Discussion of the special methods used to support object state retrieval and restoration.

5.18 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can
be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint.

Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a dictionary
was sorted only if its display required more than one line, although that wasn’t documented.

The pprint module defines one class:

class PrettyPrinter (...)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using the stream keyword; the only method used on the stream object is the
file protocol’s write () method. If not specified, the PrettyPrinter adopts sys.stdout. Three
additional parameters may be used to control the formatted representation. The keywords are indent, depth,
and width. The amount of indentation added for each recursive level is specified by indent; the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled by depth; if the data structure being printed is too deep, the
next contained level is replaced by ‘.. .’. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained using the width parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

136 Chapter 5. Data Types

>>> import pprint, sys
>>> stuff = sys.path[:]

>>> stuff.insert (0, stuffl[:])
>>> pp = pprint.PrettyPrinter (indent=4)

>>> pp.pprint (stuff)
[["y

" /usr/local/lib/pythonl.5’,

" /usr/local/lib/pythonl.5/test’,

" /usr/local/lib/pythonl.5/sunos5’,

" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’],

rr
4

' /usr/local/lib/pythonl.5’,

" /usr/local/lib/pythonl.5/test’,

" /usr/local/lib/pythonl.5/sunos5’,

" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’]

>>>
>>> import parser

>>> tup = parser.astZ2tuple(
. parser.suite (open ('pprint.py’) .read())) [1]1[1]1[1]
>>> pp = pprint.PrettyPrinter (depth=6)

>>> pp.pprint (tup)
(266, (267, (307, (287,

(288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat (object[, indent[, width [, depth]]])
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The parameters indent,

width and depth were added.

pprint (object[, stream[, indent[, width[, depth]]]])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement for in-
specting values. indent, width and depth will be passed to the PrettyPrinter constructor as formatting

parameters.

>>> stuff = sys.path[:]

>>> stuff.insert (0, stuff)

>>> pprint.pprint (stuff)

[<Recursion on list with

rr
I4

" /usr/local/lib/pythonl.
" /usr/local/lib/pythonl.
" /usr/local/lib/pythonl.
" /usr/local/lib/pythonl.
" /usr/local/lib/pythonl.

1d=869440>,

57,

5/test’,
5/sunos5’,
5/sharedmodules’,
5/tkinter’]

Changed in version 2.4: The parameters indent, width and depth were added.

isreadable (object)

Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value
using eval (). This always returns false for recursive objects.

>>> pprint.isreadable (stuff)

False

isrecursive (object)

Determine if object requires a recursive representation.

One more support function is also defined:

5.18. pprint — Data pretty printer

137

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion on fype-
name with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)

"[<Recursion on list with 1d=682968>, ’’, ’/usr/local/lib/pythonl.5’, ' /usr/loca
1/1ib/pythonl.5/test’, ' /usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

5.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be
created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns false for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of the saferepr () implementation.

format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which contains the id () of objects that are part of the current
presentation context (direct and indirect containers for object that are affecting the presentation) as the keys;
if an object needs to be presented which is already represented in context, the third return value should
be true. Recursive calls to the format () method should add additional entries for containers to this
dictionary. The third argument, maxlevels, gives the requested limit to recursion; this will be 0 if there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth argument, level,
gives the current level; recursive calls should be passed a value less than that of the current call. New in
version 2.3.

5.19 repr — Alternate repr () implementation

The repr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in repr () ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

138 Chapter 5. Data Types

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

5.19.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5
for maxarray, and 6 for the others. New in version 2.4: maxset, maxfrozenset, and set. .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
the Repr object. It is applied in a similar manner as maxstring. The defaultis 20.

repr (obj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting
method to call, passing it 0obj and level. The type-specific methods should call repr1 () to perform recur-
sive formatting, with level — 1 for the value of level in the recursive call.

repr_type (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name, type is replaced by string. join (string.split (type (0obj) .__name__ -
r_7)). Dispatch to these methods is handled by reprl (). Type-specific methods which need to
recursively format a value should call ‘self.reprl (subobj, level — 1)°.

5.19.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.reprl () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

5.19. repr — Alternate repr () implementation 139

import repr
import sys

class MyRepr (repr.Repr) :
def repr_file(self, obj, level):
if obj.name in [’/<stdin>’, ’<stdout>’, ’<stderr>']:
return obj.name
else:
return ‘obj’

aRepr = MyRepr ()
print aRepr.repr (sys.stdin) # prints ’<stdin>’

140 Chapter 5. Data Types

CHAPTER
SIX

Numeric and Mathematical Modules

The modules described in this chapter provide numeric and math-related functions and data types. The math and
cmath contain various mathematical functions for floating-point and complex numbers. For users more interested
in decimal accuracy than in speed, the decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

math Mathematical functions (sin () etc.).

cmath Mathematical functions for complex numbers.

decimal Implementation of the General Decimal Arithmetic Specification.
random Generate pseudo-random numbers with various common distributions.

itertools Functions creating iterators for efficient looping.
functools Higher-order functions and operations on callable objects.
operator All Python’s standard operators as built-in functions.

6.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath
module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

Number-theoretic and representation functions:

ceil (x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

fabs (x)
Return the absolute value of x.

floor (x)
Return the floor of x as a float, the largest integer value less than or equal to x.

fmod (x, y)

Return fmod (x, y), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — n*y for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % y returns a result with the sign of y instead, and may not be
exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is —1e-100, but the
result of Python’s —1e-100 % 1e100 is 1e100-1e-100, which cannot be represented exactly as a
float, and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when
working with floats, while Python’s x % y is preferred when working with integers.

141

frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis a float and e is an integer such that x ==
m x 2x+*e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs (m) < 1. This is used to
”pick apart” the internal representation of a float in a portable way.

ldexp (x, i)
Returnx * (2«*i). This is essentially the inverse of function frexp ().

modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x, and both are floats.

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float x with abs (x) >= 2x*52 necessarily has no fractional bits.

Power and logarithmic functions:

exp (x)
Return e+ xx.

log (x[, base])
Return the logarithm of x to the given base. If the base is not specified, return the natural logarithm of x
(that is, the logarithm to base ¢). Changed in version 2.3: base argument added.

logl0 (x)
Return the base-10 logarithm of x.

pow (x, y)
Return x* *y.

sgrt (x)
Return the square root of x.

Trigonometric functions:

acos (x)
Return the arc cosine of x, in radians.

asin (x)
Return the arc sine of x, in radians.

atan (x)
Return the arc tangent of x, in radians.

atan2 (y, x)
Return atan (y / x), in radians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, y) makes this angle with the positive X axis. The point of atan2 () is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1)
and atan2 (1, 1) arebothpi/4,butatan2 (-1, -1) is-3*pi/4.

cos (x)
Return the cosine of x radians.

hypot (x, y)
Return the Euclidean norm, sgrt (x+«x + yxy). This is the length of the vector from the origin to point

(x, ¥).

sin (x)
Return the sine of x radians.

tan (x)
Return the tangent of x radians.

Angular conversion:

142 Chapter 6. Numeric and Mathematical Modules

degrees (x)
Converts angle x from radians to degrees.

radians (x)
Converts angle x from degrees to radians.

Hyperbolic functions:

cosh (x)
Return the hyperbolic cosine of x.

sinh (x)
Return the hyperbolic sine of x.

tanh (x)
Return the hyperbolic tangent of x.

The module also defines two mathematical constants:

pPi
The mathematical constant pi.

The mathematical constant e.

Note: The math module consists mostly of thin wrappers around the platform C math library functions. Be-
havior in exceptional cases is loosely specified by the C standards, and Python inherits much of its math-
function error-reporting behavior from the platform C implementation. As a result, the specific exceptions
raised in error cases (and even whether some arguments are considered to be exceptional at all) are not
defined in any useful cross-platform or cross-release way. For example, whether math.log (0) returns
—Inf or raises ValueError or OverflowError isn’t defined, and in cases where math.log (0) raises
OverflowError,math.log (0L) may raise ValueError instead.

See Also:

Module cmath (section 6.2):
Complex number versions of many of these functions.

6.2 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -0co, continuous from above.

acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts, extending left from +1 7j to £-0cj, both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release.
The correct branch cuts should extend along the imaginary axis, one from 17j up to coj and continuous
from the right, and one from -1 j down to -cc j and continuous from the left.

atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to
o0 j, continuous from the left. The other extends from -1 j along the imaginary axis to -o¢ j, continuous
from the left. (This should probably be changed so the upper cut becomes continuous from the other side.)

6.2. cmath — Mathematical functions for complex numbers 143

atanh (x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis
to 0o, continuous from above. The other extends from -1 along the real axis to -oo, continuous from above.
(This should probably be changed so the right cut becomes continuous from the other side.)

cos (x)
Return the cosine of x.

cosh (x)
Return the hyperbolic cosine of x.

exp (x)
Return the exponential value e * xx.

log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -co, continuous from above. Changed in
version 2.4: base argument added.

loglO0 (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og () .

sin (x)
Return the sine of x.

sinh (x)
Return the hyperbolic sine of x.

sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

tan (x)
Return the tangent of x.

tanh (x)
Return the hyperbolic tangent of x.

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having
two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather have math.sqgrt (-1) raise an exception than return a complex number. Also note that
the functions defined in cmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

6.3 decimal — Decimal floating point arithmetic

New in version 2.4.

144 Chapter 6. Numeric and Mathematical Modules

The decimal module provides support for decimal floating point arithmetic. It offers several advantages over
the float () datatype:

e Decimal numbers can be represented exactly. In contrast, numbers like 1.1 do not have an ex-
act representation in binary floating point. End users typically would not expect 1.1 to display as
1.1000000000000001 as it does with binary floating point.

e The exactness carries over into arithmetic. In decimal floating point, ‘0.1 + 0.1 + 0.1 - 0.3’ 1is
exactly equal to zero. In binary floating point, result is 5.5511151231257827e-017. While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal would be preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places so that ‘1.30 + 1.20’is 2.50. The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, ‘1.3
x 1.2 gives 1.56 while ‘1.30 * 1.20 gives 1.5600.

e Unlike hardware based binary floating point, the decimal module has a user settable precision (defaulting to
28 places) which can be as large as needed for a given problem:

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ("0.1428571428571428571428571429")

¢ Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeroes. Decimals also include special values such as Infinity,
-Infinity, and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, and ROUND_UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded,
Subnormal, Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is incremented from zero
and, then, if the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them
before monitoring a calculation.

See Also:
IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

IEEE standard 854-1987, Unofficial IEEE 854 Text.

6.3.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

6.3. decimal — Decimal floating point arithmetic 145

http://www2.hursley.ibm.com/decimal/decarith.html
http://www.cs.berkeley.edu/global let OT1	extasciitilde unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 egroup spacefactor accent@spacefactor OT1	extasciitilde ejr/projects/754/private/drafts/854-1987/dir.html

>>> from decimal import =«

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, InvalidOperation,
DivisionByZero])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, or tuples. To create a Decimal from a f1oat, first
convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values such as NaN which stands for “Not a number”, positive and

negative Infinity, and -0.

>>> Decimal (10)

Decimal ("10")

>>> Decimal ("3.14")

Decimal ("3.14")

>>> Decimal ((0, (3, 1, 4), -2))
Decimal ("3.14")

>>> Decimal (str (2.0 *x 0.5))
Decimal ("1.41421356237")

>>> Decimal ("NaN")

Decimal ("NaN")

>>> Decimal ("-Infinity")
Decimal ("-Infinity")

The significance of a new Decimal is determined solely by the number of digits input. Context precision and

rounding only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.0")

Decimal ("3.0")

>>> Decimal (¥3.1415926535")

Decimal ("3.1415926535")

>>> Decimal (73.1415926535’) + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal (73.1415926535’) + Decimal(’2.7182818285")
Decimal ("5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

146 Chapter 6. Numeric and Mathematical Modules

>>> data = map (Decimal, ’1.34 1.87 3.45 2.35 1.00 0.03 9.25".split())
>>> max (data)

Decimal ("9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal("1.00"), Decimal("1.34"),
Decimal ("2.35"), Decimal ("3.45"), Decimal ("9.25")]
>>> sum (data)

Decimal ("19.29")

>>> a,b,c = datal[:3]

>>> str(a)

r1.347

>>> float (a)

1.3400000000000001

>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int (a)

1

>>> a % 5

Decimal ("6.70")

>>> a x b

Decimal ("2.5058")

>>> ¢ % a

Decimal ("0.77")

Decimal ("1.87"),

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01"), rounding=ROUND_DOWN)
Decimal ("7.32")

>>> Decimal (' 7.325") .quantize (Decimal ("1.”), rounding=ROUND_UP)
Decimal ("8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use the setcontext () function.

In accordance with the standard, the Decimal module provides two ready to use standard contexts,
BasicContext and ExtendedContext. The former is especially useful for debugging because many of
the traps are enabled:

6.3. decimal — Decimal floating point arithmetic 147

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1l, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal ("Infinity")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags()

>>> Decimal (355) / Decimal (113)

Decimal ("3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to P i was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> Decimal (1) / Decimal (0)
Decimal ("Infinity")
>>> getcontext () .traps[DivisionByZero] =1
>>> Decimal (1) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal (1) / Decimal (0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

6.3.2 Decimal objects

class Decimal ([value [context]])
Constructs a new Decimal object based from value.

value can be an integer, string, tuple, or another Decimal object. If no value is given, returns
Decimal ("0"). If value is a string, it should conform to the decimal numeric string syntax:

148 Chapter 6. Numeric and Mathematical Modules

sign ci= T T

digit HEE A O LA R A 7 A LA I LA I LA A - LA A A B - 4
indicator ci= e’ | TES

digits ::= digit [digit]...

decimal-part ::= digits ’.’ [digits] | [’.’] digits

exponent-part ::= 1indicator [sign] digits

infinity ::= 'Infinity’ | ’Inf’

nan ::= 'NaN’ [digits] | ’sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, ‘Decimal ((0, (1, 4, 1, 4), -3))’ returns
Decimal ("1.414"™).

The context precision does not affect how many digits are stored. That is determined exclusively by the
number of digits in value. For example, ‘Decimal ("3.00000")’ records all five zeroes even if the
context precision is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable.

Decimal floating point objects share many properties with the other builtin numeric types such as f1oat and int.
All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled,
printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type (such as
float or long).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal ("321e+5") .adjusted () returns seven. Used for determining the position of the
most significant digit with respect to the decimal point.

as_tuple(()
Returns a tuple representation of the number:

3

(sign, digittuple, exponent)’.

compare (other[, context])
Compares like ___cmp___ () but returns a decimal instance:

a or b is a NaN ==> Decimal ("NaN")
a <b ==> Decimal ("-1")
a ==>b ==> Decimal ("O")
a>b ==> Decimal ("1")

max (other[, context])
Like ‘max (self, other)’ except that the context rounding rule is applied before returning and that
NaN values are either signalled or ignored (depending on the context and whether they are signaling or
quiet).

min (other[, context])
Like ‘min (self, other)’ except that the context rounding rule is applied before returning and that
NaN values are either signalled or ignored (depending on the context and whether they are signaling or
quiet).

normalize ([context])
Normalize the number by stripping the rightmost trailing zeroes and converting any result equal to
Decimal ("0") to Decimal ("0e0"). Used for producing canonical values for members of an equiv-

6.3. decimal — Decimal floating point arithmetic 149

alence class. For example, Decimal ("32.100") and Decimal ("0.321000e+2") both normalize
to the equivalent value Decimal ("32.1").

quantize (exp [rounding [context[, watchexp]]])
Quantize makes the exponent the same as exp. Searches for a rounding method in rounding, then in context,
and then in the current context.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than Emax
or less than Et iny.

remainder_ near (other[, context])
Computes the modulo as either a positive or negative value depending on which is closest to zero. For
instance, ‘Decimal (10) .remainder_near (6)’ returns Decimal ("—-2") which is closer to zero
than Decimal ("4").

If both are equally close, the one chosen will have the same sign as self.

same_quantum (other [context])
Test whether self and other have the same exponent or whether both are NaN.

sqgrt ([context])
Return the square root to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal (' 123E+1’) to Decimal ("1.23E+3")

to_integral ([rounding[, context]])
Rounds to the nearest integer without signaling Inexact or Rounded. If given, applies rounding; other-
wise, uses the rounding method in either the supplied context or the current context.

6.3.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext () and
setcontext () functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread to c.

Beginning with Python 2.5, you can also use the with statement and the 1ocalcontext () function to tem-
porarily change the active context.

localcontext ([c])
Return a context manager that will set the current context for the active thread to a copy of ¢ on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified,
a copy of the current context is used. New in version 2.5.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from __ future__ import with_statement
from decimal import localcontext

with localcontext () as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something ()

s = +s # Round the final result back to the default precision

150 Chapter 6. Numeric and Mathematical Modules

New contexts can also be created using the Context constructor described below. In addition, the module
provides three pre-made contexts:

class BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class ExtendedContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the trapped are disabled, this context is useful for applications that prefer to have result value
of NaN or Infinity instead of raising exceptions. This allows an application to complete a run in the
presence of conditions that would otherwise halt the program.

class DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class Context (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic operations in the context.

The rounding option is one of:

eROUND_CEILING (towards Infinity),

eROUND_DOWN (towards zero),

eROUND_FLOOR (towards —-Infinity),

eROUND_HALF_DOWN (to nearest with ties going towards zero),

eROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

eROUND_HALF_UP (to nearest with ties going away from zero), or

¢ROUND_UP (away from zero).
The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.
The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise,
a lowercase e is used: Decimal (' 6.02e+23").

The Context class defines several general purpose methods as well as a large number of methods for doing
arithmetic directly in a given context.

clear_flags ()
Resets all of the flags to 0.

copy ()
Return a duplicate of the context.

6.3. decimal — Decimal floating point arithmetic 151

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change

the result:
>>> getcontext () .prec = 3
>>> Decimal ("3.4445") + Decimal ("1.0023")
Decimal ("4.45")
>>> Decimal ("3.4445") + Decimal (0) + Decimal("1.0023")
Decimal ("4.44")
Etiny ()

Returns a value equal to ‘Emin - prec + 1’ which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Et iny.

Etop ()
Returns a value equal to ‘Emax — prec + 1’.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternate approach is to use context methods
for calculating within a specific context. The methods are similar to those for the Decimal class and are only
briefly recounted here.

abs (x)
Returns the absolute value of x.

add (x, y)
Return the sum of x and y.

compare (X, y)
Compares values numerically.

Like __cmp__ () but returns a decimal instance:
a or b is a NaN ==> Decimal ("NaN")
a <b ==> Decimal ("-1")
a ==>b ==> Decimal ("O")
a>b ==> Decimal ("1")
divide (x, y)
Return x divided by y.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

max (x, y)
Compare two values numerically and return the maximum.

If they are numerically equal then the left-hand operand is chosen as the result.

min (x, y)
Compare two values numerically and return the minimum.
If they are numerically equal then the left-hand operand is chosen as the result.

minus (x)
Minus corresponds to the unary prefix minus operator in Python.

multiply (x, y)
Return the product of x and y.

152 Chapter 6. Numeric and Mathematical Modules

normalize (x)
Normalize reduces an operand to its simplest form.

Essentially a plus operation with all trailing zeros removed from the result.

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power (x, y[, modulo])
Return ‘x =+ vy’ to the modulo if given.

The right-hand operand must be a whole number whose integer part (after any exponent has been applied)
has no more than 9 digits and whose fractional part (if any) is all zeros before any rounding. The operand
may be positive, negative, or zero; if negative, the absolute value of the power is used, and the left-hand
operand is inverted (divided into 1) before use.

If the increased precision needed for the intermediate calculations exceeds the capabilities of the implemen-
tation then an InvalidOperation condition is signaled.

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is not
halted at that point but continues.

quantize (x, y)
Returns a value equal to x after rounding and having the exponent of y.

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condi-
tion, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x, y)
Computed the modulo as either a positive or negative value depending on which is closest to zero. For
instance, ‘Decimal (10) .remainder_near (6)’ returns Decimal ("-2") which is closer to zero
than Decimal ("4").

If both are equally close, the one chosen will have the same sign as self.

same_quantum (x, y)
Test whether x and y have the same exponent or whether both are NaN.

sqgrt (x)
Return the square root of x to full precision.

subtract (x, y)
Return the difference between x and y.

to_eng _string()
Convert to engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal (' 123E+1’) to Decimal ("1.23E+3")

to_integral (x)
Rounds to the nearest integer without signaling Inexact or Rounded.

to_sci_string(x)
Converts a number to a string using scientific notation.

6.3.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

6.3. decimal — Decimal floating point arithmetic 153

The context flag is incremented whenever the condition is encountered. After the computation, flags may be
checked for informational purposes (for instance, to determine whether a computation was exact). After checking
the flags, be sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trap is set, then aDivisionByZero exception is raised upon encountering
the condition.

class Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeroes to the coefficient.

class DecimalException
Base class for other signals and a subclass of ArithmeticError.

class DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returns Infinity or —Infinity with the sign determined by the inputs to the calculation.

class Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

class InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity

0 » Infinity

Infinity / Infinity

x % 0

Infinity % x

X._rescale(non-integer)

sgrt (-x) and x > 0

0 % 0

X %% (non—-integer)

x xx Infinity

class Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity. In either case, Inexact and Rounded are also signaled.

class Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5. 0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class Underflow
Numerical underflow with result rounded to zero.

154 Chapter 6. Numeric and Mathematical Modules

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also

signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.StandardError)
DecimalException
Clamped

DivisionByZero (DecimalException, exceptions.ZeroDivisionError)

Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

6.3.5 Floating Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with

insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")

>>> (u + v) + w
Decimal ("9.5111111")
>>> u + (v + w)
Decimal ("10")

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal (’6.0000003")
>>> (uxv) + (uxw)

Decimal ("0.01")

>>> u o« (v+w)

Decimal ("0.0060000"™)

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid

loss of significance:

6.3. decimal — Decimal floating point arithmetic

155

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal ("9.51111111")

>>> u + (v + w)

Decimal ("9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal (’6.0000003")
>>> (uxv) + (uxw)

Decimal ("0.0060000")

>>> u o« (v+w)

Decimal ("0.0060000™)

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeroes, +0 and —0.

Infinities can be constructed directly with: Decimal (' Infinity’). Also, they can arise from dividing by
zero when the DivisionByZero signal is not trapped. Likewise, when the Overf1low signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
Zero:

>>> 1 / Decimal (' Infinity’)
Decimal ("OE-1000000026")

6.3.6 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread
contexts means that threads may make changes (such as getcontext.prec=10) without interfering with
other threads.

Likewise, the setcontext () function automatically assigns its target to the current thread.

If setcontext () has not been called before get context (), then getcontext () will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each

156 Chapter 6. Numeric and Mathematical Modules

thread will use the same values throughout the application, directly modify the DefaultContext object. This
should be done before any threads are started so that there won’t be a race condition between threads calling
getcontext (). For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()

t2.start ()
t3.start ()

6.3.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

6.3. decimal — Decimal floating point arithmetic 157

def

def

moneyfmt (value, places=2, curr='’', sep=’',’, dp=".’,
pos=’'', neg='-', trailneg='’):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places is zero
pos: optional sign for positive numbers: ’'+’, space or blank
neg: optional sign for negative numbers: '-', ' (', space or blank
trailneg:optional trailing minus indicator: '-', ’)’, space or blank

>>> d = Decimal (' -1234567.8901")

>>> moneyfmt (d, curr=’'$")

'-$1,234,567.89"

>>> moneyfmt (d, places=0, sep=’'.’, dp='’, neg=’’, trailneg='-")
71.234.568-"

>>> moneyfmt (d, curr=’'$’, neg=’ (', trailneg=")")
"($1,234,567.89)"

>>> moneyfmt (Decimal (123456789), sep=’' ')

123 456 789.00"

>>> moneyfmt (Decimal (' -0.02"), neg='<’, trailneg=’'>")

'<.02>7

nnn

g = Decimal ((0, (1,), -places)) # 2 places -——> "0.01’
sign, digits, exp = value.quantize(q) .as_tuple()

assert exp == -places

result = []

digits = map(str, digits)
build, next = result.append, digits.pop
if sign:
build(trailnegq)
for i in range(places):

if digits:
build (next ())
else:
build(’0")
build (dp)
i=20
while digits:
build (next ())
i+=1
if i == 3 and digits:
i=20
build(sep)
build(curr)
if sign:
build(neqg)
else:
build(pos)

result.reverse ()
return '’ .join(result)

pi():
"""Compute Pi to the current precision.

>>> print pi ()
3.141592653589793238462643383

wnw

getcontext () .prec += 2 # extra digits for intermediate steps
three = Decimal (3) # substitute "three=3.0" for regular floats

158

lasts, t, s, n, na, d, da =0, threppgete ONUnefié and Mathematical Modules

while s != lasts:
lasts = s
n, na = n+na, na+8
d, da = d+da, da+32

6.3.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal (' 1234.5"). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23") + D(’3.45")
Decimal ("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal (10) %% -2 # same as Decimal ('0.01")

>>> # Round to two places
>>> Decimal ("3.214") .quantize (TWOPLACES)
Decimal ("3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal ("3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ("3.21")

>>> Decimal ("3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: Changed in rounding

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition and subtraction automatically preserve fixed point. Others, like multiplication
and division, change the number of decimal places and need to be followed-up with a quantize () step.

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and .02E+4 all have
the same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map (Decimal, 200 200.000 2E2 .02E+4' .split())
>>> [v.normalize () for v in values]
[Decimal ("2E+2"), Decimal ("2E+2"), Decimal ("2E+2"), Decimal ("2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s
two-place significance.

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take
more precision than intuition would suggest, so trapping Inexact will signal a need for more precision:

6.3. decimal — Decimal floating point arithmetic 159

def floatToDecimal (f):
"Convert a floating point number to a Decimal with no loss of information"
Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
exponent. Double the mantissa until it is an integer. Use the integer
mantissa and exponent to compute an equivalent Decimal. If this cannot
be done exactly, then retry with more precision.

mantissa, exponent = math.frexp (f)
while mantissa != int (mantissa):
mantissa *x= 2.0
exponent —-= 1
mantissa = int (mantissa)

oldcontext = getcontext ()
setcontext (Context (traps=[Inexact]))
try:
while True:
try:
return mantissa x Decimal (2) xx exponent
except Inexact:
getcontext () .prec += 1
finally:
setcontext (oldcontext)

Q. Why isn’t the floatToDecimal () routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use
requires some care to avoid the representation issues associated with binary floating point:

>>> floatToDecimal (1.1)
Decimal ("1.100000000000000088817841970012523233890533447265625")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3
>>> Decimal (’3.104") + D(’
Decimal ("5.21")

>>> Decimal (’3.104’) + D('0.000") + D('2.104")
Decimal ("5.20")

2.104")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal ("1.23456789") # unary plus triggers rounding
Decimal ("1.23")

160 Chapter 6. Numeric and Mathematical Modules

Alternatively, inputs can be rounded upon creation using the Context .create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal (’1.2345678")
Decimal ("1.2345")

6.4 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random () , which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2*¥*19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random
class. You can instantiate your own instances of Random to get generators that don’t share state. This is espe-
cially useful for multi-threaded programs, creating a different instance of Random for each thread, and using the
jumpahead () method to make it likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in
that case, override the random (), seed (), getstate (), setstate () and jumpahead () methods. Op-
tionally, a new generator can supply a get randombits () method — this allows randrange () to produce
selections over an arbitrarily large range. New in version 2.4: the get randombits () method.

As an example of subclassing, the random module provides the WichmannHil1l class that implements an alter-
native generator in pure Python. The class provides a backward compatible way to reproduce results from earlier
versions of Python, which used the Wichmann-Hill algorithm as the core generator. Note that this Wichmann-Hill
generator can no longer be recommended: its period is too short by contemporary standards, and the sequence
generated is known to fail some stringent randomness tests. See the references below for a recent variant that
repairs these flaws. Changed in version 2.3: Substituted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argument x can be any hashable object. If x is
omitted or None, current system time is used; current system time is also used to initialize the generator
when the module is first imported. If randomness sources are provided by the operating system, they are
used instead of the system time (see the os.urandom () function for details on availability). Changed
in version 2.4: formerly, operating system resources were not used. If x is not None or an int or long,
hash (x) is used instead. If x is an int or long, x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate () to restore the state. New in version 2.1.

setstate (state)
state should have been obtained from a previous call to getstate (), and setstate () restores the
internal state of the generator to what it was at the time setstate () was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current state. # is a non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs,

6.4. random — Generate pseudo-random numbers 161

in conjuction with multiple instances of the Random class: setstate () or seed () can be used to force
all instances into the same internal state, and then jumpahead () can be used to force the instances’ states
far apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specific state, n steps
ahead, jumpahead (n) jumps to another state likely to be separated by many steps.

getrandbits (k)
Returns a python long int with k£ random bits. This method is supplied with the MersenneTwister gen-
erator and some other generators may also provide it as an optional part of the API. When available,
getrandbits () enables randrange () to handle arbitrarily large ranges. New in version 2.4.

Functions for integers:

randrange ([start,] stop[, step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)),butdoesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integer N such thata <= N <= b.

Functions for sequences:

choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

shuffle (x[, mndom])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random ().

Note that for even rather small len (x), the total number of permutations of x is larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

sample (population, k)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange () object as an argument. This is especially
fast and space efficient for sampling from a large population: sample (xrange (10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real number N such thata <= N < b.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values range
between 0 and 1.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values range from O to positive infinity.

gammavariate (alpha, beta)
Gamma distribution. (Nof the gamma function!) Conditions on the parameters are alpha > 0 and beta >
0.

gauss (mu, sigma)

162 Chapter 6. Numeric and Mathematical Modules

Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generators:

class WichmannHill ([seed |)
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus the whseed () method described below. Because this class is implemented in pure Python,
it is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644
which is small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed () for
details. whseed () does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

class SystemRandom ([seed])
Class that uses the os.urandom () function for generating random numbers from sources provided by
the operating system. Not available on all systems. Does not rely on software state and sequences are not
reproducible. Accordingly, the seed () and jumpahead () methods have no effect and are ignored. The
getstate () and setstate () methods raise Not ImplementedError if called. New in version
24.

Examples of basic usage:

>>> random.random () # Random float x, 0.0 <= x < 1.0
0.37444887175646646

>>> random.uniform(l, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random.randint (1, 10) # Integer from 1 to 10, endpoints included
7

>>> random.randrange (0, 101, 2) # Even integer from 0 to 100
26

>>> random.choice (’abcdefghij’) # Choose a random element
ICI

>>> items = [1, 2, 3, 4, 5, 6, 7]

>>> random.shuffle (items)
>>> items
(7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1l, 2, 3, 4, 5], 3) # Choose 3 elements
(4, 1, 5]

See Also:

6.4. random — Generate pseudo-random numbers 163

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30
1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

http://www.npl.co.uk/ssfm/download/abstracts.html#196
A modern variation of the Wichmann-Hill generator that greatly increases the period, and passes now-
standard statistical tests that the original generator failed.

6.5 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Standardization helps avoid the readability and reliability problems which arise when many different individuals
create their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation tool: tabulate (f£) which produces a sequence £ (0), £ (1), ..
This toolbox provides imap () and count () which can be combined to form imap (£, count ()) and pro-
duce an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provided by the operator
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the
module.

Whether cast in pure python form or compiled code, tools that use iterators are more memory efficient (and faster)
than their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when
and where needed instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases — at some point,
lists grow large enough to severely impact memory cache performance and start running slowly.

See Also:
The Standard ML Basis Library, The Standard ML Basis Library.
Haskell, A Purely Functional Language, Definition of Haskell and the Standard Libraries.

6.5.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(xiterables):
for it in iterables:
for element in it:
yield element

164 Chapter 6. Numeric and Mathematical Modules

http://www.npl.co.uk/ssfm/download/abstracts.html#196
http://www.standardml.org/Basis/
http://www.haskell.org/definition/

count ([n])
Make an iterator that returns consecutive integers starting with n. If not specified n defaults to zero. Does
not currently support python long integers. Often used as an argument to imap () to generate consecutive
data points. Also, used with 1zip () to add sequence numbers. Equivalent to:

def count (n=0) :
while True:
yield n

n += 1

Note, count () does not check for overflow and will return negative numbers after exceeding
sys.maxint. This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable) :

saved = []

for element in iterable:
yield element
saved.append (element)

while saved:
for element in saved:

yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the
iterable).

dropwhile (predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not produce any output until the predicate is true, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile (predicate, iterable):
iterable = iter (iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

groupby (iterable [key])
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The returned group is itself an iterator that shares the underlying iterable with groupby (). Because the
source is shared, when the groupby object is advanced, the previous group is no longer visible. So, if that
data is needed later, it should be stored as a list:

groups = []

uniquekeys = []
for k, g in groupby(data, keyfunc):
groups.append (list (g)) # Store group iterator as a list

uniquekeys.append (k)

6.5. itertools — Functions creating iterators for efficient looping 165

groupby () is equivalent to:

class groupby (object) :
def __init__ (self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = xrange (0)
def _ iter_ (self):
return self
def next (self):

while self.currkey == self.tgtkey:
self.currvalue = self.it.next () # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

self.tgtkey = self.currkey
return (self.currkey, self._grouper (self.tgtkey))
def _grouper (self, tgtkey):

while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = self.it.next () # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

New in version 2.4.

ifilter (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is True. If
predicate is None, return the items that are true. Equivalent to:

def ifilter (predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if predicate (x):
yield x

ifilterfalse (predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False.
If predicate is None, return the items that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

imap (function, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. If function is set
to None, then imap () returns the arguments as a tuple. Like map () but stops when the shortest iterable
is exhausted instead of filling in None for shorter iterables. The reason for the difference is that infinite
iterator arguments are typically an error for map () (because the output is fully evaluated) but represent a
common and useful way of supplying arguments to imap () . Equivalent to:

166 Chapter 6. Numeric and Mathematical Modules

def imap (function, =xiterables):
iterables = map(iter, iterables)
while True:
args = [i.next () for i1 in iterables]
if function is None:
yield tuple(args)
else:
yield function (xargs)

islice (iterable, [start,] stop [step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is
set higher than one which results in items being skipped. If stop is None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice ()
does not support negative values for start, stop, or step. Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, =xargs):

s = slice(*xargs)
it = iter (xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
nexti = it.next ()
for i, element in enumerate (iterable) :
if 1 == nexti:
yield element
nextli = it.next ()

If start is None, then iteration starts at zero. If step is None, then the step defaults to one. Changed in
version 2.5: accept None values for default start and step.

izip (*iterables)

Make an iterator that aggregates elements from each of the iterables. Like zip () except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(xiterables):
iterables = map(iter, iterables)
while iterables:
result = [it.next () for it in iterables]
yield tuple(result)

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception.

Note, the left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for
clustering a data series into n-length groups using ‘izip (* [iter (s)] xn)’. For data that doesn’t fit
n-length groups exactly, the last tuple can be pre-padded with fill values using ‘izip (* [chain (s,
[None]* (n—-1))]*n)’.

Note, when izip () is used with unequal length inputs, subsequent iteration over the longer iterables
cannot reliably be continued after izip () terminates. Potentially, up to one entry will be missing from
each of the left-over iterables. This occurs because a value is fetched from each iterator in-turn, but the
process ends when one of the iterators terminates. This leaves the last fetched values in limbo (they cannot
be returned in a final, incomplete tuple and they are cannot be pushed back into the iterator for retrieval with
it.next ()). In general, izip () should only be used with unequal length inputs when you don’t care
about trailing, unmatched values from the longer iterables.

repeat (object[, times])

Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is

6.5. itertools — Functions creating iterators for efficient looping 167

specified. Used as argument to imap () for invariant parameters to the called function. Also used with
izip () to create an invariant part of a tuple record. Equivalent to:

def repeat (object, times=None) :
if times is None:
while True:
yield object
else:
for i in xrange(times) :
yield object

starmap (function, iterable)
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used instead
of imap () when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between imap () and starmap () parallels the distinction between
function (a,b) and function (xc). Equivalent to:

def starmap (function, iterable):
iterable = iter (iterable)
while True:
yield function(xiterable.next ())

takewhile (predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile (predicate, iterable):
for x in iterable:
if predicate (x):
yield x
else:
break

tee (iterable[, n=2])
Return n independent iterators from a single iterable. The case where n==2 is equivalent to:

def tee(iterable):
def gen(next, data={}, cnt=[0]):
for 1 in count () :
if 1 == cnt[0]:
item = datal[i] = next ()
cnt[0] += 1
else:
item = data.pop (i)
yield item
it = iter (iterable)
return (gen(it.next), gen(it.next))

Note, once tee () has made a split, the original iterable should not be used anywhere else; otherwise, the
iterable could get advanced without the tee objects being informed.

Note, this member of the toolkit may require significant auxiliary storage (depending on how much tempo-
rary data needs to be stored). In general, if one iterator is going to use most or all of the data before the
other iterator, it is faster touse 1ist () instead of tee (). New in version 2.4.

168 Chapter 6. Numeric and Mathematical Modules

6.5.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip (count (1200), amounts):
print ’‘Check %d is for $%.2f’ % (checknum, amount)

Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap (operator.pow, xrange(l,5), repeat(3)):
print cube

1
8
27
64

>>> reportlines = [’EuroPython’, ’'Roster’, ’’, ’'alex’', '’, ’laura’,
rr, "martin’, ’’, ’'walter’, ’'’, ’'mark’]
>>> for name in islice(reportlines, 3, None, 2):
print name.title()
Alex
Laura
Martin

Walter
Mark

Show a dictionary sorted and grouped by value

>>> from operator import itemgetter

>>> d = dict (a=1, b=2, c=1, d=2, e=1, £=2, g=3)

>>> di = sorted(d.iteritems (), key=itemgetter (1))

>>> for k, g in groupby(di, key=itemgetter(l)):
print k, map (itemgetter (0), g)

1 [ra’, 'c’', 'e']
2 ["b’, 'd’", "f"]

Find runs of consecutive numbers using groupby. The key to the solution
is differencing with a range so that consecutive numbers all appear in
same group.
>>> data = [1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
>>> for k, g in groupby (enumerate (data), lambda (i,x):i-x):
print map (operator.itemgetter(l), g)

[1]

[4, 5, 6]

[10]

[15, 16, 17, 18]
[22]

[25, 26, 27, 28]

6.5. itertools — Functions creating iterators for efficient looping 169

6.5.3 Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which
incur interpreter overhead.

170 Chapter 6. Numeric and Mathematical Modules

def

def

def

def

def

def

def

def

def

def

def

def

def

def

take(n, seq):
return list (islice(seq, n))

enumerate (iterable) :
return izip(count (), iterable)

tabulate (function) :
"Return function(0), function(l), ..."
return imap (function, count())

iteritems (mapping) :
return izip (mapping.iterkeys (), mapping.itervalues())

nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

all (seqg, pred=None) :
"Returns True if pred(x) is true for every element in the iterable"
for elem in ifilterfalse(pred, seq):
return False
return True

any (seq, pred=None) :
"Returns True if pred(x) is true for at least one element in the iterable"
for elem in ifilter (pred, seq):
return True
return False

no (seq, pred=None) :
"Returns True if pred(x) is false for every element in the iterable"
for elem in ifilter (pred, seq):
return False
return True

quantify (seq, pred=None) :
"Count how many times the predicate is true in the sequence"
return sum(imap (pred, seq))

padnone (seq) :
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map () function.
mwmww

return chain(seq, repeat (None))

ncycles (seq, n):
"Returns the sequence elements n times"
return chain (xrepeat (seq, n))

dotproduct (vecl, wvec2):
return sum(imap (operator.mul, vecl, vec2))

flatten(listOfLists) :
return list (chain(xlistOfLists))

repeatfunc (func, times=None, =xargs):
"""Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)
nmnn
if times is None:

return starmap (func, repeat (args))
else:

6.5. itertoold "FlnkliBREEréating iteratsrd 16t bfficieht T56gihg 171

def

pairwise (iterable) :
"s -=> (s0,sl), (sl1,s2), (s2, s3), ..."
a, b = tee(iterable)

6.6 functools — Higher order functions and operations on callable
objects.

New in version 2.5.

The functools module is for higher-order functions: functions that act on or return other functions. In general,
any callable object can be treated as a function for the purposes of this module.

The functools module defines the following function:

partial (func [*args] [, **keywords])
Return anew partial object which when called will behave like func called with the positional arguments
args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to
args. If additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent
to:

def partial (func, xargs, =xxkeywords):
def newfunc (xfargs, *xfkeywords):
newkeywords = keywords.copy ()
newkeywords.update (fkeywords)

return func(x (args + fargs), *xnewkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords

return newfunc

The partial is used for partial function application which “freezes” some portion of a function’s argu-
ments and/or keywords resulting in a new object with a simplified signature. For example, partial can
be used to create a callable that behaves like the int function where the base argument defaults to two:

>>> basetwo = partial (int, base=2)

>>> basetwo.__doc__ = ’'Convert base 2 string to an int.’
>>> basetwo (/10010")
18

update_wrapper (wrapper, wrapped [assigned] [updated])
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify
which attributes of the original function are assigned directly to the matching attributes on the wrapper
function and which attributes of the wrapper function are updated with the corresponding attributes from
the original function. The default values for these arguments are the module level constants WRAPPER _-
ASSIGNMENTS (which assigns to the wrapper function’s name, module and documentation string) and
WRAPPER _UPDATES (which updates the wrapper function’s instance dictionary).

The main intended use for this function is in decorator functions which wrap the decorated function and
return the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect
the wrapper definition rather than the original function definition, which is typically less than helpful.

wraps (wrapped [, assigned] [, updated])
This is a convenience function for invoking partial (update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated) as a function decorator when defining a wrapper func-
tion. For example:

172 Chapter 6. Numeric and Mathematical Modules

>>> def my_decorator (f):
Qwraps (f)
def wrapper (xargs, =**kwds):
print ‘Calling decorated function’
return f (xargs, =*xkwds)
return wrapper

>>> @my_decorator
def example () :
print ‘Called example function’

>>> example ()

Calling decorated function
Called example function
>>> example.__ _name_
"example’

Without the use of this decorator factory, the name of the example function would have been ' wrapper’.

6.6.1 partial Objects

partial objects are callable objects created by partial (). They have three read-only attributes:

func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments
and keywords.

args
The leftmost positional arguments that will be prepended to the positional arguments provided to a
partial object call.

keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like funct ion objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name___ and __doc___ attributes are not created
automatically. Also, partial objects defined in classes behave like static methods and do not transform into
bound methods during instance attribute look-up.

6.7 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are
those used for special class methods; variants without leading and trailing ‘___’ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

6.7. operator — Standard operators as functions. 173

_eq (ab)
ne__ (a, b)
ge (ab)
gt _(ab)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) isequivalenttoa < b, le (a, b)
isequivalenttoa <= b,eq(a, b) isequivalenttoa == b,ne (a, b) isequivalenttoa !'= b, gt (a,
b) is equivalent toa > b and ge (a, b) isequivalenttoa >= b. Note that unlike the built-in cmp (),
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manual for more information about rich comparisons. New in version 2.2.

S

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

not_ (o)

not__ (o)
Return the outcome of not o. (Note that there is no __not___ () method for object instances; only the
interpreter core defines this operation. The result is affected by the __nonzero__ () and __len__ ()
methods.)

truth (0)
Return True if o is true, and False otherwise. This is equivalent to using the bool constructor.

is_ (a, b)
Returna is b. Tests object identity. New in version 2.3.

is_not (a, b)
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__ (o)
Return the absolute value of o.

add (a, b)
__add__ (a, b)
Return a + b, for a and b numbers.

and_(a, b)
__and__ (a, b)
Return the bitwise and of a and b.

div (a, b)
__div__ (a, b)

Return a / b when ___future_ .division is notin effect. This is also known as “classic” division.

floordiv (a, b)
___floordiv__ (a, b)
Return @ // b. New in version 2.2.

inv (o)
invert (0)
__inv__ (0)

__invert__ (o)
Return the bitwise inverse of the number o. This is equivalent to “0. The names invert () and __ -
invert__ () were added in Python 2.0.

1shift (a, b)
__1lshift__ (a, b)
Return a shifted left by b.

mod (a, b)
__mod__ (a, b)
Return a % b.

mul (a, b)

174 Chapter 6. Numeric and Mathematical Modules

../ref/ref.html

__mul__ (a b)
Return a * b, for a and b numbers.

neg (o)
__neg__ (o)
Return o negated.

or_ (a, b)
or (ab)
Return the bitwise or of a and b.

pos (0)

__pos___(0)
Return o positive.

pow (a, b)
__pow__ (a, b)
Return a ** b, for a and b numbers. New in version 2.3.

rshift (a, b)
__rshift_ (a, b)
Return a shifted right by b.

sub (q, b)
__sub__ (a, b)
Return a - b.

truediv (q, b)

_ truediv__ (a, b)
Return a / b when ___future_ .division is in effect. This is also known as “true” division. New in
version 2.2.

xor (a, b)
__xor__ (a, b)
Return the bitwise exclusive or of a and b.

index (a)
__index (a)
Return a converted to an integer. Equivalenttoa.___index__ (). New in version 2.5.

Operations which work with sequences include:

concat (q, b)
__concat__ (a, b)
Return a + b for a and b sequences.

contains (a, b)

__contains__ (a, b)
Return the outcome of the test b in a. Note the reversed operands. The name __contains__ () was
added in Python 2.0.

countOf (q, b)
Return the number of occurrences of b in a.

delitem(q, b)
__delitem__ (a, b)
Remove the value of a at index b.

delslice(q, b, ¢)
__delslice_ (a b, c)
Delete the slice of a from index b to index ¢—1.

getitem(q, b)
__getitem__ (a, b)
Return the value of a at index b.

getslice(a, b, c)

6.7. operator — Standard operators as functions. 175

__getslice__ (a, b, c)
Return the slice of a from index b to index ¢—1.

indexOf (q, b)
Return the index of the first of occurrence of b in a.

repeat (q, b)
__repeat__ (a, b)
Return a « b where a is a sequence and b is an integer.

sequencelIncludes(...)
Deprecated since release 2.0. Use contains () instead.

Alias for contains ().

setitem(q b, ¢)
__setitem_ (g, b, ¢)
Set the value of a at index b to c.

setslice(a, b, ¢, v)
__setslice_ (a, b, c V)
Set the slice of a from index b to index c—1 to the sequence v.

Many operations have an “in-place” version. The following functions provide a more primitive access to
in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x =
operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equiva-
lent to the compound statement z = x; z += y.

iadd (q, b)
__diadd__ (a, b)
a = iadd(a, b) isequivalenttoa += b. New in version 2.5.

iand (q, b)
__diand__ (a, b)
a = iand(a, b) isequivalenttoa &= b. New in version 2.5.

iconcat (q, b)
__iconcat__ (a, b)
a = iconcat (a, b) isequivalenttoa += b fora and b sequences. New in version 2.5.

idiv (q, b)

__didiv__ (a, b)
a = idiv(a, D) isequivalenttoa /= b when__ future__ .division is notin effect. New in
version 2.5.

ifloordiv (a, b)
__ifloordiv__ (a, b)
a = ifloordiv(a, b) isequivalenttoa //= b. New in version 2.5.

ilshift (a, b)
__ilshift_ (a, b)
a = ilshift (a, b) isequivalenttoa <<= b. New in version 2.5.

imod (q, b)
__imod__ (a, b)
a = imod(a, D) isequivalenttoa %= b. New in version 2.5.

imul (q, b)
__imul__ (a b)

a imul (a, b) isequivalenttoa x= b. New in version 2.5.
ior (a, b)
__dor_ (a, b)

a = ior(a, b) isequivalenttoa |= b. New in version 2.5.
ipow (a, b)

__ipow__ (a, b)

176 Chapter 6. Numeric and Mathematical Modules

a = ipow(a, D) isequivalenttoa *x= b. New in version 2.5.

irepeat (g, b)

__irepeat_ (a, b)
a = irepeat (a, b) isequivalent to a == b where a is a sequence and b is an integer. New in
version 2.5.

irshift (q, b)
__irshift (a, b)
a = irshift (a, b) isequivalenttoa >>= b. New in version 2.5.

isub (q, b)
__disub__ (a, b)
a = isub(a, b) isequivalenttoa -= b. New in version 2.5.

itruediv (q, b)

__ditruediv__ (aq, b)
a = itruediv(a, b) isequivalenttoa /= b when__ future__ .division isin effect. New
in version 2.5.

ixor (a, b)
__dixor__ (a, b)
a = ixor(a, b) isequivalenttoa "= b. New in version 2.5.

The operator module also defines a few predicates to test the type of objects. Note: Be careful not to misin-
terpret the results of these functions; only isCallable () has any measure of reliability with instance objects.
For example:

>>> class C:
pass

>>> import operator

>>> o = C()

>>> operator.isMappingType (0)
True

isCallable (0)
Deprecated since release 2.0. Use the callable () built-in function instead.

Returns true if the object o can be called like a function, otherwise it returns false. True is returned for
functions, bound and unbound methods, class objects, and instance objects which supportthe __call -
() method.

isMappingType (0)
Returns true if the object o supports the mapping interface. This is true for dictionaries and all instance
objects defining __getitem . Warning: There is no reliable way to test if an instance supports the
complete mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType (0)
Returns true if the object o represents a number. This is true for all numeric types implemented in C.
Warning: There is no reliable way to test if an instance supports the complete numeric interface since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the object o supports the sequence protocol. This returns true for all objects which define
sequence methods in C, and for all instance objects defining __getitem__. Warning: There is no reliable
way to test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 255 to their character equivalents.

6.7. operator — Standard operators as functions. 177

>>> import operator

>>> d = {}

>>> keys = range (256)

>>> vals = map(chr, keys)

>>> map (operator.setitem, [d]xlen(keys), keys, vals)

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map (), sorted (), itertools.groupby (), or other functions that
expect a function argument.

attrgetter (attr[, args...])
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns
a tuple of attributes. After, ‘f=attrgetter (' name’)’, the call ‘f (b)’ returns ‘b.name’. After,
‘f=attrgetter ('name’, ’'date’)’, the call ‘f (b)’ returns ‘ (b.name, b.date)’. New in
version 2.4. Changed in version 2.5: Added support for multiple attributes.

itemgetter (item[, args...])
Return a callable object that fetches ifem from its operand. If more than one item is requested,
returns a tuple of items. After, ‘f=itemgetter (2)’, the call ‘f (b)’ returns ‘b[2] . After,
‘f=itemgetter (2,5, 3)’, thecall ‘f (b)’ returns ‘(b[2], b[5], b[3])’. New in version 2.4.
Changed in version 2.5: Added support for multiple item extraction.

Examples:
>>> from operator import itemgetter
>>> inventory = [(’apple’, 3), ('’banana’, 2), ('pear’, 5), ('orange’, 1)]
>>> getcount = itemgetter (1)
>>> map (getcount, inventory)
(3, 2, 5, 1]

>>> sorted(inventory, key=getcount)
[("orange’, 1), ('’banana’, 2), ('apple’, 3), ('pear’, 5)]

6.7.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in the operator module.

178 Chapter 6. Numeric and Mathematical Modules

Operation Syntax Function

Addition a+ b add (a, b)
Concatenation seql + seq2 concat (seql, seq2)
Containment Test 0 in seq contains (seq, o)
Division a/ b div(a, b) # without__ future_ .division
Division a/ b truediv(a, b) # with__ future_ .division
Division a// b floordiv (a, b)
Bitwise And a &b and_ (a, b)

Bitwise Exclusive Or a b xor (a, b)

Bitwise Inversion T a invert (a)

Bitwise Or a | b or_(a, b)
Exponentiation a xx b pow (a, b)

Identity a is b is_J(a, b)

Identity a is not b is_not (a, b)
Indexed Assignment olkl] =v setitem (o, k, V)
Indexed Deletion del olk] delitem(o, k)
Indexing olk] getitem (o, k)

Left Shift a << b lshift (a, b)
Modulo as%sb mod (a, b)
Multiplication a * b mul (a, b)

Negation (Arithmetic) - a neg (a)

Negation (Logical) not a not_ (a)

Right Shift a >> b rshift (a, b)
Sequence Repitition seq * i repeat (seq, i)
Slice Assignment seqi:j] =values | setslice (seq, i, j, values)
Slice Deletion del seqli:j] delslice (seq, i, j)
Slicing seqi:]] getslice (seq, i, j)
String Formatting s % o0 mod (s, 0)
Subtraction a - b sub (a, b)

Truth Test 0 truth (o)

Ordering a < b 1t (a, b)

Ordering a <= b le(a, b)

Equality a == b eq(a, b)

Difference a !'=b>b ne (a, b)

Ordering a >= b ge (a, b)

Ordering a > b gt (a, b)

6.7. operator — Standard operators as functions.

179

180

CHAPTER
SEVEN

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the Internet.

email.iterators Iterate over a message object tree.

mailcap Mailcap file handling.

mailbox Manipulate mailboxes in various formats

mhlib Manipulate MH mailboxes from Python.

mimetools Tools for parsing MIME-style message bodies.

mimetypes Mapping of filename extensions to MIME types.

MimeWriter Generic MIME file writer.

mimify Mimification and unmimification of mail messages.

multifile Support for reading files which contain distinct parts, such as some MIME data.
rfc822 Parse RFC 2822 style mail messages.

base64 RFC 3548: Basel6, Base32, Base64 Data Encodings

binhex Encode and decode files in binhex4 format.

binascii Tools for converting between binary and various ASCII-encoded binary representations.
quopri Encode and decode files using the MIME quoted-printable encoding.

uu Encode and decode files in uuencode format.

7.1 email — An email and MIME handling package

New in version 2.2.

The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. It subsumes most of the functionality in several older standard modules such as r£c822,
mimetools, multifile, and other non-standard packages such as mimecnt 1. It is specifically not designed
to do any sending of email messages to SMTP (RFC 2821), NNTP, or other servers; those are functions of modules
such as smtplib and nntplib. The email package attempts to be as RFC-compliant as possible, supporting
in addition to RFC 2822, such MIME-related RFCs as RFC 2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of the email package is that it splits the parsing and generating of email
messages from the internal object model representation of email. Applications using the email package deal
primarily with objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-
arrange the contents, etc. There is a separate parser and a separate generator which handles the transformation
from flat text to the object model, and then back to flat text again. There are also handy subclasses for some
common MIME object types, and a few miscellaneous utilities that help with such common tasks as extracting
and parsing message field values, creating RFC-compliant dates, etc.

The following sections describe the functionality of the email package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is
parsed to produce the object structure of the email message, this structure is manipulated, and finally, the object
tree is rendered back into flat text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there,
a similar progression can be taken as above.

181

Also included are detailed specifications of all the classes and modules that the email package provides, the ex-
ception classes you might encounter while using the ema il package, some auxiliary utilities, and a few examples.
For users of the older mimelib package, or previous versions of the email package, a section on differences
and porting is provided.

See Also:

Module smtplib (section 18.13):
SMTP protocol client

Module nntplib (section 18.12):
NNTP protocol client

7.1.1 Representing an email message

The central class in the email package is the Message class, imported from the email .message module. It
is the base class for the email object model. Message provides the core functionality for setting and querying
header fields, and for accessing message bodies.

Conceptually, a Me ssage object consists of headers and payloads. Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or
the field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be
a single envelope header, also known as the Unix-From header or the From_ header. The payload is either a
string in the case of simple message objects or a list of Message objects for MIME container documents (e.g.
multipart/* and message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface
for accessing both the headers and the payload. It provides convenience methods for generating a flat text repre-
sentation of the message object tree, for accessing commonly used header parameters, and for recursively walking
over the object tree.

Here are the methods of the Message class:

class Message ()
The constructor takes no arguments.

as_string([unixfrom])
Return the entire message flatten as a string. When optional unixfrom is True, the envelope header is
included in the returned string. unixfrom defaults to False.

Note that this method is provided as a convenience and may not always format the message the way you
want. For example, by default it mangles lines that begin with From . For more flexibility, instantiate a
Generator instance and use its flatten () method directly. For example:

from cStringIO import StringIO

from email.generator import Generator

fp = StringIO()

g = Generator (fp, mangle_from =False, maxheaderlen=60)
g.flatten (msqg)

text = fp.getvalue()

str__ ()
Equivalent to as_string (unixfrom=True).

is_multipart ()
Return True if the message’s payload is a list of sub-Message objects, otherwise return False. When
is_multipart () returns False, the payload should be a string object.

set_unixfrom (unixfrom)
Set the message’s envelope header to unixfrom, which should be a string.

get_unixfrom/()
Return the message’s envelope header. Defaults to None if the envelope header was never set.

182 Chapter 7. Internet Data Handling

attach (payload)
Add the given payload to the current payload, which must be None or a list of Me s sage objects before the
call. After the call, the payload will always be a list of Message objects. If you want to set the payload to
a scalar object (e.g. a string), use set_payload () instead.

get_payload ([i[, decode]])
Return a reference the current payload, which will be a list of Message objects when is_multipart ()
is True, or a string when is_multipart () is False. If the payload is a list and you mutate the list
object, you modify the message’s payload in place.

With optional argument i, get_payload () will return the i-th element of the payload, counting from
zero, if is_multipart () is True. An IndexError will be raised if i is less than O or greater than or
equal to the number of items in the payload. If the payload is a string (i.e. is_multipart () is False)
and i is given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be decoded or not, according to the Content-
Transfer-Encoding: header. When True and the message is not a multipart, the payload will be decoded if
this header’s value is ‘quoted-printable’ or ‘base64’. If some other encoding is used, or Content-
Transfer-Encoding: header is missing, or if the payload has bogus base64 data, the payload is returned as-is
(undecoded). If the message is a multipart and the decode flag is True, then None is returned. The default
for decode is False.

set_payload (payload [, charset])
Set the entire message object’s payload to payload. 1Tt is the client’s responsibility to ensure the payload
invariants. Optional charset sets the message’s default character set; see set_charset () for details.

Changed in version 2.2.2: charset argument added.

set_charset (charset)
Set the character set of the payload to charset, which can either be a Charset instance (see
email.charset), a string naming a character set, or None. If it is a string, it will be converted to a
Charset instance. If charset is None, the charset parameter will be removed from the Content-Type:
header. Anything else will generate a TypeError.

The message will be assumed to be of type text/* encoded with charset.input_charset. It will be converted
to charset.output_charset and encoded properly, if needed, when generating the plain text representation of
the message. MIME headers (MIME-Version:, Content-Type:, Content-Transfer-Encoding:) will be added as
needed.

New in version 2.2.2.

get_charset ()
Return the Charset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note
that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also,
in dictionaries there is no guaranteed order to the keys returned by keys (), but in a Message object, headers
are always returned in the order they appeared in the original message, or were added to the message later. Any
header deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.
Note that in all cases, any envelope header present in the message is not included in the mapping interface.

__len__ ()
Return the total number of headers, including duplicates.

__contains__ (name)
Return true if the message object has a field named name. Matching is done case-insensitively and name
should not include the trailing colon. Used for the in operator, e.g.:

if "message-id’ in myMessage:
print ’"Message-ID:’, myMessage[’message—-id’]

__getitem__ (name)

7.1. email — An email and MIME handling package 183

Return the value of the named header field. name should not include the colon field separator. If the header
is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field
values will be returned is undefined. Use the get_all () method to get the values of all the extant named
headers.

_ _setitem__ (name, val)
Add a header to the message with field name name and value val. The field is appended to the end of the
message’s existing fields.

Note that this does not overwrite or delete any existing header with the same name. If you want to ensure
that the new header is the only one present in the message with field name name, delete the field first, e.g.:

del msg[’subject’]
msg [’ subject’] = "Python roolz!’

__delitem___ (name)
Delete all occurrences of the field with name name from the message’s headers. No exception is raised if
the named field isn’t present in the headers.

has_key (name)

Return true if the message contains a header field named name, otherwise return false.
keys ()

Return a list of all the message’s header field names.

values ()
Return a list of all the message’s field values.

items ()
Return a list of 2-tuples containing all the message’s field headers and values.

get (name [failobj])
Return the value of the named header field. This is identical to __getitem__ () except that optional
failobj is returned if the named header is missing (defaults to None).

Here are some additional useful methods:

get_all (name[, failobj])
Return a list of all the values for the field named name. If there are no such named headers in the message,
failobj is returned (defaults to None).

add_header (_name, _value, **_params)
Extended header setting. This method is similarto __setitem__ () except that additional header param-
eters can be provided as keyword arguments. _name is the header field to add and _value is the primary
value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter
will be added as key="value" unless the value is None, in which case only the key will be added.

Here’s an example:

msg.add_header (' Content-Disposition’, ’'attachment’, filename=’bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace_header (_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining header order
and field name case. If no matching header was found, a KeyError is raised.

New in version 2.2.2.

get_content_type ()
Return the message’s content type. The returned string is coerced to lower case of the form main-

184 Chapter 7. Internet Data Handling

type/subtype. If there was no Content-Type: header in the message the default type as given by get_ -
default_type () will be returned. Since according to RFC 2045, messages always have a default type,
get_content_type () will always return a value.

RFC 2045 defines a message’s default type to be text/plain unless it appears inside a multipart/digest con-
tainer, in which case it would be message/rfc822. If the Content-Type: header has an invalid type specifica-
tion, RFC 2045 mandates that the default type be text/plain.

New in version 2.2.2.

get_content_maintype ()

Return the message’s main content type. This is the maintype part of the string returned by get_-
content_type().

New in version 2.2.2.

get_content_subtype ()

Return the message’s sub-content type. This is the subtype part of the string returned by get_content_—
type ().
New in version 2.2.2.

get_default_type ()

Return the default content type. Most messages have a default content type of text/plain, except for messages
that are subparts of multipart/digest containers. Such subparts have a default content type of message/rfc822.

New in version 2.2.2.

set_default_type (ctype)

Set the default content type. ctype should either be text/plain or message/rfc822, although this is not en-
forced. The default content type is not stored in the Content-Type: header.

New in version 2.2.2.

get_params ([failobj [, header[, unquote]]])

Return the message’s Content-Type: parameters, as a list. The elements of the returned list are 2-tuples of
key/value pairs, as split on the ‘=" sign. The left hand side of the ‘=’ is the key, while the right hand side
is the value. If there is no ‘=’ sign in the parameter the value is the empty string, otherwise the value is as
described in get_param () and is unquoted if optional unquote is True (the default).

Optional failobj is the object to return if there is no Content-Type: header. Optional header is the header to
search instead of Content-Type:.

Changed in version 2.2.2: unquote argument added.

get_param (param[, failobj[, header[, unquote]]])

Return the value of the Content-Type: header’s parameter param as a string. If the message has no Content-
Type: header or if there is no such parameter, then failobj is returned (defaults to None).

Optional header if given, specifies the message header to use instead of Content-Type:.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-
tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of the
form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be None, in
which case you should consider VALUE to be encoded in the us—ascii charset. You can usually ignore
LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can collapse
the parameter value by calling email .Utils.collapse_rfc2231_value (), passing in the return
value from get_param (). This will return a suitably decoded Unicode string whn the value is a tuple, or
the original string unquoted if it isn’t. For example:

rawparam = msg.get_param(’ foo’)

param = email.Utils.collapse_rfc2231_value (rawparam)

In any case, the parameter value (either the returned string, or the VALUE item in the 3-tuple) is always
unquoted, unless unquote is set to False.

Changed in version 2.2.2: unquote argument added, and 3-tuple return value possible.

7.1.

email — An email and MIME handling package 185

set_param (param, value [, header[, requote [, charset[, language]]]])

Set a parameter in the Content-Type: header. If the parameter already exists in the header, its value will be
replaced with value. If the Content-Type: header as not yet been defined for this message, it will be set to
text/plain and the new parameter value will be appended as per RFC 2045.

Optional header specifies an alternative header to Content-Type:, and all parameters will be quoted as nec-
essary unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded according to RFC 2231. Optional language
specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be
strings.

New in version 2.2.2.

del_param (param[, header[, reqaote]])

Remove the given parameter completely from the Content-Type: header. The header will be re-written in
place without the parameter or its value. All values will be quoted as necessary unless requote is False
(the default is True). Optional header specifies an alternative to Content-Type:.

New in version 2.2.2.

set_type (type [header] [requote])

Set the main type and subtype for the Content-Type: header. fype must be a string in the form main-
type/subtype, otherwise a ValueError is raised.

This method replaces the Content-Type: header, keeping all the parameters in place. If requote is False,
this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).

An alternative header can be specified in the header argument. When the Content-Type: header is set a
MIME-Version: header is also added.

New in version 2.2.2.

get_filename ([failobj])

Return the value of the £ilename parameter of the Content-Disposition: header of the message. If the
header does not have a £ilename parameter, this method falls back to looking for the name parameter.
If neither is found, or the header is missing, then failobj is returned. The returned string will always be
unquoted as per Utils.unquote ().

get_boundary ([failobj])

Return the value of the boundary parameter of the Content-Type: header of the message, or failobj if
either the header is missing, or has no boundary parameter. The returned string will always be unquoted
asper Utils.unquote ().

set_boundary (boundary)

Set the boundary parameter of the Content-Type: header to boundary. set_boundary () will always
quote boundary if necessary. A HeaderParseError is raised if the message object has no Content-Type:
header.

Note that using this method is subtly different than deleting the old Content-Type: header and adding a new
one with the new boundary via add_header (), because set_boundary () preserves the order of the
Content-Type: header in the list of headers. However, it does not preserve any continuation lines which may
have been present in the original Content-Type: header.

get_content_charset ([failobj])

Return the charset parameter of the Content-Type: header, coerced to lower case. If there is no Content-
Type: header, or if that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset () which returns the Charset instance for the default
encoding of the message body.

New in version 2.2.2.

get_charsets ([failobj])

Return a list containing the character set names in the message. If the message is a multipart, then the list
will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of the charset parameter in the Content-Type:
header for the represented subpart. However, if the subpart has no Content-Type: header, no charset
parameter, or is not of the text main MIME type, then that item in the returned list will be failobj.

186

Chapter 7. Internet Data Handling

walk ()
The walk () method is an all-purpose generator which can be used to iterate over all the parts and subparts
of a message object tree, in depth-first traversal order. You will typically use walk () as the iterator in a
for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk () :

ce print part.get_content_type ()
multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

Changed in version 2.5: The previously deprecated methods get_type (), get_main_type (), and get_—
subtype () were removed.

Message objects can also optionally contain two instance attributes, which can be used when generating the
plain text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers, and the
first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because
it falls outside the standard MIME armor. However, when viewing the raw text of the message, or when
viewing the message in a non-MIME aware reader, this text can become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the Parser
discovers some text after the headers but before the first boundary string, it assigns this text to the message’s
preamble attribute. When the Generator is writing out the plain text representation of a MIME message,
and it finds the message has a preamble attribute, it will write this text in the area between the headers and
the first boundary. See email.parser and email.generator for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue
The epilogue attribute acts the same way as the preamble attribute, except that it contains text that appears
between the last boundary and the end of the message.

Changed in version 2.5: You do not need to set the epilogue to the empty string in order for the Generator
to print a newline at the end of the file.

defects
The defects attribute contains a list of all the problems found when parsing this message. See
email.errors for a detailed description of the possible parsing defects.

New in version 2.4.

7.1.2 Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together via attach () and set_payload () calls, or they can be created
by parsing a flat text representation of the email message.

The ema il package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you the root Message
instance of the object structure. For simple, non-MIME messages the payload of this root object will likely be
a string containing the text of the message. For MIME messages, the root object will return True from its
is_multipart () method, and the subparts can be accessed via the get _payload () and walk () methods.

There are actually two parser interfaces available for use, the classic Parser API and the incremental
FeedParser APIL The classic Parser APl is fine if you have the entire text of the message in memory as
a string, or if the entire message lives in a file on the file system. FeedParser is more appropriate for when

7.1. email — An email and MIME handling package 187

you’re reading the message from a stream which might block waiting for more input (e.g. reading an email mes-
sage from a socket). The FeedParser can consume and parse the message incrementally, and only returns the
root object when you close the parser!.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection between the email package’s bundled parser and the Message
class, so your custom parser can create message object trees any way it finds necessary.

FeedParser API

New in version 2.4.

The FeedParser, imported from the email . feedparser module, provides an API that is conducive to
incremental parsing of email messages, such as would be necessary when reading the text of an email message
from a source that can block (e.g. a socket). The FeedParser can of course be used to parse an email message
fully contained in a string or a file, but the classic Parser API may be more convenient for such use cases. The
semantics and results of the two parser APIs are identical.

The FeedParser’s APl is simple; you create an instance, feed it a bunch of text until there’s no more to feed
it, then close the parser to retrieve the root message object. The FeedParser is extremely accurate when
parsing standards-compliant messages, and it does a very good job of parsing non-compliant messages, providing
information about how a message was deemed broken. It will populate a message object’s defects attribute with a
list of any problems it found in a message. See the email.errors module for the list of defects that it can find.

Here is the API for the FeedParser:

class FeedParser ([,factory])
Create a FeedParser instance. Optional _factory is a no-argument callable that will be called whenever
a new message object is needed. It defaults to the email .message.Message class.

feed (data)
Feed the FeedParser some more data. data should be a string containing one or more lines. The lines
can be partial and the FeedParser will stitch such partial lines together properly. The lines in the string
can have any of the common three line endings, carriage return, newline, or carriage return and newline
(they can even be mixed).

close ()
Closing a FeedParser completes the parsing of all previously fed data, and returns the root message
object. It is undefined what happens if you feed more data to a closed FeedParser.

Parser class API

The Parser class, imported from the email.parser module, provides an API that can be used to parse
a message when the complete contents of the message are available in a string or file. The email.parser
module also provides a second class, called HeaderParser which can be used if you’re only interested in the
headers of the message. HeaderParser can be much faster in these situations, since it does not attempt to parse
the message body, instead setting the payload to the raw body as a string. HeaderParser has the same API as
the Parser class.

class Parser ([,class])
The constructor for the Parser class takes an optional argument _class. This must be a callable factory
(such as a function or a class), and it is used whenever a sub-message object needs to be created. It defaults
to Message (see email.message). The factory will be called without arguments.

The optional strict flag is ignored. Deprecated since release 2.4. Because the Parser class is a backward
compatible API wrapper around the new-in-Python 2.4 FeedParser, all parsing is effectively non-strict.
You should simply stop passing a strict flag to the Parser constructor.

Changed in version 2.2.2: The strict flag was added. Changed in version 2.4: The strict flag was depre-
cated.

!'As of email package version 3.0, introduced in Python 2.4, the classic Parser was re-implemented in terms of the FeedParser, so
the semantics and results are identical between the two parsers.

188 Chapter 7. Internet Data Handling

The other public Parser methods are:

parse (fp [, headersonly])

Read all the data from the file-like object fp, parse the resulting text, and return the root message object. fp
must support both the readline () and the read () methods on file-like objects.

The text contained in fp must be formatted as a block of RFC 2822 style headers and header continuation
lines, optionally preceded by a envelope header. The header block is terminated either by the end of the
data or by a blank line. Following the header block is the body of the message (which may contain MIME-
encoded subparts).

Optional headersonly is as with the parse () method.

Changed in version 2.2.2: The headersonly flag was added.

parsestr (text[, headersonly])

Similar to the parse () method, except it takes a string object instead of a file-like object. Calling
this method on a string is exactly equivalent to wrapping fext in a StringIO instance first and calling
parse ().

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not. The
default is False, meaning it parses the entire contents of the file.

Changed in version 2.2.2: The headersonly flag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-level email package namespace.

message_from_string (s[, ,class[, strict]])

Return a message object structure from a string. This is exactly equivalent to Parser () .parsestr (s).
Optional _class and strict are interpreted as with the Parser class constructor.

Changed in version 2.2.2: The strict flag was added.

message_from_ file (fp [,class[, strict]])

Return a message object structure tree from an open file object. This is exactly equivalent to
Parser () .parse (fp) . Optional _class and strict are interpreted as with the Par ser class constructor.

Changed in version 2.2.2: The strict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string (myString)

Additional notes

Here are some notes on the parsing semantics:

Most non-multipart type messages are parsed as a single message object with a string payload. These objects
will return False for is_multipart (). Their get_payload () method will return a string object.

All multipart type messages will be parsed as a container message object with a list of sub-message objects
for their payload. The outer container message will return True for is_multipart () and their get_-
payload () method will return the list of Message subparts.

Most messages with a content type of message/* (e.g. message/delivery-status and message/rfc822) will
also be parsed as container object containing a list payload of length 1. Their is_multipart () method
will return True. The single element in the list payload will be a sub-message object.

Some non-standards compliant messages may not be internally consistent about their multipart-edness. Such
messages may have a Content-Type: header of type multipart, but their is_multipart () method may
return False. If such messages were parsed with the FeedParser, they will have an instance of the
MultipartInvariantViolationDefect class in their defects attribute list. See email .errors
for details.

7.1.

email — An email and MIME handling package 189

7.1.3 Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message via the smtplib module or the nntplib
module, or print the message on the console. Taking a message object structure and producing a flat text document
is the job of the Generator class.

Again, as with the email . parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure via the Parser class, and back to flat text, is idempotent
(the input is identical to the output).

Here are the public methods of the Generator class, imported from the email . generator module:

class Generator (outfp[, mangle,from,[, maxheaderlen]])
The constructor for the Generator class takes a file-like object called outfp for an argument. outfp must
support the write () method and be usable as the output file in a Python extended print statement.

Optional mangle from_ is a flag that, when True, puts a ‘>’ character in front of any line in the body
that starts exactly as ‘From ’, i.e. From followed by a space at the beginning of the line. This is the only
guaranteed portable way to avoid having such lines be mistaken for a UNIX mailbox format envelope header
separator (see WHY THE CONTENT-LENGTH FORMAT IS BAD for details). mangle_from_ defaults to
True, but you might want to set this to False if you are not writing UNIX mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is
longer than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as defined
in the email .header.Header class. Set to zero to disable header wrapping. The default is 78, as
recommended (but not required) by RFC 2822.

The other public Generator methods are:

flatten (msg[, um'xfrom])
Print the textual representation of the message object structure rooted at msg to the output file specified
when the Generator instance was created. Subparts are visited depth-first and the resulting text will be
properly MIME encoded.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the first RFC
2822 header of the root message object. If the root object has no envelope header, a standard one is crafted.
By default, this is set to False to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

New in version 2.2.2.

clone (fp)
Return an independent clone of this Generator instance with the exact same options.

New in version 2.2.2.

write (s)
Write the string s to the underlying file object, i.e. outfp passed to Generator’s constructor. This provides
just enough file-like API for Generator instances to be used in extended print statements.

As a convenience, see the methods Message.as_string() and str (aMessage), ak.a. Message._-
_str__ (), which simplify the generation of a formatted string representation of a message object. For more
detail, see email.message.

The email.generator module also provides a derived class, called DecodedGenerator which is like the
Generator base class, except that non-text parts are substituted with a format string representing the part.

class DecodedGenerator (outfp[, mangle,from,[, maxheaderlen[, fmt]]])
This class, derived from Generator walks through all the subparts of a message. If the subpart is of main
type text, then it prints the decoded payload of the subpart. Optional _mangle_from_ and maxheaderlen are
as with the Generator base class.

If the subpart is not of main type text, optional fint is a format string that is used instead of the message
payload. fimt is expanded with the following keywords, ‘% (keyword) s’ format:

190 Chapter 7. Internet Data Handling

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html

et ype — Full MIME type of the non-text part

emaintype — Main MIME type of the non-text part
esubtype — Sub-MIME type of the non-text part

efilename — Filename of the non-text part

edescription — Description associated with the non-text part

ecncoding — Content transfer encoding of the non-text part

The default value for fmt is None, meaning

[Non-text (% (type)s) part of message omitted, filename % (filename)s]

New in version 2.2.2.

Changed in version 2.5: The previously deprecated method __call__ () was removed.

7.1.4 Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add new Message
objects, move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creating Me s sage instances, adding attachments and all the appropriate
headers manually. For MIME messages though, the emai 1 package provides some convenient subclasses to make
things easier.

Here are the classes:

class MIMEBase (_maintype, _subtype, **_params)

Module: email .mime.base

This is the base class for all the MIME-specific subclasses of Message. Ordinarily you won’t create
instances specifically of MIMEBase, although you could. MIMEBase is provided primarily as a convenient
base class for more specific MIME-aware subclasses.

_maintype is the Content-Type: major type (e.g. text or image), and _subtype is the Content-Type: minor type
(e.g. plain or gif). _params is a parameter key/value dictionary and is passed directly to Message .add_-
header ().

The MIMEBase class always adds a Content-Type: header (based on _maintype, _subtype, and _params),
and a MIME-Version: header (always setto 1. 0).

class MIMENonMultipart ()

Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are not multipart. The
primary purpose of this class is to prevent the use of the attach () method, which only makes sense for
multipart messages. If attach () is called,aMultipartConversionError exception is raised.

New in version 2.2.2.

class MIMEMultipart ([subtype [, boundarjy[, Jubparts[, ,params]]]])

Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are multipart. Optional
_subtype defaults to mixed, but can be used to specify the subtype of the message. A Content-Type: header
of multipart/_subtype will be added to the message object. A MIME-Version: header will also be added.

Optional boundary is the multipart boundary string. When None (the default), the boundary is calculated
when needed.

_subparts is a sequence of initial subparts for the payload. It must be possible to convert this sequence to a
list. You can always attach new subparts to the message by using the Message.attach () method.

Additional parameters for the Content-Type: header are taken from the keyword arguments, or passed into
the _params argument, which is a keyword dictionary.

New in version 2.2.2.

7.1.

email — An email and MIME handling package 191

class MIMEApplication (,data[, Jubtype[, ,encoder[, **pamms]]])

Module: email .mime.application

A subclass of MIMENonMultipart, the MIMEApplication classis used to represent MIME message
objects of major type application. _data is a string containing the raw byte data. Optional _subtype specifies
the MIME subtype and defaults to octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the data for
transport. This callable takes one argument, which is the MIMEApplication instance. It should use
get_payload () and set_payload () to change the payload to encoded form. It should also add any
Content-Transfer-Encoding: or other headers to the message object as necessary. The default encoding is
base64. See the email .encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor. New in version 2.5.

class MIMEAudio (_audiodata [, _subtype [, _encoder [, **params]]])

Module: email .mime.audio

A subclass of MIMENonMultipart, the MIMEAudio class is used to create MIME message objects of
major type audio. _audiodata is a string containing the raw audio data. If this data can be decoded by
the standard Python module sndhdr, then the subtype will be automatically included in the Content-Type:
header. Otherwise you can explicitly specify the audio subtype via the _subtype parameter. If the minor type
could not be guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the audio data for
transport. This callable takes one argument, which is the MIMEAudio instance. It should use get_-
payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding: or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class MIMEImage (_imagedata [, _subtype [, ,encoder[, **params]]])

Module: email.mime.image

A subclass of MIMENonMultipart, the MIMEImage class is used to create MIME message objects of
major type image. _imagedata is a string containing the raw image data. If this data can be decoded by
the standard Python module imghdr, then the subtype will be automatically included in the Content-Type:
header. Otherwise you can explicitly specify the image subtype via the _subtype parameter. If the minor
type could not be guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the image data for
transport. This callable takes one argument, which is the MIME Image instance. It should use get_-
payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding: or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the MIMEBase constructor.

class MIMEMessage (Jnsg[, Jubtype])

Module: email .mime.message

A subclass of MIMENonMultipart, the MIMEMessage class is used to create MIME objects of main
type message. _msg is used as the payload, and must be an instance of class Message (or a subclass
thereof), otherwise a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to rfc822.

class MIMEText (_text [, _subtype [, ,charset]])

Module: email .mime.text

A subclass of MIMENonMultipart, the MIMEText class is used to create MIME objects of major type
text. _text is the string for the payload. _subtype is the minor type and defaults to plain. _charset is the
character set of the text and is passed as a parameter to the MIMENonMultipart constructor; it defaults
to us—ascii. No guessing or encoding is performed on the text data.

Changed in version 2.4: The previously deprecated _encoding argument has been removed. Encoding hap-
pens implicitly based on the _charset argument.

192

Chapter 7. Internet Data Handling

7.1.5 Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822
standard which came into widespread use at a time when most email was composed of ASCII characters only. RFC
2822 is a specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific
character sets can now be used in email messages. The base standard still requires email messages to be transferred
using only 7-bit ASCII characters, so a slew of RFCs have been written describing how to encode email containing
non-ASCII characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047,
and RFC 2231. The email package supports these standards in its email.header and email.charset
modules.

If you want to include non-ASCII characters in your email headers, say in the Subject: or To: fields, you should
use the Header class and assign the field in the Message object to an instance of Header instead of using a
string for the header value. Import the Header class from the email . header module. For example:

>>> from email.message import Message
>>> from email.header import Header

>>> msg = Message ()

>>> h = Header ('p\xfé6stal’, ’"is0o-8859-1")
>>> msg[’Subject’] = h

>>> print msg.as_string/()

Subject: =7?1is0-8859-17?g?p=F6stal?=

Notice here how we wanted the Subject: field to contain a non-ASCII character? We did this by creating a Header
instance and passing in the character set that the byte string was encoded in. When the subsequent Message
instance was flattened, the Subject: field was properly RFC 2047 encoded. MIME-aware mail readers would show
this header using the embedded ISO-8859-1 character.

New in version 2.2.2.
Here is the Header class description:

class Header ([s [, charset [, maxlinelen [, header_name [, continuation_ws [, errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optional s is the initial header value. If None (the default), the initial header value is not set. You can later
append to the header with append () method calls. s may be a byte string or a Unicode string, but see the
append () documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset argument to the append ()
method. It also sets the default character set for all subsequent append () calls that omit the charset
argument. If charset is not provided in the constructor (the default), the us—ascii character set is used
both as s’s initial charset and as the default for subsequent append () calls.

The maximum line length can be specified explicit via maxlinelen. For splitting the first line to a shorter
value (to account for the field header which isn’t included in s, e.g. Subject:) pass in the name of the field
in header_name. The default maxlinelen is 76, and the default value for header_name is None, meaning it
is not taken into account for the first line of a long, split header.

Optional continuation_ws must be RFC 2822-compliant folding whitespace, and is usually either a space or
a hard tab character. This character will be prepended to continuation lines.

Optional errors is passed straight through to the append () method.

append (s[, charset[, errors]])
Append the string s to the MIME header.

Optional charset, if given, should be a Charset instance (see email.charset) or the name of a char-
acter set, which will be converted to a Charset instance. A value of None (the default) means that the
charset given in the constructor is used.

7.1. email — An email and MIME handling package 193

s may be a byte string or a Unicode string. If it is a byte string (i.e. isinstance (s, str) is true),
then charset is the encoding of that byte string, and a UnicodeError will be raised if the string cannot
be decoded with that character set.

If s is a Unicode string, then charset is a hint specifying the character set of the characters in the string. In
this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string will be
encoded using the following charsets in order: us—ascii, the charset hint, ut £—8. The first character set
to not provoke a UnicodeError is used.

Optional errors is passed through to any unicode () or ustr.encode () call, and defaults to “strict”.

encode ([splitchars])
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating
non-ASCII parts in base64 or quoted-printable encodings. Optional splitchars is a string containing char-
acters to split long ASCII lines on, in rough support of RFC 2822’s highest level syntactic breaks. This
doesn’t affect RFC 2047 encoded lines.

The Header class also provides a number of methods to support standard operators and built-in functions.

__str ()
A synonym for Header.encode (). Useful for str (aHeader).

__unicode__ ()
A helper for the built-in unicode () function. Returns the header as a Unicode string.

__eq__ (other)
This method allows you to compare two Header instances for equality.

__ne__ (other)
This method allows you to compare two Header instances for inequality.

The email.header module also provides the following convenient functions.

decode_header (header)
Decode a message header value without converting the character set. The header value is in header.

This function returns a list of (decoded_string, charset) pairs containing each of the decoded
parts of the header. charset is None for non-encoded parts of the header, otherwise a lower case string
containing the name of the character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header ('=?1s0-8859-1?g?p=F6stal?=")
[("p\xf6stal’, "iso-8859-1")]

make_header (decoded_seq [maxlinelen [, header_name [, continuation,ws]]])
Create a Header instance from a sequence of pairs as returned by decode_header ().

decode_header () takes a header value string and returns a sequence of pairs of the format
(decoded_string, charset) where charset is the name of the character set.

This function takes one of those sequence of pairs and returns a Header instance. Optional maxlinelen,
header_name, and continuation_ws are as in the Header constructor.

7.1.6 Representing character sets

This module provides a class Charset for representing character sets and character set conversions in email
messages, as well as a character set registry and several convenience methods for manipulating this registry.
Instances of Charset are used in several other modules within the email package.

Import this class from the email.charset module.
New in version 2.2.2.

class Charset ([input,charset])
Map character sets to their email properties.

194 Chapter 7. Internet Data Handling

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in
an email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or
bodies. Certain character sets must be converted outright, and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower case. After being alias normalized
it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,
and output conversion codec to be used for the character set. For example, if input_charsetis 1so-8859-1,
then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary.
If input_charset is euc—-jp, then headers will be encoded with base64, bodies will not be encoded, but
output text will be converted from the euc—jp character set to the i s0-2022-jp character set.

Charset instances have the following data attributes:

input_charset

The initial character set specified. Common aliases are converted to their official email names (e.g.
latin_1 is converted to iso—8859-1). Defaults to 7-bit us—ascii.

header_encoding

If the character set must be encoded before it can be used in an email header, this attribute
will be set to Charset.QP (for quoted-printable), Charset.BASE64 (for base64 encoding), or
Charset . SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will be None.

body_ encoding

Same as header_encoding, but describes the encoding for the mail message’s body, which indeed may be
different than the header encoding. Charset . SHORTEST is not allowed for body_encoding.

output_charset

Some character sets must be converted before they can be used in email headers or bodies. If the input_-
charset is one of them, this attribute will contain the name of the character set output will be converted to.
Otherwise, it will be None.

input_codec

The name of the Python codec used to convert the input_charset to Unicode. If no conversion codec is
necessary, this attribute will be None.

output_codec

The name of the Python codec used to convert Unicode to the output_charset. If no conversion codec is
necessary, this attribute will have the same value as the input_codec.

Charset instances also have the following methods:

get_body encoding ()

Return the content transfer encoding used for body encoding.

This is either the string ‘quoted-printable’ or ‘base64’ depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being en-
coded. The function should then set the Content-Transfer-Encoding: header itself to whatever is appropriate.

Returns the string ‘quoted-printable’ if body_encoding is QP, returns the string ‘base64’ if body_-
encoding is BASE 64, and returns the string ‘7bit’ otherwise.

convert (s)

Convert the string s from the input_codec to the output_codec.

to_splittable (s)

Convert a possibly multibyte string to a safely splittable format. s is the string to split.

Uses the input_codec to try and convert the string to Unicode, so it can be safely split on character boundaries
(even for multibyte characters).

Returns the string as-is if it isn’t known how to convert s to Unicode with the input_charset.

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
‘U+FFFD’.

7.1.

email — An email and MIME handling package 195

from_splittable (ustr[, to,output])
Convert a splittable string back into an encoded string. ustr is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

Characters that could not be converted from Unicode will be replaced with an appropriate character (usually
“27).

If fo_output is True (the default), uses output_codec to convert to an encoded format. If to_output is False,
it uses input_codec.

get_output_charset ()
Return the output character set.

This is the output_charset attribute if that is not None, otherwise it is input_charset.

encoded_header_ len ()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encoding.

header encode (s[, convert])
Header-encode the string s.

If convert is True, the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-level Header class to deal with these issues (see
email.header). convert defaults to False.

The type of encoding (base64 or quoted-printable) will be based on the header_encoding attribute.

body_encode (s[, convert])
Body-encode the string s.

If convert is True (the default), the string will be converted from the input charset to output charset auto-
matically. Unlike header_encode (), there are no issues with byte boundaries and multibyte charsets in
email bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based on the body_encoding attribute.
The Charset class also provides a number of methods to support standard operations and built-in functions.

str_ ()
Returns input_charset as a string coerced to lower case. __repr__ () isanalias for __str__ ().

__eq__ (other)
This method allows you to compare two Charset instances for equality.

__ne__ (other)
This method allows you to compare two Charset instances for inequality.

The email.charset module also provides the following functions for adding new entries to the global char-
acter set, alias, and codec registries:

add_charset (charset[, header_enc [, body,enc[, output,charset]]])
Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either Charset . QP for quoted-printable, Charset .BASE64 for
base64 encoding, Charset . SHORTEST for the shortest of quoted-printable or base64 encoding, or None
for no encoding. SHORTEST is only valid for header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in. Conversions will proceed from
input charset, to Unicode, to the output charset when the method Charset .convert () is called. The
default is to output in the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the module’s character set-to-
codec mapping; use add_codec () to add codecs the module does not know about. See the codecs
module’s documentation for more information.

The global character set registry is kept in the module global dictionary CHARSETS.

196 Chapter 7. Internet Data Handling

add_alias (alias, canonical)
Add a character set alias. alias is the alias name, e.g. latin-1. canonical is the character set’s canonical
name, e.g. 1so—-8859-1.

The global charset alias registry is kept in the module global dictionary ALTIASES.

add_codec (charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charset is the canonical name of a character set. codecname is the name of a Python codec, as appropriate
for the second argument to the unicode () built-in, or to the encode () method of a Unicode string.

7.1.7 Encoders

When creating Message objects from scratch, you often need to encode the payloads for transport through
compliant mail servers. This is especially true for image/* and text/* type messages containing binary data.

The email package provides some convenient encodings in its encoders module. These encoders are actually
used by the MIMEAudio and MIMEImage class constructors to provide default encodings. All encoder functions
take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the
payload to this newly encoded value. They should also set the Content-Transfer-Encoding: header as appropriate.

Here are the encoding functions provided:

encode_quopri (msg)
Encodes the payload into quoted-printable form and sets the Content-Transfer-Encoding: header to
quoted-printable?. This is a good encoding to use when most of your payload is normal printable
data, but contains a few unprintable characters.

encode_base64 (msg)
Encodes the payload into base64 form and sets the Content-Transfer-Encoding: header to base64. This is
a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode_7or8bit (msg)
This doesn’t actually modify the message’s payload, but it does set the Content-Transfer-Encoding: header
to either 7bit or 8bit as appropriate, based on the payload data.

encode_noop (msg)
This does nothing; it doesn’t even set the Content-Transfer-Encoding: header.

7.1.8 Exception and Defect classes

The following exception classes are defined in the email.errors module:

exception MessageError ()
This is the base class for all exceptions that the email package can raise. It is derived from the standard
Exception class and defines no additional methods.

exception MessageParseError ()
This is the base class for exceptions thrown by the Parser class. It is derived from MessageError.

exception HeaderParseError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived
from MessageParseError. It can be raised from the Parser.parse () or Parser.parsestr ()
methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of
the message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the
headers which is neither a header or a continuation line.

exception BoundaryError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived

2Note that encoding with encode_quopri () also encodes all tabs and space characters in the data.

7.1. email — An email and MIME handling package 197

from MessageParseError. It can be raised from the Parser.parse () or Parser.parsestr ()
methods.

Situations where it can be raised include not being able to find the starting or terminating boundary in a
multipart/* message when strict parsing is used.

exception MultipartConversionError ()
Raised when a payload is added to a Message object using add_payload(), but the payload
is already a scalar and the message’s Content-Type: main type is not either multipart or missing.
MultipartConversionError multiply inherits from MessageError and the built-in TypeError.

Since Message.add_payload () is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if the attach () method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

Here’s the list of the defects that the FeedParser can find while parsing messages. Note that the defects
are added to the message where the problem was found, so for example, if a message nested inside a mul-
tipart/alternative had a malformed header, that nested message object would have a defect, but the containing
messages would not.

All defect classes are subclassed from email.errors.MessageDefect, but this class is not an exception!

New in version 2.4: All the defect classes were added.

e NoBoundaryInMultipartDefect — A message claimed to be a multipart, but had no boundary pa-
rameter.

e StartBoundaryNotFoundDefect — The start boundary claimed in the Content-Type: header was
never found.

e FirstHeaderLineIsContinuationDefect — The message had a continuation line as its first
header line.

e MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header
block.

e MalformedHeaderDefect — A header was found that was missing a colon, or was otherwise mal-
formed.

e MultipartInvariantViolationDefect — A message claimed to be a multipart, but no subparts
were found. Note that when a message has this defect, its is_multipart () method may return false
even though its content type claims to be multipart.

7.1.9 Miscellaneous utilities

There are several useful utilities provided in the email.utils module:

quote (str)
Return a new string with backslashes in str replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote (sir)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

parseaddr (address)
Parse address — which should be the value of some address-containing field such as To: or Cc: — into its
constituent realname and email address parts. Returns a tuple of that information, unless the parse fails, in
which case a 2-tuple of (', ’’) isreturned.

formataddr (pair)
The inverse of parseaddr (), this takes a 2-tuple of the form (realname, email_address) and
returns the string value suitable for a To: or Cc: header. If the first element of pair is false, then the second
element is returned unmodified.

198 Chapter 7. Internet Data Handling

getaddresses (fieldvalues)
This method returns a list of 2-tuples of the form returned by parseaddr () . fieldvalues is a sequence of
header field values as might be returned by Message.get_all (). Here’s a simple example that gets all
the recipients of a message:

from email.utils import getaddresses

tos = msg.get_all(’'to’, [1])

ccs = msg.get_all(’'cc’, [1])

resent_tos = msg.get_all(’resent-to’, [])

resent_ccs = msg.get_all(’'resent-cc’, [1])

all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate (date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, so parsedate () tries to guess correctly in such cases. date is a string containing
an RFC 2822 date, such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the
date, parsedate () returns a 9-tuple that can be passed directly to t ime .mktime () ; otherwise None
will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate_tz (date)
Performs the same function as parsedate (), but returns either None or a 10-tuple; the first 9 elements
make up a tuple that can be passed directly to t ime .mktime (), and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time)?. If the input string has no
timezone, the last element of the tuple returned is None. Note that fields 6, 7, and 8 of the result tuple are
not usable.

mktime_tz (tuple)
Turn a 10-tuple as returned by parsedate_tz () into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: mktime_tz () interprets the first 8 elements of fuple as a
local time and then compensates for the timezone difference. This may yield a slight error around changes
in daylight savings time, though not worth worrying about for common use.

formatdate ([timeval [, localtime] [, usegmt]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional fimeval if given is a floating point time value as accepted by time.gmtime () and
time.localtime (), otherwise the current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local time-
zone instead of UTC, properly taking daylight savings time into account. The default is False meaning
UTC is used.

Optional usegmt is a flag that when True, outputs a date string with the timezone as an ascii string GMT,
rather than a numeric —0000. This is needed for some protocols (such as HTTP). This only applies when
localtime is False. New in version 2.4.

make_msgid ([idstring])
Returns a string suitable for an RFC 2822-compliant Message-ID: header. Optional idstring if given, is a
string used to strengthen the uniqueness of the message id.

decode_rfc2231 (s)
Decode the string s according to RFC 2231.

encode_rfc2231 (s[, charset[, language]])
Encode the string s according to RFC 2231. Optional charset and language, if given is the character set
name and language name to use. If neither is given, s is returned as-is. If charset is given but language is
not, the string is encoded using the empty string for language.

3Note that the sign of the timezone offset is the opposite of the sign of the t ime .t imezone variable for the same timezone; the latter
variable follows the POSIX standard while this module follows RFC 2822.

7.1. email — An email and MIME handling package 199

collapse_rfc2231_value (value [, errors[, fallback,charset]])
When a header parameter is encoded in RFC 2231 format, Message.get_param () may return a 3-
tuple containing the character set, language, and value. collapse_rfc2231_value () turns this into
a unicode string. Optional errors is passed to the errors argument of the built-in unicode () function;
it defaults to replace. Optional fallback_charset specifies the character set to use if the one in the RFC
2231 header is not known by Python; it defaults to us-ascii.

For convenience, if the value passed to collapse_rfc2231_value () is not a tuple, it should be a
string and it is returned unquoted.

decode_params (params)
Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing elements of
the form (content-type, string-value).

Changed in version 2.4: The dump_address_pair () function has been removed; use formataddr () in-
stead.

Changed in version 2.4: The decode () function has been removed; use the Header .decode_header ()
method instead.

Changed in version 2.4: The encode () function has been removed; use the Header .encode () method in-
stead.

7.1.10 lterators

Iterating over a message object tree is fairly easy with the Message.walk () method. The
email.iterators module provides some useful higher level iterations over message object trees.

body line_iterator (msg [decode])
This iterates over all the payloads in all the subparts of msg, returning the string payloads line-by-line.
It skips over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python
string. This is somewhat equivalent to reading the flat text representation of the message from a file us-
ing readline (), skipping over all the intervening headers.

Optional decode is passed through to Message .get_payload ().

typed subpart_iterator (msg[, maintype [subtype]])
This iterates over all the subparts of msg, returning only those subparts that match the MIME type specified
by maintype and subtype.

Note that subtype is optional; if omitted, then subpart MIME type matching is done only with the main type.
maintype is optional too; it defaults to text.

Thus, by default t yped_subpart_iterator () returns each subpart that has a MIME type of text/*.

The following function has been added as a useful debugging tool. It should not be considered part of the supported
public interface for the package.

_structure (msg[, fp[, level]])
Prints an indented representation of the content types of the message object structure. For example:

200 Chapter 7. Internet Data Handling

>>> msg = email.message_from_ file(somefile)
>>> _structure (msqg)
multipart/mixed
text/plain
text/plain
multipart/digest
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
text/plain

Optional fp is a file-like object to print the output to. It must be suitable for Python’s extended print state-
ment. level is used internally.

7.1.11 Package History

This table describes the release history of the email package, corresponding to the version of Python that the
package was released with. For purposes of this document, when you see a note about change or added versions,
these refer to the Python version the change was made it, not the email package version. This table also describes
the Python compatibility of each version of the package.

email version | distributed with | compatible with
1.x Python 2.2.0 to Python 2.2.1 no longer supported
2.5 Python 2.2.2+ and Python 2.3 | Python 2.1 to 2.5
3.0 Python 2.4 Python 2.3 to 2.5
4.0 Python 2.5 Python 2.3 to 2.5

Here are the major differences between email version 4 and version 3:

e All modules have been renamed according to PEP 8 standards. For example, the version 3 module
email.Message was renamed to email .message in version 4.

A new subpackage email .mime was added and all the version 3 email .MIME+ modules were renamed
and situated into the email .mime subpackage. For example, the version 3 module email .MIMEText
was renamed to email .mime.text.

Note that the version 3 names will continue to work until Python 2.6.

The email .mime.application module was added, which contains the MIMEApplication class.

e Methods that were deprecated in version 3 have been removed. These include Generator.__call__ -
(),Message.get_type(),Message.get_main_type(),Message.get_subtype ().

Fixes have been added for RFC 2231 support which can change some of the return types for
Message.get_param() and friends. Under some circumstances, values which used to return a 3-
tuple now return simple strings (specifically, if all extended parameter segments were unencoded, there is
no language and charset designation expected, so the return type is now a simple string). Also, %-decoding
used to be done for both encoded and unencoded segments; this decoding is now done only for encoded
segments.

Here are the major differences between email version 3 and version 2:

7.1. email — An email and MIME handling package 201

The FeedParser class was introduced, and the Parser class was implemented in terms of the
FeedParser. All parsing therefore is non-strict, and parsing will make a best effort never to raise an
exception. Problems found while parsing messages are stored in the message’s defect attribute.

All aspects of the API which raised DeprecationWarnings in version 2 have been removed.
These include the _encoder argument to the MIMEText constructor, the Message.add_payload()
method, the Utils.dump_address_pair () function, and the functions Utils.decode () and
Utils.encode ().

New DeprecationWarnings have been added to: Generator._ call_ (), Message.get_-—
type (), Message.get_main_type (), Message.get_subtype (), and the strict argument to
the Parser class. These are expected to be removed in future versions.

Support for Pythons earlier than 2.3 has been removed.

Here are the differences between email version 2 and version 1:

The email .Header and email .Charset modules have been added.

The pickle format for Message instances has changed. Since this was never (and still isn’t) formally
defined, this isn’t considered a backward incompatibility. However if your application pickles and unpickles
Message instances, be aware that in email version 2, Message instances now have private variables _-
charset and _default_type.

Several methods in the Message class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation for the Message class for details. The changes should
be completely backward compatible.

The object structure has changed in the face of message/rfc822 content types. In email version 1, such a
type would be represented by a scalar payload, i.e. the container message’s is_multipart () returned
false, get_payload () was not a list object, but a single Me ssage instance.

This structure was inconsistent with the rest of the package, so the object representation for message/rfc822
content types was changed. In ema il version 2, the container does return True from is_multipart (),
and get_payload () returns a list containing a single Message item.

Note that this is one place that backward compatibility could not be completely maintained. However, if
you’re already testing the return type of get_payload (), you should be fine. You just need to make sure
your code doesn’t do a set_payload () with a Message instance on a container with a content type of
message/rfc822.

The Parser constructor’s strict argument was added, and its parse () and parsestr () methods grew
a headersonly argument. The strict flag was also added to functions email .message_from_file ()
and email .message_from_string().

Generator.__call__ () is deprecated; use Generator.flatten () instead. The Generator
class has also grown the clone () method.

The DecodedGenerator class in the email . Generator module was added.

The intermediate base classes MIMENonMultipart and MIMEMultipart have been added, and inter-
posed in the class hierarchy for most of the other MIME-related derived classes.

The _encoder argument to the MIMEText constructor has been deprecated. Encoding now happens implic-
itly based on the _charset argument.

The following functions in the email.Utils module have been deprecated: dump_address_-—
pairs (), decode (), and encode (). The following functions have been added to the module:
make_msgid (), decode_rfc2231 (), encode_rfc2231 (), and decode_params ().

The non-public function email.Iterators._structure () was added.

202

Chapter 7. Internet Data Handling

7.1.12 Differences from mimelib

The email package was originally prototyped as a separate library called mimelib. Changes have been made
so that method names are more consistent, and some methods or modules have either been added or removed. The
semantics of some of the methods have also changed. For the most part, any functionality available in mimelib
is still available in the email package, albeit often in a different way. Backward compatibility between the
mimelib package and the email package was not a priority.

Here is a brief description of the differences between the mimelib and the email packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed to
email. In addition, the top-level package has the following differences:
e messageFromString () has been renamed to message_from_string ().

e messageFromFile () has been renamed to message_from_file ().
The Message class has the following differences:

e The method asString () wasrenamed to as_string ().

e The method ismultipart () wasrenamedto is_multipart ().
e The get_payload () method has grown a decode optional argument.
e The method getall () was renamed to get_all ().

e The method addheader () was renamed to add_header ().

e The method gettype () was renamed to get_type ().

e The method getmaintype () was renamed to get_main_type ().
e The method get subtype () was renamed to get_subtype ().

e The method getparams () was renamed to get_params (). Also, whereas getparams () returned a
list of strings, get_params () returns a list of 2-tuples, effectively the key/value pairs of the parameters,
split on the ‘=’ sign.

e The method getparam () was renamed to get_param().

e The method getcharsets () was renamed to get_charsets ().
e The method get filename () was renamed to get_filename ().
e The method getboundary () was renamed to get_boundary ().
e The method setboundary () was renamed to set_boundary ().

e The method getdecodedpayload () was removed. To get similar functionality, pass the value 1 to the
decode flag of the get_payload() method.

e The method getpayloadastext () was removed. Similar functionality is supported by the
DecodedGenerator class in the email.generator module.

e The method getbodyastext () was removed. You can get similar functionality by creating an iterator
with typed_subpart_iterator () inthe email.iterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents as a Me s sage instance containing separate Message
subparts for each header block in the delivery status notification®.

4Delivery Status Notifications (DSN) are defined in RFC 1894.

7.1. email — An email and MIME handling package 203

http://mimelib.sf.net/

The Generator class has no differences in its public interface. There is a new class inthe email .generator
module though, called DecodedGenerator which provides most of the functionality previously available in
the Message.getpayloadastext () method.

The following modules and classes have been changed:

e The MIMEBase class constructor arguments _major and _minor have changed to _maintype and _subtype
respectively.

e The Image class/module has been renamed to MIMEImage. The _minor argument has been renamed to
_subtype.

e The Text class/module has been renamed to MIMEText. The _minor argument has been renamed to
_subtype.

e The MessageRFC822 class/module has been renamed to MIMEMessage. Note that an earlier version
of mimelib called this class/module REC822, but that clashed with the Python standard library module
rfc822 on some case-insensitive file systems.

Also, the MIMEMe ssage class now represents any kind of MIME message with main type message. It
takes an optional argument _subtype which is used to set the MIME subtype. _subtype defaults to rfc822.

mimelib provided some utility functions in its address and date modules. All of these functions have been
moved to the email.utils module.

The MsgReader class/module has been removed. Its functionality is most closely supported in the body_ -
line_iterator () functioninthe email.iterators module.

7.1.13 Examples

Here are a few examples of how to use the email package to read, write, and send simple email messages, as
well as more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email.mime.text import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.

fp = open(textfile, ’"rb’)

Create a text/plain message

msg = MIMEText (fp.read())

fp.close ()

me == the sender’s email address

you == the recipient’s email address

msg [’ Subject’] = 'The contents of %$s’ % textfile
msg[’From’] = me

msg[’To’] = you

Send the message via our own SMTP server, but don’t include the
envelope header.

s = smtplib.SMTP ()

s.connect ()

s.sendmail (me, [you], msg.as_string())

s.close ()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in
a directory:

204 Chapter 7. Internet Data Handling

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we’ll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

COMMASPACE = ", '

Create the container (outer) email message.

msg = MIMEMultipart ()

msg [’ Subject’] = 'Our family reunion’

me == the sender’s email address

family = the list of all recipients’ email addresses
msg[’From’] = me

msg[’To’] = COMMASPACE. join (family)

msg.preamble = 'Our family reunion’

Assume we know that the image files are all in PNG format
for file in pngfiles:
Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, ’'rb’)
img = MIMEImage (fp.read())
fp.close()
msg.attach (img)

Send the email via our own SMTP server.
s = smtplib.SMTP ()

s.connect ()

s.sendmail (me, family, msg.as_string())
s.close ()

Here’s an example of how to send the entire contents of a directory as an email message: >
#!/usr/bin/env python
"""Send the contents of a directory as a MIME message."""

import os

import sys

import smtplib

For guessing MIME type based on file name extension
import mimetypes

from optparse import OptionParser

from email import encoders

from email.message import Message

from email.mime.audio import MIMEAudio

from email.mime.base import MIMEBase

from email.mime.image import MIMEImage

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

COMMASPACE = /, '
def main() :

parser = OptionParser (usage="""\
Send the contents of a directory as a MIME message.

5Thanks to Matthew Dixon Cowles for the original inspiration and examples.

7.1. email — An email and MIME handling package 205

Usage: %$prog [options]

Unless the -o option is given, the email is sent by forwarding to your local
SMTP server, which then does the normal delivery process. Your local machine
must be running an SMTP server.

nn ")

parser.add_option(’-d’, ’'--directory’,
type=’'string’, action=’store’,
help="""Mail the contents of the specified directory,

otherwise use the current directory. Only the regular
files in the directory are sent, and we don’t recurse to

subdirectories.""")
parser.add_option(’-o’, ’--output’,
type=’string’, action=’store’, metavar='FILE’,
help="""Print the composed message to FILE instead of
sending the message to the SMTP server.""")
parser.add_option(’-s’, ’--sender’,

type=’'string’, action=’store’, metavar=’SENDER’,
help=’'The value of the From: header (required)’)

parser.add_option(’'-r’, ’'—--recipient’,
type=’'string’, action=’append’, metavar='RECIPIENT’,
default=[], dest=’"recipients’,
help='A To: header value (at least one required)’)
opts, args = parser.parse_args()

if not opts.sender or not opts.recipients:
parser.print_help ()
sys.exit (1)
directory = opts.directory
if not directory:
directory = ’.’
Create the enclosing (outer) message
outer = MIMEMultipart ()

outer ([’ Subject’] = ’Contents of directory %s’ % os.path.abspath(directory)
outer[’To’] = COMMASPACE. join (opts.recipients)

outer[’From’] = opts.sender

outer.preamble = ’‘You will not see this in a MIME-aware mail reader.\n’

for filename in os.listdir (directory):

path = os.path.join(directory, filename)
if not os.path.isfile(path):
continue
Guess the content type based on the file’s extension. Encoding

will be ignored, although we should check for simple things like

gzip’d or compressed files.

ctype, encoding = mimetypes.guess_type (path)

if ctype is None or encoding is not None:
No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.

ctype = ’application/octet-stream’
maintype, subtype = ctype.split(’/’, 1)
if maintype == "text’:

fp = open (path)
Note: we should handle calculating the charset
msg = MIMEText (fp.read(), _subtype=subtype)

fp.close()
elif maintype == ’image’:
fp = open(path, ’'rb’)
msg = MIMEImage (fp.read(), _subtype=subtype)
fp.close ()
elif maintype == ’audio’:
fp = open(path, ’'rb’)
msg = MIMEAudio (fp.read (), _subtype=subtype)
fp.close ()

206

Chapter 7. Internet Data Handling

else:
fp = open(path, ’'rb’)
msg = MIMEBase (maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
encoders.encode_baseb64 (msqg)

Set the filename parameter

msg.add_header (' Content-Disposition’, ’'attachment’, filename=filename)

outer.attach (msqg)
Now send or store the message
composed = outer.as_string()
if opts.output:
fp = open (opts.output, ’'w’)
fp.write (composed)
fp.close()
else:
s = smtplib.SMTP ()
s.connect ()
s.sendmail (opts.sender, opts.recipients, composed)
s.close ()

if name == '__main__'":

main ()

And finally, here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python
"""Unpack a MIME message into a directory of files."""

import os

import sys
import email
import errno
import mimetypes

from optparse import OptionParser

def main () :
parser = OptionParser (usage="""\
Unpack a MIME message into a directory of files.

Usage: %prog [options] msgfile
nmn ")
parser.add_option(’-d’, ’'--directory’,
type=’string’, action=’store’,
help="""Unpack the MIME message into the named

directory, which will be created if it doesn’t already

exist . nmn ll)
opts, args = parser.parse_args()
if not opts.directory:

parser.print_help ()
sys.exit (1)

try:
msgfile = args[0]
except IndexError:
parser.print_help ()
sys.exit (1)

try:

7.1. email — An email and MIME handling package

207

os.mkdir (opts.directory)
except OSError, e:
Ignore directory exists error
if e.errno <> errno.EEXIST:
raise

fp = open (msgfile)
msg = email.message_from_file (fp)
fp.close ()

counter = 1
for part in msg.walk():
multipart/* are just containers
if part.get_content_maintype() == "'multipart’:
continue
Applications should really sanitize the given filename so that an
email message can’t be used to overwrite important files
filename = part.get_filename ()
if not filename:
ext = mimetypes.guess_extension (part.get_type())
if not ext:
Use a generic bag-of-bits extension
ext = ' .bin’
filename = ’"part-%03d%$s’ % (counter, ext)
counter += 1
fp = open(os.path.join (opts.directory, filename), ’'wb’)
fp.write (part.get_payload(decode=True))

fp.close()
if __ name_ == '_ _main_ ':
main ()

7.2 mailcap — Mailcap file handling.

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react
to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For
example, a mailcap file might contain a line like ‘video/mpeg; xmpeg %s’. Then, if the user encounters an
email message or Web document with the MIME type video/mpeg, ‘%s’ will be replaced by a filename (usually
one belonging to a temporary file) and the xmpeg program can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most UNIX systems.

findmatch (caps, MIMEtype [, key[, ﬁlename[, plist]]])

Return a 2-tuple; the first element is a string containing the command line to be executed (which can be
passed to os.system()), and the second element is the mailcap entry for a given MIME type. If no
matching MIME type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is 'view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be compose’ and "edit’, if you wanted to create a new body of the given MIME type
or alter the existing body data. See RFC 1524 for a complete list of these fields.

filename is the filename to be substituted for ‘% s’ in the command line; the default value is ’ /dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the
list must be a string containing the parameter name, an equals sign (‘="), and the parameter’s value. Mailcap
entries can contain named parameters like % { foo}, which will be replaced by the value of the parameter
named ’foo’. For example, if the command line ‘showpartial %{id} %{number} %{total}’

208

Chapter 7. Internet Data Handling

was in a mailcap file, and plist was setto [’ id=1’, 'number=2’, ’total=3’'], the resulting com-
mand line would be ' showpartial 1 2 3’.

In a mailcap file, the “test” field can optionally be specified to test some external condition (such as the
machine architecture, or the window system in use) to determine whether or not the mailcap line applies.
findmatch () will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed
to the findmatch () function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to
know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’, ‘/usr/etc/mailcap’,
and ‘/usr/local/etc/mailcap’.

An example usage:

>>> import mailcap

>>> d=mailcap.getcaps ()

>>> mailcap.findmatch(d, ’'video/mpeg’, filename=’'/tmp/tmpl223’)
(" xmpeg /tmp/tmpl223’, {’view’: ’'xmpeg %s’})

7.3 mailbox — Manipulate mailboxes in various formats

This module defines two classes, Mailbox and Message, for accessing and manipulating on-disk mailboxes
and the messages they contain. Mailbox offers a dictionary-like mapping from keys to messages. Message
extends the email .Message module’s Message class with format-specific state and behavior. Supported
mailbox formats are Maildir, mbox, MH, Babyl, and MMDEF.

See Also:

Module email (section 7.1):
Represent and manipulate messages.

7.3.1 Mailbox objects

class Mailbox
A mailbox, which may be inspected and modified.

The Mailbox interface is dictionary-like, with small keys corresponding to messages. Keys are issued by the
Mailbox instance with which they will be used and are only meaningful to that Mailbox instance. A key
continues to identify a message even if the corresponding message is modified, such as by replacing it with
another message. Messages may be added to a Mailbox instance using the set-like method add () and removed
using a del statement or the set-like methods remove () and discard ().

Mailbox interface semantics differ from dictionary semantics in some noteworthy ways. Each time a message
is requested, a new representation (typically a Message instance) is generated, based upon the current state of
the mailbox. Similarly, when a message is added to a Mailbox instance, the provided message representation’s
contents are copied. In neither case is a reference to the message representation kept by the Mailbox instance.

The default Mailbox iterator iterates over message representations, not keys as the default dictionary iterator
does. Moreover, modification of a mailbox during iteration is safe and well-defined. Messages added to the
mailbox after an iterator is created will not be seen by the iterator. Messages removed from the mailbox before
the iterator yields them will be silently skipped, though using a key from an iterator may result in a KeyError
exception if the corresponding message is subsequently removed.

Mailbox itself is intended to define an interface and to be inherited from by format-specific subclasses but is not
intended to be instantiated. Instead, you should instantiate a subclass.

7.3. mailbox — Manipulate mailboxes in various formats 209

Mailbox instances have the following methods:

add (message)
Add message to the mailbox and return the key that has been assigned to it.

Parameter message may be a Message instance, an email .Message .Message instance, a string, or a
file-like object (which should be open in text mode). If message is an instance of the appropriate format-
specific Message subclass (e.g., if it’s an mboxMessage instance and this is an mbox instance), its
format-specific information is used. Otherwise, reasonable defaults for format-specific information are
used.

remove (key)
__delitem__ (key)
discard (key)
Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the method was called as remove () or
__delitem__ () but no exception is raised if the method was called as discard (). The behavior of
discard () may be preferred if the underlying mailbox format supports concurrent modification by other
processes.

__setitem__ (key, message)
Replace the message corresponding to key with message. Raise a KeyError exception if no message
already corresponds to key.

As with add (), parameter message may be a Message instance, an email .Message.Message in-
stance, a string, or a file-like object (which should be open in text mode). If message is an instance of the
appropriate format-specific Message subclass (e.g., if it’s an mboxMe s sage instance and this is an mbox
instance), its format-specific information is used. Otherwise, the format-specific information of the message
that currently corresponds to key is left unchanged.

iterkeys ()
keys ()
Return an iterator over all keys if called as iterkeys () or return a list of keys if called as keys ().

itervalues ()

__iter ()

values ()
Return an iterator over representations of all messages if called as itervalues () or __iter__ () or
return a list of such representations if called as values (). The messages are represented as instances of
the appropriate format-specific Message subclass unless a custom message factory was specified when
the Mailbox instance was initialized. Note: The behavior of __iter_ _ () is unlike that of dictionaries,
which iterate over keys.

iteritems ()

items ()
Return an iterator over (key, message) pairs, where key is a key and message is a message representation, if
called as iteritems () orreturn a list of such pairs if called as items () . The messages are represented
as instances of the appropriate format-specific Message subclass unless a custom message factory was
specified when the Mai 1box instance was initialized.

get (key[, default:None])

__getitem__ (key)
Return a representation of the message corresponding to key. If no such message exists, default is returned
if the method was called as get () and a KeyError exception is raised if the method was called as ___—
getitem__ (). The message is represented as an instance of the appropriate format-specific Message
subclass unless a custom message factory was specified when the Mailbox instance was initialized.

get_message (key)
Return a representation of the message corresponding to key as an instance of the appropriate format-specific
Message subclass, or raise a KeyError exception if no such message exists.

get_string (key)
Return a string representation of the message corresponding to key, or raise a KeyError exception if no
such message exists.

210 Chapter 7. Internet Data Handling

get_file (key)
Return a file-like representation of the message corresponding to key, or raise a KeyError exception if no
such message exists. The file-like object behaves as if open in binary mode. This file should be closed once
it is no longer needed.

Note: Unlike other representations of messages, file-like representations are not necessarily independent
of the Mailbox instance that created them or of the underlying mailbox. More specific documentation is
provided by each subclass.

has_key (key)
__contains___ (key)
Return True if key corresponds to a message, False otherwise.

len__ ()
Return a count of messages in the mailbox.

clear ()
Delete all messages from the mailbox.

pPop (key[, default])
Return a representation of the message corresponding to key and delete the message. If no such message
exists, return default if it was supplied or else raise a KeyError exception. The message is represented
as an instance of the appropriate format-specific Message subclass unless a custom message factory was
specified when the Ma i 1box instance was initialized.

popitem/()
Return an arbitrary (key, message) pair, where key is a key and message is a message representation, and
delete the corresponding message. If the mailbox is empty, raise a KeyError exception. The message is
represented as an instance of the appropriate format-specific Message subclass unless a custom message
factory was specified when the Mailbox instance was initialized.

update (arg)
Parameter arg should be a key-to-message mapping or an iterable of (key, message) pairs. Updates the
mailbox so that, for each given key and message, the message corresponding to key is set to message as if
by using __setitem__ (). Aswith __setitem__ (), each key must already correspond to a message
in the mailbox or else a KeyError exception will be raised, so in general it is incorrect for arg to be a
Mailbox instance. Note: Unlike with dictionaries, keyword arguments are not supported.

flush ()
Write any pending changes to the filesystem. For some Mailbox subclasses, changes are always written
immediately and this method does nothing.

lock ()
Acquire an exclusive advisory lock on the mailbox so that other processes know not to modify it. An
ExternalClashError is raised if the lock is not available. The particular locking mechanisms used
depend upon the mailbox format.

unlock ()
Release the lock on the mailbox, if any.

close ()
Flush the mailbox, unlock it if necessary, and close any open files. For some Mailbox subclasses, this
method does nothing.

Maildir

class Maildir (dirname [factory=rfc822.Message [create=True]])
A subclass of Mailbox for mailboxes in Maildir format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-
sentation. If factory is None, MaildirMessage is used as the default message representation. If create
is True, the mailbox is created if it does not exist.

It is for historical reasons that factory defaults to r£c822 .Message and that dirname is named as such
rather than path. For a Maildir instance that behaves like instances of other Mailbox subclasses, set

7.3. mailbox — Manipulate mailboxes in various formats 211

factory to None.

Maildir is a directory-based mailbox format invented for the qmail mail transfer agent and now widely supported
by other programs. Messages in a Maildir mailbox are stored in separate files within a common directory structure.
This design allows Maildir mailboxes to be accessed and modified by multiple unrelated programs without data
corruption, so file locking is unnecessary.

Maildir mailboxes contain three subdirectories, namely: ‘tmp’, ‘new’, and ‘cur’. Messages are created momentar-
ily in the ‘tmp’ subdirectory and then moved to the ‘new’ subdirectory to finalize delivery. A mail user agent may
subsequently move the message to the ‘cur’ subdirectory and store information about the state of the message in a
special ”info” section appended to its file name.

Folders of the style introduced by the Courier mail transfer agent are also supported. Any subdirectory of the main
mailbox is considered a folder if *.’ is the first character in its name. Folder names are represented by Maildir
without the leading ‘.’. Each folder is itself a Maildir mailbox but should not contain other folders. Instead, a
logical nesting is indicated using ‘.’ to delimit levels, e.g., ”Archived.2005.07".

Note: The Maildir specification requires the use of a colon (‘:’) in certain message file names. However, some
operating systems do not permit this character in file names, If you wish to use a Maildir-like format on such an
operating system, you should specify another character to use instead. The exclamation point (‘!’) is a popular
choice. For example:

import mailbox
mailbox.Maildir.colon = " !’

The colon attribute may also be set on a per-instance basis.
Maildir instances have all of the methods of Mailbox in addition to the following:

list_folders ()
Return a list of the names of all folders.

get_folder (folder)
Return a Maildir instance representing the folder whose name is folder. A NoSuchMailboxError
exception is raised if the folder does not exist.

add_folder (folder)
Create a folder whose name is folder and return a Maildir instance representing it.

remove_folder (folder)
Delete the folder whose name is folder. If the folder contains any messages, a Not Empt yError exception
will be raised and the folder will not be deleted.

clean ()
Delete temporary files from the mailbox that have not been accessed in the last 36 hours. The Maildir
specification says that mail-reading programs should do this occasionally.

Some Mailbox methods implemented by Maildir deserve special remarks:

add (message)

__setitem__ (key, message)

update (arg)
Warning: These methods generate unique file names based upon the current process ID. When using
multiple threads, undetected name clashes may occur and cause corruption of the mailbox unless threads
are coordinated to avoid using these methods to manipulate the same mailbox simultaneously.

flush ()
All changes to Maildir mailboxes are immediately applied, so this method does nothing.

lock ()
unlock ()
Maildir mailboxes do not support (or require) locking, so these methods do nothing.

close ()
Maildir instances do not keep any open files and the underlying mailboxes do not support locking, so this

212 Chapter 7. Internet Data Handling

method does nothing.

get_file (key)
Depending upon the host platform, it may not be possible to modify or remove the underlying message
while the returned file remains open.

See Also:

maildir man page from qmail
The original specification of the format.

Using maildir format
Notes on Maildir by its inventor. Includes an updated name-creation scheme and details on "info” semantics.

maildir man page from Courier
Another specification of the format. Describes a common extension for supporting folders.

mbox

class mbox (path[, factory=None [, create:True]])
A subclass of Mailbox for mailboxes in mbox format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom rep-
resentation. If factory is None, mboxMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

The mbox format is the classic format for storing mail on UNIX systems. All messages in an mbox mailbox
are stored in a single file with the beginning of each message indicated by a line whose first five characters are
“From ™.

Several variations of the mbox format exist to address perceived shortcomings in the original. In the interest of
compatibility, mbox implements the original format, which is sometimes referred to as mboxo. This means that
the Content-Length: header, if present, is ignored and that any occurrences of "From ” at the beginning of a line
in a message body are transformed to ”;From ” when storing the message, although occurences of ”’;From " are
not transformed to "From ” when reading the message.

Some Mailbox methods implemented by mbox deserve special remarks:

get_file (key)
Using the file after calling f1ush () or close () on the mbox instance may yield unpredictable results
or raise an exception.

lock ()

unlock ()
Three locking mechanisms are used—dot locking and, if available, the f1ock () and lockf () system
calls.

See Also:

mbox man page from gmail
A specification of the format and its variations.

mbox man page from tin
Another specification of the format, with details on locking.

Configuring Netscape Mail on UNIX: Why The Content-Length Format is Bad
An argument for using the original mbox format rather than a variation.
“"mbox” is a family of several mutually incompatible mailbox formats
A history of mbox variations.

MH

class MH (path[, factory=N0ne[, create=True]])
A subclass of Mailbox for mailboxes in MH format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-

7.3. mailbox — Manipulate mailboxes in various formats 213

http://www.qmail.org/man/man5/maildir.html
http://cr.yp.to/proto/maildir.html
http://www.courier-mta.org/?maildir.html
http://www.qmail.org/man/man5/mbox.html
http://www.tin.org/bin/man.cgi?section=5&topic=mbox
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html
http://homepages.tesco.net./mathaccent "707E
elax {}J.deBoynePollard/FGA/mail-mbox-formats.html

sentation. If factory is None, MHMe s sage is used as the default message representation. If create is True,
the mailbox is created if it does not exist.

MH is a directory-based mailbox format invented for the MH Message Handling System, a mail user agent. Each
message in an MH mailbox resides in its own file. An MH mailbox may contain other MH mailboxes (called
folders) in addition to messages. Folders may be nested indefinitely. MH mailboxes also support sequences,
which are named lists used to logically group messages without moving them to sub-folders. Sequences are
defined in a file called ‘.mh_sequences’ in each folder.

The MH class manipulates MH mailboxes, but it does not attempt to emulate all of mh’s behaviors. In particular, it
does not modify and is not affected by the ‘context’ or ‘.mh_profile’ files that are used by mh to store its state and
configuration.

MH instances have all of the methods of Mailbox in addition to the following:

list_folders ()
Return a list of the names of all folders.

get_folder (folder)
Return an MH instance representing the folder whose name is folder. A NoSuchMailboxError exception
is raised if the folder does not exist.

add_folder (folder)
Create a folder whose name is folder and return an MH instance representing it.

remove_folder (folder)
Delete the folder whose name is folder. If the folder contains any messages, a Not Empt yError exception
will be raised and the folder will not be deleted.

get_sequences ()
Return a dictionary of sequence names mapped to key lists. If there are no sequences, the empty dictionary
is returned.

set_sequences (sequences)
Re-define the sequences that exist in the mailbox based upon sequences, a dictionary of names mapped to
key lists, like returned by get_sequences ().

pack ()
Rename messages in the mailbox as necessary to eliminate gaps in numbering. Entries in the sequences list
are updated correspondingly. Note: Already-issued keys are invalidated by this operation and should not be
subsequently used.

Some Mailbox methods implemented by MH deserve special remarks:

remove (key)

_ _delitem__ (key)

discard (key)
These methods immediately delete the message. The MH convention of marking a message for deletion by
prepending a comma to its name is not used.

lock ()

unlock ()
Three locking mechanisms are used—dot locking and, if available, the f1ock () and lockf () system
calls. For MH mailboxes, locking the mailbox means locking the ‘.mh_sequences’ file and, only for the
duration of any operations that affect them, locking individual message files.

get_file (key)
Depending upon the host platform, it may not be possible to remove the underlying message while the
returned file remains open.

flush ()
All changes to MH mailboxes are immediately applied, so this method does nothing.

close ()
MH instances do not keep any open files, so this method is equivelant to unlock ().

See Also:

214 Chapter 7. Internet Data Handling

nmh - Message Handling System
Home page of nmh, an updated version of the original mh.

MH & nmh: Email for Users & Programmers
A GPL-licensed book on mh and nmh, with some information on the mailbox format.

Babyl

class Babyl (path [Jfactory=None [create=True]])
A subclass of Mailbox for mailboxes in Babyl format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom repre-
sentation. If factory is None, Baby1lMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent included with Emacs. The beginning
of a message is indicated by a line containing the two characters Control-Underscore (‘\037’) and Control-L
(‘\014”). The end of a message is indicated by the start of the next message or, in the case of the last message, a
line containing a Control-Underscore (‘\037") character.

Messages in a Babyl mailbox have two sets of headers, original headers and so-called visible headers. Visible
headers are typically a subset of the original headers that have been reformatted or abridged to be more attractive.
Each message in a Babyl mailbox also has an accompanying list of labels, or short strings that record extra
information about the message, and a list of all user-defined labels found in the mailbox is kept in the Babyl
options section.

Baby1 instances have all of the methods of Mailbox in addition to the following:

get_labels ()
Return a list of the names of all user-defined labels used in the mailbox. Note: The actual messages are
inspected to determine which labels exist in the mailbox rather than consulting the list of labels in the Babyl
options section, but the Babyl section is updated whenever the mailbox is modified.

Some Mailbox methods implemented by Baby1 deserve special remarks:

get_file (key)
In Babyl mailboxes, the headers of a message are not stored contiguously with the body of the message.
To generate a file-like representation, the headers and body are copied together into a St ringIO instance
(from the St ringIO module), which has an API identical to that of a file. As a result, the file-like object is
truly independent of the underlying mailbox but does not save memory compared to a string representation.

lock ()

unlock ()
Three locking mechanisms are used—dot locking and, if available, the f1ock () and lockf () system
calls.

See Also:

Format of Version 5 Baby] Files
A specification of the Babyl format.

Reading Mail with Rmail
The Rmail manual, with some information on Babyl semantics.

MMDF

class MMDF (path[, factory=None [create:True]])
A subclass of Mailbox for mailboxes in MMDF format. Parameter factory is a callable object that accepts
a file-like message representation (which behaves as if opened in binary mode) and returns a custom rep-
resentation. If factory is None, MMDFMessage is used as the default message representation. If create is
True, the mailbox is created if it does not exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum Distribution Facility, a mail
transfer agent. Each message is in the same form as an mbox message but is bracketed before and after by

7.3. mailbox — Manipulate mailboxes in various formats 215

http://www.nongnu.org/nmh/
http://www.ics.uci.edu/mathaccent "707E
elax {}mh/book/
http://quimby.gnus.org/notes/BABYL
http://www.gnu.org/software/emacs/manual/htmlunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip node/Rmail.html

lines containing four Control-A (‘\001") characters. As with the mbox format, the beginning of each message
is indicated by a line whose first five characters are “From ”, but additional occurrences of "From ” are not
transformed to ”’; From ” when storing messages because the extra message separator lines prevent mistaking such
occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special remarks:

get_file (key)
Using the file after calling f1ush () or close () on the MMDF instance may yield unpredictable results
or raise an exception.

lock ()

unlock ()
Three locking mechanisms are used—dot locking and, if available, the f1ock () and lockf () system
calls.

See Also:

mmdf man page from tin
A specification of MMDF format from the documentation of tin, a newsreader.

MMDF
A Wikipedia article describing the Multichannel Memorandum Distribution Facility.

7.3.2 Message objects

class Message ([message])
A subclass of the email.Message module’s Message. Subclasses of mailbox.Message add
mailbox-format-specific state and behavior.

If message is omitted, the new instance is created in a default, empty state. If message is an
email .Message.Message instance, its contents are copied; furthermore, any format-specific infor-
mation is converted insofar as possible if message is a Message instance. If message is a string or a file, it
should contain an RFC 2822-compliant message, which is read and parsed.

The format-specific state and behaviors offered by subclasses vary, but in general it is only the properties that
are not specific to a particular mailbox that are supported (although presumably the properties are specific to a
particular mailbox format). For example, file offsets for single-file mailbox formats and file names for directory-
based mailbox formats are not retained, because they are only applicable to the original mailbox. But state such as
whether a message has been read by the user or marked as important is retained, because it applies to the message
itself.

There is no requirement that Message instances be used to represent messages retrieved using Mailbox in-
stances. In some situations, the time and memory required to generate Message representations might not not
acceptable. For such situations, Mailbox instances also offer string and file-like representations, and a custom
message factory may be specified when a Mai 1box instance is initialized.

MaildirMessage

class MaildirMessage ([message])
A message with Maildir-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Typically, a mail user agent application moves all of the messages in the ‘new’ subdirectory to the ‘cur’ subdirec-
tory after the first time the user opens and closes the mailbox, recording that the messages are old whether or not
they’ve actually been read. Each message in ‘cur’ has an ”info” section added to its file name to store information
about its state. (Some mail readers may also add an ”info” section to messages in ‘new’.) The ”info” section may
take one of two forms: it may contain ~"2,” followed by a list of standardized flags (e.g., ”2,FR”) or it may contain
”1,” followed by so-called experimental information. Standard flags for Maildir messages are as follows:

216 Chapter 7. Internet Data Handling

http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
http://en.wikipedia.org/wiki/MMDF

Flag | Meaning | Explanation

D Draft Under composition

F Flagged | Marked as important

P Passed Forwarded, resent, or bounced
R Replied Replied to

S Seen Read

T Trashed Marked for subsequent deletion

MaildirMessage instances offer the following methods:

get_subdir ()
Return either “new” (if the message should be stored in the ‘new’ subdirectory) or ”cur” (if the message
should be stored in the ‘cur’ subdirectory). Note: A message is typically moved from ‘new’ to ‘cur’ after
its mailbox has been accessed, whether or not the message is has been read. A message msg has been read
if "S" not in msg.get_flags () is True.

set_subdir (subdir)
Set the subdirectory the message should be stored in. Parameter subdir must be either “new” or "cur”.

get_flags ()
Return a string specifying the flags that are currently set. If the message complies with the standard Maildir
format, the result is the concatenation in alphabetical order of zero or one occurrence of each of ‘D’, ‘F’,
‘P’, ‘R’, ‘S’, and ‘T’. The empty string is returned if no flags are set or if ”info” contains experimental
semantics.

set_flags (flags)
Set the flags specified by flags and unset all others.

add_flag (flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag
may be a string of more than one character. The current ”info” is overwritten whether or not it contains
experimental information rather than flags.

remove_flag (flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time, flag
maybe a string of more than one character. If ”info” contains experimental information rather than flags,
the current ”info” is not modified.

get_date()
Return the delivery date of the message as a floating-point number representing seconds since the epoch.

set_date (date)
Set the delivery date of the message to date, a floating-point number representing seconds since the epoch.

get_info ()
Return a string containing the “info” for a message. This is useful for accessing and modifying “info” that
is experimental (i.e., not a list of flags).

set_info (info)
Set ’info” to info, which should be a string.

When a MaildirMessage instance is created based upon an mboxMessage or MMDFMes sage instance, the
Status: and X-Status: headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“cur” subdirectory | O flag
F flag F flag
R flag A flag
S flag R flag
T flag D flag

When a MaildirMessage instance is created based upon an MHMe s sage instance, the following conversions
take place:

7.3. mailbox — Manipulate mailboxes in various formats 217

Resulting state MHMessage state

“cur” subdirectory “unseen’ sequence
“cur” subdirectory and S flag | no “unseen” sequence
F flag “flagged” sequence
R flag “replied” sequence

When a MaildirMessage instance is created based upon a BabylMessage instance, the following conver-
sions take place:

Resulting state BabylMessage state
”cur” subdirectory “unseen” label

“cur” subdirectory and S flag | no “unseen” label

P flag “forwarded” or resent” label
R flag “answered” label

T flag “deleted” label

mboxMessage

class mboxMessage ([message])
A message with mbox-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Messages in an mbox mailbox are stored together in a single file. The sender’s envelope address and the time of
delivery are typically stored in a line beginning with "From ” that is used to indicate the start of a message, though
there is considerable variation in the exact format of this data among mbox implementations. Flags that indicate
the state of the message, such as whether it has been read or marked as important, are typically stored in Status:
and X-Status: headers.

Conventional flags for mbox messages are as follows:

Meaning | Explanation
Read Read
Old Previously detected by MUA

Deleted Marked for subsequent deletion
Flagged Marked as important
Answered | Replied to

> T oo ®|
®

The ”R” and ”O” flags are stored in the Status: header, and the ”D”, ”F”, and ”A” flags are stored in the X-Status:
header. The flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

get_from()
Return a string representing the ”From ” line that marks the start of the message in an mbox mailbox. The
leading “From and the trailing newline are excluded.

set_from (from,[, time,=N0ne])
Set the ”From ” line to from_, which should be specified without a leading "From ” or trailing newline. For
convenience, time_ may be specified and will be formatted appropriately and appended to from_. If time_ is
specified, it should be a st ruct_t ime instance, a tuple suitable for passing to time.strftime (), or
True (touse time.gmtime ()).

get_flags ()
Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ‘R’, ‘0O’,
‘D’, ‘F’, and ‘A’.

set_flags (flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any order
of zero or more occurrences of each of ‘R’, ‘0’, ‘D’, ‘F’, and ‘A’.

218 Chapter 7. Internet Data Handling

add_flag (flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag may
be a string of more than one character.

remove_flag (flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character.

When an mboxMessage instance is created based upon a MaildirMessage instance, a "From ” line is gen-
erated based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state | MaildirMessage state
R flag S flag

O flag ”cur” subdirectory

D flag T flag

F flag F flag

A flag R flag

When an mboxMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state | MHMessage state
R flag and O flag | no “unseen” sequence

O flag unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an mboxMes sage instance is created based upon a Baby1lMessage instance, the following conversions
take place:

Resulting state | BabylMessage state
R flag and O flag | no “unseen” label

O flag “unseen” label
D flag ”deleted” label
A flag “answered” label

When a Message instance is created based upon an MMDFMe s sage instance, the "From ” line is copied and all
flags directly correspond:

Resulting state | MMDFMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

MHMessage

class MHMessage ([message])

A message with MH-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

MH messages do not support marks or flags in the traditional sense, but they do support sequences, which are
logical groupings of arbitrary messages. Some mail reading programs (although not the standard mh and nmh)
use sequences in much the same way flags are used with other formats, as follows:

Sequence | Explanation

unseen Not read, but previously detected by MUA
replied Replied to

flagged Marked as important

7.3. mailbox — Manipulate mailboxes in various formats 219

MHMes sage instances offer the following methods:

get_sequences ()
Return a list of the names of sequences that include this message.

set__sequences (sequences)
Set the list of sequences that include this message.

add_sequence (sequence)
Add sequence to the list of sequences that include this message.

remove_sequence (sequence)
Remove sequence from the list of sequences that include this message.

When an MHMe s sage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state | MaildirMessage state
“unseen” sequence | no S flag

“replied” sequence | R flag

“flagged” sequence | F flag

When an MHMe s sage instance is created based upon an mboxMessage or MMDFMe s sage instance, the Status:
and X-Status: headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” sequence | no R flag

“replied” sequence | A flag

“flagged” sequence | F flag

When an MHMessage instance is created based upon a Baby1lMessage instance, the following conversions
take place:

Resulting state | BabylMessage state
“unseen” sequence | ~unseen” label
“replied” sequence | “answered” label

BabylMessage

class BabylMessage ([message])
A message with Babyl-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Certain message labels, called attributes, are defined by convention to have special meanings. The attributes are
as follows:

Label Explanation

unseen Not read, but previously detected by MUA
deleted Marked for subsequent deletion

filed Copied to another file or mailbox

answered | Replied to
forwarded | Forwarded

edited Modified by the user
resent Resent

By default, Rmail displays only visible headers. The BabylMessage class, though, uses the original headers
because they are more complete. Visible headers may be accessed explicitly if desired.

BabylMessage instances offer the following methods:

220 Chapter 7. Internet Data Handling

get_labels ()
Return a list of labels on the message.

set_labels (labels)
Set the list of labels on the message to labels.

add_1label (label)
Add label to the list of labels on the message.

remove_label (label)
Remove label from the list of labels on the message.

get_visible ()
Return an Me s sage instance whose headers are the message’s visible headers and whose body is empty.

set_visible (visible)
Set the message’s visible headers to be the same as the headers in message. Parameter visible should be a
Message instance, an email .Message .Message instance, a string, or a file-like object (which should
be open in text mode).

update_visible ()
When a Baby1Message instance’s original headers are modified, the visible headers are not automatically
modified to correspond. This method updates the visible headers as follows: each visible header with
a corresponding original header is set to the value of the original header, each visible header without a
corresponding original header is removed, and any of Date:, From:, Reply-To:, To:, CC:, and Subject: that
are present in the original headers but not the visible headers are added to the visible headers.

When a Baby1Message instance is created based upon a MaildirMessage instance, the following conver-
sions take place:

Resulting state \ MaildirMessage state
“unseen’ label no S flag

“deleted” label T flag

“answered” label | R flag

”forwarded” label | P flag

When a BabylMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status: and X-Status: headers are omitted and the following conversions take place:

Resulting state \ mboxMessage or MMDFMessage state
“unseen’ label no R flag

”deleted” label D flag

“answered” label | A flag

When a BabylMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state | MHMessage state
“unseen” label unseen” sequence
“answered” label | “replied” sequence

MMDFMessage

class MMDFMessage ([message])
A message with MMDF-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

As with message in an mbox mailbox, MMDF messages are stored with the sender’s address and the delivery date
in an initial line beginning with "From . Likewise, flags that indicate the state of the message are typically stored
in Status: and X-Status: headers.

Conventional flags for MMDF messages are identical to those of mbox message and are as follows:

7.3. mailbox — Manipulate mailboxes in various formats 221

Meaning | Explanation
Read Read
Old Previously detected by MUA

Deleted Marked for subsequent deletion
Flagged Marked as important
Answered | Replied to

> T YO R
3

The ”R” and ”O” flags are stored in the Status: header, and the ”D”, ”F”, and ”A” flags are stored in the X-Status:
header. The flags and headers typically appear in the order mentioned.

MMDFMe s sage instances offer the following methods, which are identical to those offered by mboxMessage:

get_from ()

Return a string representing the ”From line that marks the start of the message in an mbox mailbox. The
leading “From ” and the trailing newline are excluded.

set_from (from,[, time,:None])

Set the ”From ” line to from_, which should be specified without a leading "From ” or trailing newline. For
convenience, time_ may be specified and will be formatted appropriately and appended to from_. If time_ is
specified, it should be a st ruct_t ime instance, a tuple suitable for passing to time.strftime (), or
True (touse time.gmtime ()).

get_flags ()

Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ‘R’, ‘O’,
‘D’, ‘F’, and ‘A’.

set_flags (flags)

Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any order
of zero or more occurrences of each of ‘R’, ‘O’, ‘D’, ‘F’, and ‘A’.

add_flag (flag)

Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag may
be a string of more than one character.

remove_flag (flag)

Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,

flag maybe a string of more than one character.

When an MMDFMe s sage instance is created based upon a MaildirMessage instance, a "From ” line is gen-
erated based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state | MaildirMessage state
R flag S flag

O flag “cur” subdirectory

D flag T flag

F flag F flag

A flag R flag

When an MMDFMessage instance is created based upon an MHMessage instance, the following conversions
take place:

Resulting state | MHMessage state
R flag and O flag | no “unseen” sequence

O flag “unseen’ sequence
F flag “flagged” sequence
A flag “replied” sequence

When an MMDFMe s sage instance is created based upon a Baby1Message instance, the following conversions
take place:

222

Chapter 7. Internet Data Handling

Resulting state | BabylMessage state
R flag and O flag | no "unseen” label

O flag “unseen’ label
D flag ”deleted” label
A flag ”answered” label

When an MMDFMe s sage instance is created based upon an mboxMes sage instance, the ”From ” line is copied
and all flags directly correspond:

Resulting state | mboxMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

7.3.3 Exceptions

The following exception classes are defined in the mailbox module:

class Error ()
The based class for all other module-specific exceptions.

class NoSuchMailboxError ()
Raised when a mailbox is expected but is not found, such as when instantiating a Mailbox subclass with
a path that does not exist (and with the create parameter set to False), or when opening a folder that does
not exist.

class NotEmptyErrorError ()
Raised when a mailbox is not empty but is expected to be, such as when deleting a folder that contains
messages.

class ExternalClashError ()
Raised when some mailbox-related condition beyond the control of the program causes it to be unable
to proceed, such as when failing to acquire a lock that another program already holds a lock, or when a
uniquely-generated file name already exists.

class FormatError ()
Raised when the data in a file cannot be parsed, such as when an MH instance attempts to read a corrupted
‘. mh_sequences’ file.

7.3.4 Deprecated classes and methods

Older versions of the mailbox module do not support modification of mailboxes, such as adding or removing
message, and do not provide classes to represent format-specific message properties. For backward compatibility,
the older mailbox classes are still available, but the newer classes should be used in preference to them.

Older mailbox objects support only iteration and provide a single public method:

next ()
Return the next message in the mailbox, created with the optional factory argument passed into the mailbox
object’s constructor. By default thisis an r£c822 . Message object (see the r£c822 module). Depending
on the mailbox implementation the fp attribute of this object may be a true file object or a class instance sim-
ulating a file object, taking care of things like message boundaries if multiple mail messages are contained
in a single file, etc. If no more messages are available, this method returns None.

Most of the older mailbox classes have names that differ from the current mailbox class names, except for
Maildir. For this reason, the new Maildir class defines a next () method and its constructor differs slightly
from those of the other new mailbox classes.

The older mailbox classes whose names are not the same as their newer counterparts are as follows:

7.3. mailbox — Manipulate mailboxes in various formats 223

class UnixMailbox (fp [, factory])
Access to a classic UNIX-style mailbox, where all messages are contained in a single file and separated by
‘From ’(a.k.a. ‘From_’) lines. The file object fp points to the mailbox file. The optional factory parameter
is a callable that should create new message objects. factory is called with one argument, fp by the next ()
method of the mailbox object. The default is the r£c822 . Message class (see the r£c822 module — and
the note below).

Note: For reasons of this module’s internal implementation, you will probably want to open the fp object in
binary mode. This is especially important on Windows.

For maximum portability, messages in a UNIX-style mailbox are separated by any line that begins exactly
with the string * From ' (note the trailing space) if preceded by exactly two newlines. Because of the wide-
range of variations in practice, nothing else on the From_ line should be considered. However, the current
implementation doesn’t check for the leading two newlines. This is usually fine for most applications.

The UnixMailbox class implements a more strict version of From_ line checking, using a regular expres-
sion that usually correctly matched From_ delimiters. It considers delimiter line to be separated by ‘From
name time’ lines. For maximum portability, use the PortableUnixMailbox class instead. This class
is identical to UnixMailbox except that individual messages are separated by only ‘From ’ lines.

For more information, see Configuring Netscape Mail on UNIX: Why the Content-Length Format is Bad.

class PortableUnixMailbox (fp[, factory])
A less-strict version of UnixMailbox, which considers only the ‘From ’ at the beginning of the line
separating messages. The “name time” portion of the From line is ignored, to protect against some variations
that are observed in practice. This works since lines in the message which begin with ’ From ’ are quoted
by mail handling software at delivery-time.

)

class MmdfMailbox (fp [factory])
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines
consisting of 4 control-A characters. The file object fp points to the mailbox file. Optional factory is as with
the UnixMailbox class.

class MHMailbox (dirname [, factory])
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of
the mailbox directory is passed in dirname. factory is as with the UnixMailbox class.

class BabylMailbox (fp [factory])

Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format, each message has two
sets of headers, the original headers and the visible headers. The original headers appear before a line
containing only ’ »x» EOOH ==’ (End-Of-Original-Headers) and the visible headers appear after the
EOOH line. Babyl-compliant mail readers will show you only the visible headers, and Baby1Mailbox
objects will return messages containing only the visible headers. You’ll have to do your own parsing of the
mailbox file to get at the original headers. Mail messages start with the EOOH line and end with a line
containing only * \037\014" . factory is as with the UnixMailbox class.

If you wish to use the older mailbox classes with the email module rather than the deprecated r£c822 module,
you can do so as follows:

import email
import email.Errors
import mailbox

def msgfactory (fp) :
try:
return email.message_from_file (fp)
except email.Errors.MessageParseError:
Don’t return None since that will
stop the mailbox iterator
return '’

mbox = mailbox.UnixMailbox (fp, msgfactory)

224 Chapter 7. Internet Data Handling

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/content-length.html

Alternatively, if you know your mailbox contains only well-formed MIME messages, you can simplify this to:

import email
import mailbox

mbox = mailbox.UnixMailbox (fp, email.message_from file)

7.3.5 Examples

A simple example of printing the subjects of all messages in a mailbox that seem interesting:

import mailbox
for message in mailbox.mbox (’~/mbox’) :
subject = message[’subject’] # Could possibly be None.
if subject and ’"python’ in subject.lower():
print subject

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the format-specific information that
can be converted:

import mailbox

destination = mailbox.MH(’~/Mail’)

for message in mailbox.Babyl ('’ ~“/RMAIL’) :
destination.add (MHMessage (message))

An example of sorting mail from numerous mailing lists, being careful to avoid mail corruption due to concurrent
modification by other programs, mail loss due to interruption of the program, or premature termination due to
malformed messages in the mailbox:

import mailbox

import email.Errors

list_names = (’'python-list’, ’‘python-dev’, ’'python-bugs’)

boxes = dict ((name, mailbox.mbox(’ " /email/%$s’ % name)) for name in list_names)
inbox = mailbox.Maildir (’~/Maildir’, None)

for key in inbox.iterkeys():

try:
message = inbox[key]
except email.Errors.MessageParseError:
continue # The message is malformed. Just leave it.

for name in list_names:
list_id = message[’list-id’]
if list_id and name in list_id:
box = boxes[name]
box.lock ()
box.add (message)
box.flush () # Write copy to disk before removing original.
box.unlock ()
inbox.discard (key)
break # Found destination, so stop looking.
for box 1in boxes.itervalues () :
box.close ()

7.3. mailbox — Manipulate mailboxes in various formats 225

7.4 mhlib — Access to MH mailboxes

The mh1ib module provides a Python interface to MH folders and their contents.

The module contains three basic classes, MH, which represents a particular collection of folders, Folder, which
represents a single folder, and Me ssage, which represents a single message.

class MH ([path [proﬁle]])
MH represents a collection of MH folders.

class Folder (mh, name)
The Folder class represents a single folder and its messages.

class Message (folder, number[, name])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message.

7.4.1 MH Objects

MH instances have the following methods:

error (format[,])
Print an error message — can be overridden.

getprofile (key)
Return a profile entry (None if not set).

getpath ()
Return the mailbox pathname.

getcontext ()
Return the current folder name.

setcontext (name)
Set the current folder name.

listfolders ()
Return a list of top-level folders.

listallfolders ()
Return a list of all folders.

listsubfolders (name)
Return a list of direct subfolders of the given folder.

listallsubfolders (name)
Return a list of all subfolders of the given folder.

makefolder (name)
Create a new folder.

deletefolder (name)
Delete a folder — must have no subfolders.

openfolder (name)
Return a new open folder object.

7.4.2 Folder Objects

Folder instances represent open folders and have the following methods:

error (format[,])
Print an error message — can be overridden.

getfullname ()

226 Chapter 7. Internet Data Handling

Return the folder’s full pathname.

getsequencesfilename ()
Return the full pathname of the folder’s sequences file.

getmessagefilename (n)
Return the full pathname of message n of the folder.

listmessages ()
Return a list of messages in the folder (as numbers).

getcurrent ()
Return the current message number.

setcurrent (n)
Set the current message number to 7.

parsesequence (seq)
Parse msgs syntax into list of messages.

getlast ()
Get last message, or 0 if no messages are in the folder.

setlast (n)
Set last message (internal use only).

getsequences ()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are the lists
of message numbers in the sequences.

putsequences (dict)
Return dictionary of sequences in folder name: list.

removemessages (list)
Remove messages in list from folder.

refilemessages (list, tofolder)
Move messages in list to other folder.

movemessage (n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage (n, tofolder, ton)
Copy one message to a given destination in another folder.

7.4.3 Message Objects

The Message class adds one method to those of mimetools.Message:

openmessage (n)
Return a new open message object (costs a file descriptor).

7.5 mimetools — Tools for parsing MIME messages

Deprecated since release 2.3. The email package should be used in preference to the mimetools module.
This module is present only to maintain backward compatibility.

This module defines a subclass of the r£c822 module’s Message class and a number of utility functions that
are useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

class Message (fp [, seekable])
Return a new instance of the Message class. This is a subclass of the r£c822 . Message class, with some
additional methods (see below). The seekable argument has the same meaning as for r£c822 .Message.

7.5. mimetools — Tools for parsing MIME messages 227

choose_boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
" hostipaddr . uid . pid . timestamp . random’ .

decode (input, output, encoding)
Read data encoded using the allowed MIME encoding from open file object input and write the decoded
data to open file object output. Valid values for encoding include ' base64’, ' quoted-printable’,
"uuencode’, ' x-uuencode’, 'uue’, 'x-uue’, ' 7bit’, and ' 8bit’. Decoding messages en-
codedin ’ 7bit’ or ' 8bit’ has no effect. The input is simply copied to the output.

encode (input, output, encoding)
Read data from open file object input and write it encoded using the allowed MIME encoding to open file
object output. Valid values for encoding are the same as for decode () .

copyliteral (input, output)
Read lines from open file input until EOF and write them to open file output.

copybinary (input, output)
Read blocks until EOF from open file input and write them to open file output. The block size is currently
fixed at 8192.

See Also:

Module email (section 7.1):
Comprehensive email handling package; supersedes the mimet ools module.

Module r£c822 (section 7.10):
Provides the base class formimetools.Message.

Module multifile (section 7.9):
Support for reading files which contain distinct parts, such as MIME data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-fag/.html
The MIME Frequently Asked Questions document. For an overview of MIME, see the answer to question
1.1 in Part 1 of this document.

7.5.1 Additional Methods of Message Objects

The Message class defines the following methods in addition to the r£c822 . Message methods:

getplist ()
Return the parameter list of the Content-Type: header. This is a list of strings. For parameters of the form
‘key=value’, key is converted to lower case but value is not. For example, if the message contains the header
‘Content-type: text/html; spam=1; Spam=2; Spam’ then getplist () will return the
Python list [’ spam=1’, ’spam=2’, ’Spam’].

getparam (name)
Return the value of the first parameter (as returned by getplist ()) of the form ‘name=value’ for the
given name. If value is surrounded by quotes of the form ‘<...>” or ‘"..."’, these are removed.

getencoding ()
Return the encoding specified in the Content-Transfer-Encoding: message header. If no such header exists,
return ’ 7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the form ‘type/subtype’) as specified in the Content-Type: header. If no such
header exists, return ' text /plain’. The type is converted to lower case.

getmaintype ()
Return the main type as specified in the Content-Type: header. If no such header exists, return ' text’.
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in the Content-Type: header. If no such header exists, return plain’. The
subtype is converted to lower case.

228 Chapter 7. Internet Data Handling

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html

7.6 mimetypes — Map filenames to MIME types

The mimetypes module converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename extension;
encodings are not supported for the latter conversion.

The module provides one class and a number of convenience functions. The functions are the normal interface to
this module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init () if they rely on the information init () sets up.

guess_type (filename [, strict])
Guess the type of a file based on its filename or URL, given by filename. The return value is a tuple (type,
encoding) where type is None if the type can’t be guessed (missing or unknown suffix) or a string of the
form ' type/subtype’ , usable for a MIME content-type: header.

encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip). The
encoding is suitable for use as a Content-Encoding: header, not as a Content-Transfer-Encoding: header. The
mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case sensitively,
then case insensitively.

Optional strict is a flag specifying whether the list of known MIME types is limited to only the official types
registered with IANA are recognized. When strict is true (the default), only the IANA types are supported;
when strict is false, some additional non-standard but commonly used MIME types are also recognized.

guess_all_extensions (type[, strict])
Guess the extensions for a file based on its MIME type, given by fype. The return value is a list of strings
giving all possible filename extensions, including the leading dot (‘.”). The extensions are not guaranteed
to have been associated with any particular data stream, but would be mapped to the MIME type type by
guess_type ().

Optional strict has the same meaning as with the guess_type () function.

guess_extension (fype [strict])
Guess the extension for a file based on its MIME type, given by rype. The return value is a string giving a
filename extension, including the leading dot (‘.). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME type type by guess_type (). If no
extension can be guessed for type, None is returned.

Optional strict has the same meaning as with the guess_type () function.
Some additional functions and data items are available for controlling the behavior of the module.

init ([ﬁles])
Initialize the internal data structures. If given, files must be a sequence of file names which should be used
to augment the default type map. If omitted, the file names to use are taken from knownfiles. Each file
named in files or knownfiles takes precedence over those named before it. Calling init () repeatedly
is allowed.

read_mime_types (filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (°.’), to strings of the form ' type/subtype’ . If the file
filename does not exist or cannot be read, None is returned.

add_type (type, ext[, strict])
Add a mapping from the mimetype rype to the extension ext. When the extension is already known, the
new type will replace the old one. When the type is already known the extension will be added to the list of
known extensions.

When strict is the mapping will added to the official MIME types, otherwise to the non-standard ones.
inited
Flag indicating whether or not the global data structures have been initialized. This is setto true by init ().

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and are

7.6. mimetypes — Map filenames to MIME types 229

http://www.isi.edu/in-notes/iana/assignments/media-types

installed in different locations by different packages.

suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to
‘.tar.gz’ to allow the encoding and type to be recognized separately.

encodings_map
Dictionary mapping filename extensions to encoding types.

types_map
Dictionary mapping filename extensions to MIME types.

common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

The MimeTypes class may be useful for applications which may want more than one MIME-type database:

class MimeTypes ([ﬁlenames])
This class represents a MIME-types database. By default, it provides access to the same database as the
rest of this module. The initial database is a copy of that provided by the module, and may be extended
by loading additional ‘mime.types’-style files into the database using the read () or readfp () methods.
The mapping dictionaries may also be cleared before loading additional data if the default data is not desired.

The optional filenames parameter can be used to cause additional files to be loaded “on top” of the default
database.

New in version 2.2.

An example usage of the module:

>>> import mimetypes

>>> mimetypes.init ()

>>> mimetypes.knownfiles

[’ /etc/mime.types’, ’'/etc/httpd/mime.types’, ...]
>>> mimetypes.suffix_mapl[’ .tgz’]

' .tar.gz’

>>> mimetypes.encodings_mapl[’.gz’]

’ gzipl

>>> mimetypes.types_mapl[’.tgz’]
"application/x-tar—-gz’

7.6.1 MimeTypes Objects

MimeTypes instances provide an interface which is very like that of the mimet ypes module.

suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the
encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to
‘.tar.gz’ to allow the encoding and type to be recognized separately. This is initially a copy of the global
suffix_map defined in the module.

encodings_map
Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings_map defined in the module.

types_map
Dictionary mapping filename extensions to MIME types. This is initially a copy of the global t ypes_map
defined in the module.

common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types. This is initially
a copy of the global common_types defined in the module.

230 Chapter 7. Internet Data Handling

guess_extension (fype [strict])
Similar to the guess_extension () function, using the tables stored as part of the object.

guess_type (url [strict])
Similar to the guess_type () function, using the tables stored as part of the object.

read (path)
Load MIME information from a file named path. This uses readfp () to parse the file.

readf£p (file)
Load MIME type information from an open file. The file must have the format of the standard ‘mime.types’
files.

7.7 MimeWriter — Generic MIME file writer

Deprecated since release 2.3. The email package should be used in preference to the MimeWriter module.
This module is present only to maintain backward compatibility.

This module defines the class MimeWriter. The MimeWriter class implements a basic formatter for creating
MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts of buffer space. You
must write the parts out in the order that they should occur in the final file. MimeWriter does buffer the headers
you add, allowing you to rearrange their order.

class MimeWriter (fp)
Return a new instance of the MimeWriter class. The only argument passed, fp, is a file object to be used
for writing. Note that a St ringIO object could also be used.

7.7.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader (key, value[, preﬁx])
Add a header line to the MIME message. The key is the name of the header, where the value obviously
provides the value of the header. The optional argument prefix determines where the header is inserted; ‘0’
means append at the end, ‘1’ is insert at the start. The default is to append.

flushheaders ()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t need
a body part at all, e.g. for a subpart of type message/rfc822 that’s (mis)used to store some header-like
information.

startbody (ctype [, plist[, preﬁx]])
Returns a file-like object which can be used to write to the body of the message. The content-type is set
to the provided ctype, and the optional parameter plist provides additional parameters for the content-type
declaration. prefix functions as in addheader () except that the default is to insert at the start.

startmultipartbody (subtype[, boundary[, plist[, preﬁx]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this method
initializes the multi-part code, where subtype provides the multipart subtype, boundary may provide a user-
defined boundary specification, and plist provides optional parameters for the subtype. prefix functions as
in startbody (). Subparts should be created using nextpart ().

nextpart ()
Returns a new instance of MimeWriter which represents an individual part in a multipart message. This
may be used to write the part as well as used for creating recursively complex multipart messages. The
message must first be initialized with startmultipartbody () before using nextpart ().

lastpart ()
This is used to designate the last part of a multipart message, and should always be used when writing
multipart messages.

7.7. MimeWriter — Generic MIME file writer 231

7.8 mimify — MIME processing of mail messages

Deprecated since release 2.3. The email package should be used in preference to the mimi fy module. This
module is present only to maintain backward compatibility.

The mimi fy module defines two functions to convert mail messages to and from MIME format. The mail mes-
sage can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying
(a part of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be
represented using 7-bit ASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding.
Mimify and unmimify are especially useful when a message has to be edited before being sent. Typical use would
be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify (infile, outfile)
Copy the message in infile to outfile, converting parts to quoted-printable and adding MIME mail headers
when necessary. infile and outfile can be file objects (actually, any object that has a readline () method
(for infile) or a write () method (for outfile)) or strings naming the files. If infile and outfile are both
strings, they may have the same value.

unmimi £y (infile, outfile [, decode,base64])
Copy the message in infile to outfile, decoding all quoted-printable parts. infile and outfile can be file objects
(actually, any object that has a readline () method (for infile) or a write () method (for outfile)) or
strings naming the files. If infile and outfile are both strings, they may have the same value. If the decode _-
base64 argument is provided and tests true, any parts that are coded in the base64 encoding are decoded as
well.

mime decode_ header (line)
Return a decoded version of the encoded header line in line. This only supports the ISO 8859-1 charset
(Latin-1).

mime_ encode_ header (line)
Return a MIME-encoded version of the header line in line.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (characters
with the 8th bit set), or if there are any lines longer than MAXLEN characters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored in
CHARSET, and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-1 length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to standard input, outfile defaults to stan-
dard output. The same file can be specified for input and output.

If the -1 option is given when encoding, if there are any lines longer than the specified length, the containing part
will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

232 Chapter 7. Internet Data Handling

Module quopri (section 7.14):
Encode and decode MIME quoted-printable files.

7.9 multifile— Support for files containing distinct parts

Deprecated since release 2.5. The email package should be used in preference to the multifile module.
This module is present only to maintain backward compatibility.

The MultiFile object enables you to treat sections of a text file as file-like input objects, with ’ * being returned
by readline () when a given delimiter pattern is encountered. The defaults of this class are designed to make it
useful for parsing MIME multipart messages, but by subclassing it and overriding methods it can be easily adapted
for more general use.

classMultiFile (ﬁ?[, seekable])
Create a multi-file. You must instantiate this class with an input object argument for the MultiFile
instance to get lines from, such as a file object returned by open ().

MultiFile only ever looks at the input object’s readline (), seek () and tell () methods, and the
latter two are only needed if you want random access to the individual MIME parts. Touse MultiFile on
a non-seekable stream object, set the optional seekable argument to false; this will prevent using the input
object’s seek () and tell () methods.

It will be useful to know that in MultiFile’s view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and end-marker lines.

See Also:

Module email (section 7.1):
Comprehensive email handling package; supersedes the multifile module.

7.9.1 MultiFile Objects

A MultiFile instance has the following methods:

readline (str)
Read aline. If the line is data (not a section-divider or end-marker or real EOF) return it. If the line matches
the most-recently-stacked boundary, return * and set self.last to 1 or O according as the match is or
is not an end-marker. If the line matches any other stacked boundary, raise an error. On encountering end-
of-file on the underlying stream object, the method raises Error unless all boundaries have been popped.

readlines (str)
Return all lines remaining in this part as a list of strings.

read ()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this doesn’t take
a size argument!

seek (pos[, whence])
Seek. Seek indices are relative to the start of the current section. The pos and whence arguments are
interpreted as for a file seek.

tell ()
Return the file position relative to the start of the current section.

next ()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been consumed).
Return true if there is such a section, false if an end-marker is seen. Re-enable the most-recently-pushed
boundary.

is_data (str)
Return true if str is data and false if it might be a section boundary. As written, it tests for a prefix other than

7.9. multifile — Support for files containing distinct parts 233

7 ——r at start of line (which all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns false it will
merely slow processing, not cause it to fail.

push (str)
Push a boundary string. When a decorated version of this boundary is found as an input line, it will be
interpreted as a section-divider or end-marker (depending on the decoration, see RFC 2045). All subsequent
reads will return the empty string to indicate end-of-file, until a call to pop () removes the boundary a or
next () call reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will return
EOF; encountering any other boundary will raise an error.

pop ()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

section_divider (str)
Turn a boundary into a section-divider line. By default, this method prepends ’ ——’ (which MIME section
boundaries have) but it is declared so it can be overridden in derived classes. This method need not append
LF or CR-LF, as comparison with the result ignores trailing whitespace.

end_marker (sfr)
Turn a boundary string into an end-marker line. By default, this method prepends ’ ——’ and appends ’ ——
(like a MIME-multipart end-of-message marker) but it is declared so it can be overridden in derived classes.
This method need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

Finally, Mult iFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

234 Chapter 7. Internet Data Handling

7.9.2 MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype) :
"""Return the first element in a multipart MIME message on stream
matching mimetype."""

msg = mimetools.Message (stream)
msgtype = msg.gettype ()
params = msg.getplist ()

data = StringIO.StringIO()
if msgtype[:10] == "multipart/":

file = multifile.MultiFile (stream)
file.push (msg.getparam("boundary"))
while file.next ():
submsg = mimetools.Message (file)
try:
data = StringIO.StringIO()
mimetools.decode (file, data, submsg.getencoding())
except ValueError:
continue
if submsg.gettype () == mimetype:
break
file.pop ()
return data.getvalue ()

710 rfc822 — Parse RFC 2822 mail headers

Deprecated since release 2.3. The email package should be used in preference to the r£c822 module. This
module is present only to maintain backward compatibility.

This module defines a class, Me ssage, which represents an “email message” as defined by the Internet standard
RFC 2822.5 Such messages consist of a collection of message headers, and a message body. This module also
defines a helper class AddressList for parsing RFC 2822 addresses. Please refer to the RFC for information
on the specific syntax of RFC 2822 messages.

The mailbox module provides classes to read mailboxes produced by various end-user mail programs.

class Message (file [seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the input
object having a readline () method; in particular, ordinary file objects qualify. Instantiation reads head-
ers from the input object up to a delimiter line (normally a blank line) and stores them in the instance. The
message body, following the headers, is not consumed.

This class can work with any input object that supports a readline () method. If the input object has
seek and tell capability, the rewindbody () method will work; also, illegal lines will be pushed back onto
the input stream. If the input object lacks seek but has an unread () method that can push back a line
of input, Message will use that to push back illegal lines. Thus this class can be used to parse messages
coming from a buffered stream.

The optional seekable argument is provided as a workaround for certain stdio libraries in which tell ()
discards buffered data before discovering that the 1seek () system call doesn’t work. For maximum

This module originally conformed to RFC 822, hence the name. Since then, RFC 2822 has been released as an update to RFC 822. This
module should be considered RFC 2822-conformant, especially in cases where the syntax or semantics have changed since RFC 822.

7.10. rfc822 — Parse RFC 2822 mail headers 235

portability, you should set the seekable argument to zero to prevent that initial tell () when passing in an
unseekable object such as a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating
CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g. m [’ From’], m[’ from’] and
m [’ FROM’] all yield the same result.

class AddressList (field)
You may instantiate the AddressList helper class using a single string parameter, a comma-separated
list of RFC 2822 addresses to be parsed. (The parameter None yields an empty list.)

quote (str)
Return a new string with backslashes in str replaced by two backslashes and double quotes replaced by
backslash-double quote.

unquote (sir)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

parseaddr (address)
Parse address, which should be the value of some address-containing field such as To: or Cc:, into its
constituent “realname” and “email address” parts. Returns a tuple of that information, unless the parse fails,
in which case a 2-tuple (None, None) is returned.

dump_address_pair (pair)
The inverse of parseaddr (), this takes a 2-tuple of the form (realname, email_address) and returns
the string value suitable for a To: or Cc: header. If the first element of pair is false, then the second element
is returned unmodified.

parsedate (date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that
format as specified, so parsedate () tries to guess correctly in such cases. date is a string containing
an RFC 2822 date, such as " Mon, 20 Nov 1995 19:12:08 -0500'. If it succeeds in parsing the
date, parsedate () returns a 9-tuple that can be passed directly to t ime .mktime () ; otherwise None
will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate_tz (date)

Performs the same function as parsedate (), but returns either None or a 10-tuple; the first 9 elements
make up a tuple that can be passed directly to t ime .mktime (), and the tenth is the offset of the date’s
timezone from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the
timezone offset is the opposite of the sign of the t ime . timezone variable for the same timezone; the
latter variable follows the POSIX standard while this module follows RFC 2822.) If the input string has no
timezone, the last element of the tuple returned is None. Note that fields 6, 7, and 8 of the result tuple are
not usable.

mktime_tz (fuple)
Turn a 10-tuple as returned by parsedate_tz () into a UTC timestamp. If the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and
then compensates for the timezone difference; this may yield a slight error around daylight savings time
switch dates. Not enough to worry about for common use.

See Also:

Module email (section 7.1):
Comprehensive email handling package; supersedes the r £c822 module.

Module mailbox (section 7.3):
Classes to read various mailbox formats produced by end-user mail programs.

Module mimetools (section 7.5):
Subclass of r£c822 . Message that handles MIME encoded messages.

236 Chapter 7. Internet Data Handling

7.10.1 Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

isheader (line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the line is a legal
RFC 2822 header; otherwise returns None (implying that parsing should stop here and the line be pushed
back on the input stream). It is sometimes useful to override this method in a subclass.

islast (line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line is consumed,
and the file object’s read location positioned immediately after it. By default this method just checks that
the line is blank, but you can override it in a subclass.

iscomment (line)
Return True if the given line should be ignored entirely, just skipped. By default this is a stub that always
returns False, but you can override it in a subclass.

getallmatchingheaders (name)
Return a list of lines consisting of all headers matching name, if any. Each physical line, whether it is a
continuation line or not, is a separate list item. Return the empty list if no header matches name.

getfirstmatchingheader (name)
Return a list of lines comprising the first header matching name, and its continuation line(s), if any. Return
None if there is no header matching name.

getrawheader (name)
Return a single string consisting of the text after the colon in the first header matching name. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation
line(s) were present. Return None if there is no header matching name.

getheader (name[, default])
Like getrawheader (name), but strip leading and trailing whitespace. Internal whitespace is not
stripped. The optional default argument can be used to specify a different default to be returned when
there is no header matching name.

get (name [default])
An alias for getheader (), to make the interface more compatible with regular dictionaries.

getaddr (name)
Return a pair (full name, email address) parsed from the string returned by getheader (name) . If no
header matching name exists, return (None, None); otherwise both the full name and the address are
(possibly empty) strings.
Example: If m’s first From: header contains the string ’ jack@cwi.nl (Jack Jansen)’, then
m.getaddr (" From’) will yield the pair (’ Jack Jansen’, ’jack@cwi.nl’). If the header
contained ' Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (name)
This is similar to getaddr (list) , but parses a header containing a list of email addresses (e.g. a To: header)
and returns a list of (full name, email address) pairs (even if there was only one address in the header).
If there is no header matching name, return an empty list.

If multiple headers exist that match the named header (e.g. if there are several Cc: headers), all are parsed
for addresses. Any continuation lines the named headers contain are also parsed.

getdate (name)
Retrieve a header using getheader () and parse it into a 9-tuple compatible with time.mktime ();
note that fields 6, 7, and 8 are not usable. If there is no header matching name, or it is unparsable, return
None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

7.10. rfc822 — Parse RFC 2822 mail headers 237

getdate_tz (name)
Retrieve a header using getheader () and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible with t ime .mkt ime (), and the 10th is a number giving the offset of the date’s timezone from
UTC. Note that fields 6, 7, and 8 are not usable. Similarly to getdate (), if there is no header matching
name, or it is unparsable, return None.

Message instances also support a limited mapping interface. In particular: m[name] is like
m.getheader (name) but raises KeyError if there is no matching header; and len (m), m.get (name[,
default]) , m.has_key (name), m.keys (), m.values () m.items (), and m.setdefault (name[,
default]) act as expected, with the one difference that setdefault () uses an empty string as the default value.
Message instances also support the mapping writable interface m [name] = value and del m[name].
Message objects do not support the clear (), copy (), popitem (), or update () methods of the mapping
interface. (Support for get () and setdefault () was only added in Python 2.2.)

Finally, Me s sage instances have some public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except that setitem calls
may disturb this order). Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message content.

unixfrom
The UNIX ‘From ’ line, if the message had one, or an empty string. This is needed to regenerate the
message in some contexts, such as an mbox-style mailbox file.

7.10.2 AddressList Objects

An AddressList instance has the following methods:

len_ ()
Return the number of addresses in the address list.

str__ ()
Return a canonicalized string representation of the address list. Addresses are rendered in “name”
jhost@domain; form, comma-separated.

__add__ (alist)
Return a new AddressList instance that contains all addresses in both AddressList operands, with
duplicates removed (set union).

__dadd__ (alist)
In-place version of __add___ () ; turns this AddressList instance into the union of itself and the right-
hand instance, alist.

sub___ (alist)
Return anew AddressList instance that contains every address in the left-hand AddressList operand
that is not present in the right-hand address operand (set difference).

__disub__ (alist)
In-place version of __sub___ (), removing addresses in this list which are also in alist.

Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name part, the
second is the actual route-address (‘@’-separated username-host.domain pair).

238 Chapter 7. Internet Data Handling

7.11 base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

This module provides data encoding and decoding as specified in RFC 3548. This standard defines the Basel6,
Base32, and Base64 algorithms for encoding and decoding arbitrary binary strings into text strings that can be
safely sent by email, used as parts of URLs, or included as part of an HTTP POST request. The encoding
algorithm is not the same as the uuencode program.

There are two interfaces provided by this module. The modern interface supports encoding and decoding string
objects using all three alphabets. The legacy interface provides for encoding and decoding to and from file-like
objects as well as strings, but only using the Base64 standard alphabet.

The modern interface provides:

b64encode (s[, altchars])
Encode a string use Base64.
s is the string to encode. Optional altchars must be a string of at least length 2 (additional characters are
ignored) which specifies an alternative alphabet for the + and / characters. This allows an application to
e.g. generate URL or filesystem safe Base64 strings. The default is None, for which the standard Base64
alphabet is used.

The encoded string is returned.

b64decode (s[, altchars])
Decode a Base64 encoded string.

s is the string to decode. Optional altchars must be a string of at least length 2 (additional characters are
ignored) which specifies the alternative alphabet used instead of the + and / characters.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-
alphabet characters present in the string.

standard_bé64encode (s)
Encode string s using the standard Base64 alphabet.

standard_bé64decode (s)
Decode string s using the standard Base64 alphabet.

urlsafe b64dencode (s)
Encode string s using a URL-safe alphabet, which substitutes — instead of + and _ instead of / in the
standard Base64 alphabet.

urlsafe b64decode (s)
Decode string s using a URL-safe alphabet, which substitutes — instead of + and _ instead of / in the
standard Base64 alphabet.

b32encode (s)
Encode a string using Base32. s is the string to encode. The encoded string is returned.

b32decode (s[, casefold[, map01]])
Decode a Base32 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is acceptable
as input. For security purposes, the default is False.

RFC 3548 allows for optional mapping of the digit O (zero) to the letter O (oh), and for optional mapping
of the digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map0I when not None,
specifies which letter the digit 1 should be mapped to (when map01 is not None, the digit 0 is always mapped
to the letter O). For security purposes the default is None, so that 0 and 1 are not allowed in the input.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-
alphabet characters present in the string.

blé6encode (s)
Encode a string using Basel6.

s is the string to encode. The encoded string is returned.

blédecode (s[, casefold])
Decode a Basel6 encoded string.

7.11. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings 239

s is the string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is acceptable
as input. For security purposes, the defaultis False.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-
alphabet characters present in the string.

The legacy interface:

decode (input, output)
Decode the contents of the input file and write the resulting binary data to the output file. input and out-
put must either be file objects or objects that mimic the file object interface. input will be read until in-
put . read () returns an empty string.

decodestring (s)
Decode the string s, which must contain one or more lines of base64 encoded data, and return a string
containing the resulting binary data.

encode (input, output)
Encode the contents of the input file and write the resulting base64 encoded data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be read
until input . read () returns an empty string. encode () returns the encoded data plus a trailing newline
character (“ \n").

encodestring (s)
Encode the string s, which can contain arbitrary binary data, and return a string containing one or more
lines of base64-encoded data. encodestring () returns a string containing one or more lines of base64-
encoded data always including an extra trailing newline (* \n’).

An example usage of the module:

>>> import base64

>>> encoded = baseb64.bb6d4encode ('data to be encoded’)
>>> encoded

" ZGFO0YSBObyBiZSBlbmNvZGVk’

>>> data = baseb64.bb64decode (encoded)

>>> data

"data to be encoded’

See Also:

Module binascii (section 7.13):
Support module containing ASCII-to-binary and binary-to-ASCII conversions.

RFC 1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of In
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

7.12 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files
in ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other
platforms only the data fork is handled.

The binhex module defines the following functions:

binhex (input, output)
Convert a binary file with filename input to binhex file output. The output parameter can either be a filename
or a file-like object (any object supporting a write () and close () method).

hexbin (input[, output])
Decode a binhex file input. input may be a filename or a file-like object supporting read () and close ()
methods. The resulting file is written to a file named output, unless the argument is omitted in which case
the output filename is read from the binhex file.

240 Chapter 7. Internet Data Handling

The following exception is also defined:

exception Error
Exception raised when something can’t be encoded using the binhex format (for example, a filename is too
long to fit in the filename field), or when input is not properly encoded binhex data.

See Also:

Module binascii (section 7.13):
Support module containing ASCII-to-binary and binary-to-ASCII conversions.

7.12.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing, hexbin () appears to not work in all cases.

7.13 binascii — Convert between binary and Ascit

The binascii module contains a number of methods to convert between binary and various ASCII-encoded
binary representations. Normally, you will not use these functions directly but use wrapper modules like uu,
base64, or binhex instead. The binascii module contains low-level functions written in C for greater
speed that are used by the higher-level modules.

The binascii module defines the following functions:

a2b_uu (string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain
45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a_uu (data)
Convert binary data to a line of ASCII characters, the return value is the converted line, including a newline
char. The length of data should be at most 45.

a2b_base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed
at a time.

b2a_base64 (data)
Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length of data should be at most 57 to adhere to the base64 standard.

a2b__ (string[, header])
Convert a block of quoted-printable data back to binary and return the binary data. More than one line may
be passed at a time. If the optional argument header is present and true, underscores will be decoded as
spaces.

b2a_qgp (data[, quotetabs, istext, header])
Convert binary data to a line(s) of ASCII characters in quoted-printable encoding. The return value is the
converted line(s). If the optional argument quotetabs is present and true, all tabs and spaces will be encoded.
If the optional argument istext is present and true, newlines are not encoded but trailing whitespace will be
encoded. If the optional argument header is present and true, spaces will be encoded as underscores per
RFC1522. If the optional argument header is present and false, newline characters will be encoded as well;
otherwise linefeed conversion might corrupt the binary data stream.

a2b_hgx (string)
Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string should
contain a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the
remaining bits zero.

7.13. binascii — Convert between binary and Ascii 241

rledecode_hagx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90 after a
byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90. The routine
returns the decompressed data, unless data input data ends in an orphaned repeat indicator, in which case
the Incomplete exception is raised.

rlecode_hgx (data)
Perform binhex4 style RLE-compression on data and return the result.

b2a_hgx (data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already
be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc_hagx (data, crc)
Compute the binhex4 crc value of dara, starting with an initial crc and returning the result.

crc32 (data[, crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP
file checksum. Since the algorithm is designed for use as a checksum algorithm, it is not suitable for use as
a general hash algorithm. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:

crc = binascii.crc32 ("hello")

crc = binascii.crc32 (" world", crc)
print crc

b2a_hex (data)

hex1lify (data)
Return the hexadecimal representation of the binary data. Every byte of data is converted into the corre-
sponding 2-digit hex representation. The resulting string is therefore twice as long as the length of data.

a2b_hex (hexstr)

unhexlify (hexstr)
Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of b2a_ —
hex (). hexstr must contain an even number of hexadecimal digits (which can be upper or lower case),
otherwise a TypeError is raised.

exception Error
Exception raised on errors. These are usually programming errors.

exception Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by
reading a little more data and trying again.

See Also:

Module base64 (section 7.11):
Support for base64 encoding used in MIME email messages.

Module binhex (section 7.12):
Support for the binhex format used on the Macintosh.

Module uu (section 7.15):
Support for UU encoding used on UNIX.

Module quopri (section 7.14):
Support for quoted-printable encoding used in MIME email messages.

7.14 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet

242 Chapter 7. Internet Data Handling

Message Bodies”. The quoted-printable encoding is designed for data where there are relatively few nonprintable
characters; the base64 encoding scheme available via the base 64 module is more compact if there are many such
characters, as when sending a graphics file.

decode (input, output[,header])
Decode the contents of the input file and write the resulting decoded binary data to the output file. input
and output must either be file objects or objects that mimic the file object interface. inpur will be read
until input . readline () returns an empty string. If the optional argument header is present and true,
underscore will be decoded as space. This is used to decode “Q”-encoded headers as described in RFC
1522: “MIME (Multipurpose Internet Mail Extensions) Part Two: Message Header Extensions for Non-
ASCII Text”.

encode (input, output, quotetabs)
Encode the contents of the input file and write the resulting quoted-printable data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be read
until input. readline () returns an empty string. quotetabs is a flag which controls whether to encode
embedded spaces and tabs; when true it encodes such embedded whitespace, and when false it leaves them
unencoded. Note that spaces and tabs appearing at the end of lines are always encoded, as per RFC 1521.

decodestring (s[,header])
Like decode (), except that it accepts a source string and returns the corresponding decoded string.

encodestring (s[, quotembs])
Like encode (), except that it accepts a source string and returns the corresponding encoded string.
quotetabs is optional (defaulting to 0), and is passed straight through to encode ().

See Also:

Module mimi fy (section 7.8):
General utilities for processing of MIME messages.

Module base64 (section 7.11):
Encode and decode MIME base64 data

7.15 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ASCII-only connections. Wherever a file argument is expected, the methods accept a file-like object. For back-
wards compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened
for reading and writing; the pathname ’ —’ is understood to mean the standard input or output. However, this
interface is deprecated; it’s better for the caller to open the file itself, and be sure that, when required, the mode is
"rb’ or wb’ on Windows.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.
The uu module defines the following functions:

encode (in_file, out file [, name[, mode]])
Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and mode
as the defaults for the results of decoding the file. The default defaults are taken from in_file, or / =’ and
0666 respectively.

decode (in_file [, out_file [, mode[, quiet]]])
This call decodes uuencoded file in_file placing the result on file out_file. If out_file is a pathname, mode is
used to set the permission bits if the file must be created. Defaults for out_file and mode are taken from the
uuencode header. However, if the file specified in the header already exists, a uu.Error is raised.

decode () may print a warning to standard error if the input was produced by an incorrect uuencoder and
Python could recover from that error. Setting quiet to a true value silences this warning.

exception Error ()
Subclass of Exception, this can be raised by uu.decode () under various situations, such as described
above, but also including a badly formatted header, or truncated input file.

7.15. uu — Encode and decode uuencode files 243

See Also:

Module binascii (section 7.13):
Support module containing ASCII-to-binary and binary-to-ASCII conversions.

244 Chapter 7. Internet Data Handling

CHAPTER
EIGHT

Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured data markup. This includes modules
to work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML),
and several interfaces for working with the Extensible Markup Language (XML).

It is important to note that modules in the xml package require that there be at least one SAX-compliant
XML parser available. Starting with Python 2.3, the Expat parser is included with Python, so the
xml.parsers.expat module will always be available. You may still want to be aware of the PyXML add-on
package; that package provides an extended set of XML libraries for Python.

The documentation for the xm1 .dom and xml . sax packages are the definition of the Python bindings for the
DOM and SAX interfaces.

HTMLParser A simple parser that can handle HTML and XHTML.
sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xml .parsers.expat An interface to the Expat non-validating XML parser.
xml . dom Document Object Model API for Python.
xml .dom.minidom Lightweight Document Object Model (DOM) implementation.
xml .dom.pulldom Support for building partial DOM trees from SAX events.
xml.sax Package containing SAX2 base classes and convenience functions.
xml.sax.handler Base classes for SAX event handlers.
xml.sax.saxutils Convenience functions and classes for use with SAX.
xml.sax.xmlreader Interface which SAX-compliant XML parsers must implement.
xml .etree.ElementTree Implementation of the ElementTree API.

See Also:

Python/XML Libraries

(http://pyxml.sourceforge.net/)
Home page for the PyXML package, containing an extension of xm1 package bundled with Python.

8.1 HIMLParser — Simple HTML and XHTML parser

New in version 2.2.

This module defines a class HTMLParser which serves as the basis for parsing text files formatted in HTML
(HyperText Mark-up Language) and XHTML. Unlike the parser in htm11ib, this parser is not based on the
SGML parser in sgm1lib.

class HTMLParser ()
The HTMLParser class is instantiated without arguments.

An HTMLParser instance is fed HTML data and calls handler functions when tags begin and end. The
HTMLParser class is meant to be overridden by the user to provide a desired behavior.

Unlike the parser in htm111ib, this parser does not check that end tags match start tags or call the end-tag
handler for elements which are closed implicitly by closing an outer element.

245

http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/
http://pyxml.sourceforge.net/

An exception is defined as well:

exception HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing. This exception
provides three attributes: msg is a brief message explaining the error, 1 ineno is the number of the line on
which the broken construct was detected, and of £set is the number of characters into the line at which
the construct starts.

HTMLParser instances have the following methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close () is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always call the HTMLParser base class method close ().

getpos ()
Return current line number and offset.

get_starttag_text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

handle_starttag (rag, attrs)
This method is called to handle the start of a tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

The tag argument is the name of the tag converted to lower case. The attrs argument is a list of (name,
value) pairs containing the attributes found inside the tag’s <> brackets. The name will be translated to
lower case and double quotes and backslashes in the value have been interpreted. For instance, for the tag
, this method would be called as ‘handle_starttag(’a’,
[("href’, ’"http://www.cwi.nl/’)])’ .

handle_startendtag (tag, attrs)
Similar to handle_starttag (), but called when the parser encounters an XHTML-style empty tag (<a
.. ./>). This method may be overridden by subclasses which require this particular lexical information;
the default implementation simple calls handle_starttag () and handle_endtag ().

handle_endtag (fag)
This method is called to handle the end tag of an element. It is intended to be overridden by a derived class;
the base class implementation does nothing. The tag argument is the name of the tag converted to lower
case.

handle_data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

handle_charref (name)
This method is called to process a character reference of the form ‘& #ref; . It is intended to be overridden
by a derived class; the base class implementation does nothing.

handle_entityref (name)
This method is called to process a general entity reference of the form ‘&name; > where name is an general
entity reference. It is intended to be overridden by a derived class; the base class implementation does
nothing.

handle_comment (data)
This method is called when a comment is encountered. The comment argument is a string containing the
text between the ‘——" and ‘—-’ delimiters, but not the delimiters themselves. For example, the comment

246 Chapter 8. Structured Markup Processing Tools

‘<!-—text-—>" will cause this method to be called with the argument ' text’. It is intended to be
overridden by a derived class; the base class implementation does nothing.

handle_ decl (decl)
Method called when an SGML declaration is read by the parser. The decl parameter will be the entire
contents of the declaration inside the <!...> markup. It is intended to be overridden by a derived class; the
base class implementation does nothing.

handle_pi (data)
Method called when a processing instruction is encountered. The data parameter will contain the entire pro-
cessing instruction. For example, for the processing instruction <?proc color='red’ >, this method
would be called as handle_pi ("proc color='red’"). Itis intended to be overridden by a derived
class; the base class implementation does nothing.

Note: The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML
processing instruction using the trailing ‘2’ will cause the ‘2’ to be included in data.

8.1.1 Example HTML Parser Application

As a basic example, below is a very basic HTML parser that uses the H-TMLParser class to print out tags as they
are encountered:

from HTMLParser import HTMLParser
class MyHTMLParser (HTMLParser) :

def handle_starttag(self, tag, attrs):
print "Encountered the beginning of a %s tag" % tag

def handle_endtag(self, tag):
print "Encountered the end of a %$s tag" % tag

8.2 sgmllib — Simple SGML parser

This module defines a class SGMLParser which serves as the basis for parsing text files formatted in SGML
(Standard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses
SGML insofar as it is used by HTML, and the module only exists as a base for the htm11ib module. Another
HTML parser which supports XHTML and offers a somewhat different interface is available in the HTMLParser
module.

class SGMLParser ()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the fol-
lowing constructs:

eOpening and closing tags of the form ‘<tag attr="value" ...> and ‘</tag>’, respectively.
eNumeric character references of the form ‘& #name;’.
eEntity references of the form ‘sname; ’.

eSGML comments of the form ‘<!——fext——>". Note that spaces, tabs, and newlines are allowed be-
tween the trailing ‘> and the immediately preceding ‘—-".

A single exception is defined as well:

exception SGMLParseError
Exception raised by the SGMLParser class when it encounters an error while parsing. New in version
2.1.

8.2. sgmllib — Simple SGML parser 247

SGMLParser instances have the following methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the
HTML tag <PLAINTEXT> can be implemented.)

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close () is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be
redefined by a derived class to define additional processing at the end of the input, but the redefined version
should always call close ().

get_starttag_text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured
processing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal
changes (whitespace between attributes can be preserved, etc.).

handle_starttag (tag, method, attributes)
This method is called to handle start tags for which either a start_tag () or do_tag () method has been
defined. The fag argument is the name of the tag converted to lower case, and the method argument is
the bound method which should be used to support semantic interpretation of the start tag. The attributes
argument is a list of (name, value) pairs containing the attributes found inside the tag’s <> brackets.

The name has been translated to lower case. Double quotes and backslashes in the value have been in-
terpreted, as well as known character references and known entity references terminated by a semicolon
(normally, entity references can be terminated by any non-alphanumerical character, but this would break
the very common case of when eggs is a valid entity name).

For instance, for the tag , this method would be called as
‘unknown_starttag(’a’, [(’href’, ’'http://www.cwi.nl/’)]1)’. The base implemen-
tation simply calls method with attributes as the only argument. New in version 2.5: Handling of entity
and character references within attribute values.

handle_endtag (tag, method)
This method is called to handle endtags for which an end_tag () method has been defined. The rag argu-
ment is the name of the tag converted to lower case, and the method argument is the bound method which
should be used to support semantic interpretation of the end tag. If no end_rag () method is defined for
the closing element, this handler is not called. The base implementation simply calls method.

handle_data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base
class implementation does nothing.

handle_charref (ref)
This method is called to process a character reference of the form ‘& #ref ; ’. The base implementation uses
convert_charref () to convert the reference to a string. If that method returns a string, it is passed
to handle_data (), otherwise unknown_charref (ref) is called to handle the error. Changed in
version 2.5: Use convert_charref () instead of hard-coding the conversion.

convert_charref (ref)
Convert a character reference to a string, or None. ref is the reference passed in as a string. In the base
implementation, ref must be a decimal number in the range 0-255. It converts the code point found using
the convert_codepoint () method. If ref is invalid or out of range, this method returns None. This
method is called by the default handle_charref () implementation and by the attribute value parser.
New in version 2.5.

convert_codepoint (codepoint)

248 Chapter 8. Structured Markup Processing Tools

Convert a codepoint to a str value. Encodings can be handled here if appropriate, though the rest of
sgmllib is oblivious on this matter. New in version 2.5.

handle_entityref (ref)
This method is called to process a general entity reference of the form ‘&ref;’ where ref is an general
entity reference. It converts ref by passing it to convert_entityref (). If a translation is returned,
it calls the method handle_data () with the translation; otherwise, it calls the method unknown_ -
entityref (ref). The default ent it ydefs defines translations for &, &apos, > ;, &1t;, and
" ;. Changed in version 2.5: Use convert_entityref () instead of hard-coding the conversion.

convert_entityref (ref)
Convert a named entity reference to a str value, or None. The resulting value will not be parsed. ref
will be only the name of the entity. The default implementation looks for ref in the instance (or class)
variable ent it ydefs which should be a mapping from entity names to corresponding translations. If no
translation is available for ref, this method returns None. This method is called by the default handle_-
entityref () implementation and by the attribute value parser. New in version 2.5.

handle comment (comment)
This method is called when a comment is encountered. The comment argument is a string containing the text

between the ‘<! --"and ‘——>’ delimiters, but not the delimiters themselves. For example, the comment
‘<!——text—-->" will cause this method to be called with the argument ’ text’ . The default method does
nothing.

handle_ decl (data)
Method called when an SGML declaration is read by the parser. In practice, the DOCTYPE declaration is the
only thing observed in HTML, but the parser does not discriminate among different (or broken) declarations.
Internal subsets in a DOCTYPE declaration are not supported. The data parameter will be the entire contents
of the declaration inside the <!...> markup. The default implementation does nothing.

report_unbalanced (fag)
This method is called when an end tag is found which does not correspond to any open element.

unknown_starttag (fag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown_endtag (fag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown_charref (ref)
This method is called to process unresolvable numeric character references. Refer to handle_-
charref () to determine what is handled by default. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown_entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived
class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the
following form to define processing of specific tags. Tag names in the input stream are case independent; the fag
occurring in method names must be in lower case:

start_tag (attributes)
This method is called to process an opening tag tag. It has preference over do_tag (). The attributes
argument has the same meaning as described for handle_starttag () above.

do_tag (attributes)
This method is called to process an opening tag fag for which no start_tag method is defined. The
attributes argument has the same meaning as described for handle_starttag () above.

end_fag ()
This method is called to process a closing tag fag.

8.2. sgmllib — Simple SGML parser 249

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags
processed by start_tag () are pushed on this stack. Definition of an end_tag () method is optional for these
tags. For tags processed by do_tag () or by unknown_tag (), no end_tag () method must be defined; if
defined, it will not be used. If both start_tag () and do_tag () methods exist for a tag, the start_tag ()
method takes precedence.

8.3 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with I/O — it must be provided with input in string form
via a method, and makes calls to methods of a “formatter” object in order to produce output. The HTMLParser
class is designed to be used as a base class for other classes in order to add functionality, and allows most of its
methods to be extended or overridden. In turn, this class is derived from and extends the SGMLParser class
defined in module sgm11ib. The HTMLParser implementation supports the HTML 2.0 language as described
in RFC 1866. Two implementations of formatter objects are provided in the formatter module; refer to the
documentation for that module for information on the formatter interface.

The following is a summary of the interface defined by sgml11lib.SGMLParser:

e The interface to feed data to an instance is through the feed () method, which takes a string argument.
This can be called with as little or as much text at a time as desired; ‘p.feed (a); p.feed (b)’ hasthe
same effect as ‘p. feed (a+b)’. When the data contains complete HTML markup constructs, these are
processed immediately; incomplete constructs are saved in a buffer. To force processing of all unprocessed
data, call the close () method.

For example, to parse the entire contents of a file, use:

parser.feed(open(‘myfile.html’”) .read())
parser.close()

e The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start_tag (), end_tag (), or do_tag (). The parser will call these at appropriate moments: start_tag
or do_tag () is called when an opening tag of the form <fag . ..> is encountered; end_tag () is called
when a closing tag of the form <tag> is encountered. If an opening tag requires a corresponding closing
tag, like <H1> ... </H1>, the class should define the start_tag () method; if a tag requires no closing
tag, like <P>, the class should define the do_tag () method.

The module defines a parser class and an exception:

class HTMLParser (formatter)
This is the basic HTML parser class. It supports all entity names required by the XHTML 1.0 Recommen-
dation (http://www.w3.org/TR/xhtmi1). It also defines handlers for all HTML 2.0 and many HTML 3.0 and
3.2 elements.

exception HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing. New in version
2.4.

See Also:

Module formatter (section 33.1):
Interface definition for transforming an abstract flow of formatting events into specific output events on
writer objects.

Module HTMLParser (section 8.1):
Alternate HTML parser that offers a slightly lower-level view of the input, but is designed to work with
XHTML, and does not implement some of the SGML syntax not used in “HTML as deployed” and which
isn’t legal for XHTML.

250 Chapter 8. Structured Markup Processing Tools

http://www.w3.org/TR/xhtml1

Module htmlentitydefs (section 8.4):
Definition of replacement text for XHTML 1.0 entities.

Module sgm11ib (section 8.2):
Base class for H-TMLParser.

8.3.1 HTMLParser Objects

In addition to tag methods, the HTMLParser class provides some additional methods and instance variables for
use within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be.
In general, this should only be true when character data is to be treated as “preformatted” text, as within a
<PRE> element. The default value is false. This affects the operation of handle_data () and save_-
end ().

anchor_bgn (href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the
<A> tag with the same names. The default implementation maintains a list of hyperlinks (defined by the
HREF attribute for <A> tags) within the document. The list of hyperlinks is available as the data attribute
anchorlist.

anchor_end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote
marker using an index into the list of hyperlinks created by anchor_bgn ().

handle_image (source, alt[, ismap [align [width [height]]]])
This method is called to handle images. The default implementation simply passes the alt value to the
handle_data () method.

save_bgn ()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data
via save_end (). Use of the save_bgn () / save_end () pair may not be nested.

save_end ()
Ends buffering character data and returns all data saved since the preceding call to save_lbgn (). If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceding
call to save_bgn () will raise a TypeError exception.

8.4 htmlentitydefs — Definitions of HTML general entities

This module defines three dictionaries, name2codepoint, codepoint2name, and entitydefs.
entitydefs is used by the html11ib module to provide the entitydefs member of the HTMLParser
class. The definition provided here contains all the entities defined by XHTML 1.0 that can be handled using
simple textual substitution in the Latin-1 character set (ISO-8859-1).

entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints. New in version 2.3.

codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names. New in version 2.3.

8.4. htmlentitydefs — Definitions of HTML general entities 251

8.5 =xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0.

The xml .parsers.expat module is a Python interface to the Expat non-validating XML parser. The module
provides a single extension type, xmlparser, that represents the current state of an XML parser. After an
xmlparser object has been created, various attributes of the object can be set to handler functions. When an
XML document is then fed to the parser, the handler functions are called for the character data and markup in the
XML document.

This module uses the pyexpat module to provide access to the Expat parser. Direct use of the pyexpat module
is deprecated.

This module provides one exception and one type object:

exception ExpatError
The exception raised when Expat reports an error. See section 8.5.2, “ExpatError Exceptions,” for more
information on interpreting Expat errors.

exception error
Alias for ExpatError.

XMLParserType
The type of the return values from the ParserCreate () function.

The xml.parsers.expat module contains two functions:

ErrorString (errno)
Returns an explanatory string for a given error number errno.

ParserCreate ([encoding[, namespace,separator]])
Creates and returns a new xmlparser object. encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of
encodings can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latinl), and ASCIL. If encoding is
given it will override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for namespace_-
separator. The value must be a one-character string; a ValueError will be raised if the string has an
illegal length (None is considered the same as omission). When namespace processing is enabled, element
type names and attribute names that belong to a namespace will be expanded. The element name passed to
the element handlers StartElementHandler and EndElementHandler will be the concatenation
of the namespace URI, the namespace separator character, and the local part of the name. If the namespace
separator is a zero byte (chr (0)) then the namespace URI and the local part will be concatenated without
any separator.

For example, if namespace _separator is set to a space character (*) and the following document is parsed:

<?xml version="1.0"7?>

<root xmlns = "http://default-namespace.org/"
xmlns:py = "http://www.python.org/ns/">
<py:eleml />
<elem2 xmlns="" />
</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ eleml
elem?

See Also:

The Expat XML Parser
(http://www.libexpat.org/)
Home page of the Expat project.

252 Chapter 8. Structured Markup Processing Tools

http://www.libexpat.org/

8.5.1 XMLParser Objects

xmlparser objects have the following methods:

Parse (data[, isﬁnal])
Parses the contents of the string data, calling the appropriate handler functions to process the parsed data.
isfinal must be true on the final call to this method. data can be the empty string at any time.

ParseFile (file)
Parse XML data reading from the object file. file only needs to provide the read (nbytes) method, returning
the empty string when there’s no more data.

SetBase (base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations.
Resolving relative identifiers is left to the application: this value will be passed through
as the base argument to the ExternalEntityRefHandler, NotationDeclHandler, and
UnparsedEntityDeclHandler functions.

GetBase ()
Returns a string containing the base set by a previous call to SetBase (), or None if SetBase () hasn’t
been called.

GetInputContext ()
Returns the input data that generated the current event as a string. The data is in the encoding of the entity
which contains the text. When called while an event handler is not active, the return value is None. New
in version 2.1.

ExternalEntityParserCreate (context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by con-
tent parsed by the parent parser. The context parameter should be the string passed to the
ExternalEntityRefHandler () handler function, described below. The child parser is created with
the ordered_attributes, returns_unicode and specified_attributes set to the values
of this parser.

UseForeignDTD ([ﬂag])
Calling this with a true value for flag (the default) will cause Expat to «call the
ExternalEntityRefHandler with None for all arguments to allow an alternate DTD to be loaded.
If the document does not contain a document type declaration, the ExternalEntityRefHandler will
still be called, but the StartDoctypeDeclHandler and EndDoctypeDeclHandler will not be
called.

Passing a false value for flag will cancel a previous call that passed a true value, but otherwise has no effect.

This method can only be called before the Parse () or ParseFile () methods are called; calling it
after either of those have been called causes ExpatError to be raised with the code attribute set to
errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING.

New in version 2.3.
xmlparser objects have the following attributes:

buffer_size
The size of the buffer used when buffer_text is true. This value cannot be changed at this time. New
in version 2.3.

buffer text
Setting this to true causes the xm1lparser object to buffer textual content returned by Expat to avoid multi-
ple calls to the CharacterDataHandler () callback whenever possible. This can improve performance
substantially since Expat normally breaks character data into chunks at every line ending. This attribute is
false by default, and may be changed at any time. New in version 2.3.

buffer_used
If buffer_text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8
encoded text. This attribute has no meaningful interpretation when buffer_text is false. New in
version 2.3.

ordered_attributes

8.5. xml.parsers.expat — Fast XML parsing using Expat 253

Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.)
By default, this attribute is false; it may be changed at any time. New in version 2.1.

returns_unicode
If this attribute is set to a non-zero integer, the handler functions will be passed Unicode strings. If
returns_unicode is False, 8-bit strings containing UTF-8 encoded data will be passed to the han-
dlers. This is True by default when Python is built with Unicode support. Changed in version 1.6: Can be
changed at any time to affect the result type.

specified_attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need
to be especially careful to use what additional information is available from the declarations as needed to
comply with the standards for the behavior of XML processors. By default, this attribute is false; it may be
changed at any time. New in version 2.1.

The following attributes contain values relating to the most recent error encountered by an xmlparser
object, and will only have correct values once a call to Parse() or ParseFile () has raised a
xml.parsers.expat .ExpatError exception.

ErrorBytelIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to the ErrorString () function, or
compared to one of the constants defined in the errors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

The following attributes contain values relating to the current parse location in an xmlparser object. During a
callback reporting a parse event they indicate the location of the first of the sequence of characters that generated
the event. When called outside of a callback, the position indicated will be just past the last parse event (regardless
of whether there was an associated callback). New in version 2.4.

CurrentByteIndex
Current byte index in the parser input.

CurrentColumnNumber
Current column number in the parser input.

CurrentLineNumber
Current line number in the parser input.

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o. handlername =
Sfunc. handlername must be taken from the following list, and func must be a callable object accepting the correct
number of arguments. The arguments are all strings, unless otherwise stated.

XmlDeclHandler (version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration. version and encoding will be strings of the type dictated by the returns_unicode attribute,
and standalone will be 1 if the document is declared standalone, O if it is declared not to be standalone, or
-1 if the standalone clause was omitted. This is only available with Expat version 1.95.0 or newer. New in
version 2.1.

StartDoctypeDeclHandler (doctypeName, systemld, publicld, has_internal_subset)
Called when Expat begins parsing the document type declaration (<! DOCTYPE . . .). The doctypeName is
provided exactly as presented. The systemld and publicld parameters give the system and public identifiers
if specified, or None if omitted. has_internal_subset will be true if the document contains and internal

254 Chapter 8. Structured Markup Processing Tools

document declaration subset. This requires Expat version 1.2 or newer.

EndDoctypeDeclHandler ()
Called when Expat is done parsing the document type declaration. This requires Expat version 1.2 or newer.

ElementDeclHandler (name, model)
Called once for each element type declaration. name is the name of the element type, and model is a
representation of the content model.

AttlistDeclHandler (elname, attname, type, default, required)

Called for each declared attribute for an element type. If an attribute list declaration declares three attributes,
this handler is called three times, once for each attribute. elname is the name of the element to which the
declaration applies and attname is the name of the attribute declared. The attribute type is a string passed
as type; the possible values are ' CDATA’, ' ID’, ' IDREF', ... default gives the default value for the
attribute used when the attribute is not specified by the document instance, or None if there is no default
value (# IMPLIED values). If the attribute is required to be given in the document instance, required will
be true. This requires Expat version 1.95.0 or newer.

StartElementHandler (name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes is a
dictionary mapping attribute names to their values.

EndElementHandler (name)
Called for the end of every element.

ProcessingInstructionHandler (farget, data)
Called for every processing instruction.

CharacterDataHandler (data)
Called for character data. This will be called for normal character data, CDATA marked con-
tent, and ignorable whitespace. Applications which must distinguish these cases can use the
StartCdataSectionHandler, EndCdataSectionHandler, and ElementDeclHandler
callbacks to collect the required information.

UnparsedEntityDeclHandler (entityName, base, systemld, publicld, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library;
for more recent versions, use EntityDeclHandler instead. (The underlying function in the Expat
library has been declared obsolete.)

EntityDeclHandler (entityName, is_parameter_entity, value, base, systemld, publicld, notationName)
Called for all entity declarations. For parameter and internal entities, value will be a string giving the
declared contents of the entity; this will be None for external entities. The notationName parameter will be
None for parsed entities, and the name of the notation for unparsed entities. is_parameter_entity will be true
if the entity is a parameter entity or false for general entities (most applications only need to be concerned
with general entities). This is only available starting with version 1.95.0 of the Expat library. New in
version 2.1.

NotationDeclHandler (notationName, base, systemld, publicld)
Called for notation declarations. notationName, base, and systemld, and publicld are strings if given. If the
public identifier is omitted, publicld will be None.

StartNamespaceDeclHandler (prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before
the StartElementHandler is called for the element on which declarations are placed.

EndNamespaceDeclHandler (prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This is
called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s scope.
Calls to this handler are made after the corresponding EndElementHandler for the end of the element.

CommentHandler (data)
Called for comments. data is the text of the comment, excluding the leading ‘<! —-" and trailing ‘~—>".

StartCdataSectionHandler ()

8.5. xml.parsers.expat — Fast XML parsing using Expat 255

Called at the start of a CDATA section. This and EndCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

EndCdataSectionHandler ()
Called at the end of a CDATA section.

DefaultHandler (data)
Called for any characters in the XML document for which no applicable handler has been specified. This
means characters that are part of a construct which could be reported, but for which no handler has been
supplied.

DefaultHandlerExpand (data)
This is the same as the DefaultHandler, but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

NotStandaloneHandler ()
Called if the XML document hasn’t been declared as being a standalone document. This happens when there
is an external subset or a reference to a parameter entity, but the XML declaration does not set standalone to
yes in an XML declaration. If this handler returns O, then the parser will throw an XMIL_ERROR_NOT_ -
STANDALONE error. If this handler is not set, no exception is raised by the parser for this condition.

ExternalEntityRefHandler (context, base, systemld, publicld)
Called for references to external entities. base is the current base, as set by a previous call to SetBase ().
The public and system identifiers, systemld and publicld, are strings if given; if the public identifier is not
given, publicld will be None. The context value is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the sub-
parser using ExternalEntityParserCreate (context), initializing it with the appropriate callbacks,
and parsing the entity. This handler should return an integer; if it returns 0, the parser will throw an XML_ -
ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if pro-
vided.

8.5.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

code
Expat’s internal error number for the specific error. This will match one of the constants defined in the
errors object from this module. New in version 2.1.

lineno
Line number on which the error was detected. The first line is numbered 1. New in version 2.1.

offset
Character offset into the line where the error occurred. The first column is numbered 0. New in version
2.1.

8.5.3 Example

The following program defines three handlers that just print out their arguments.

256 Chapter 8. Structured Markup Processing Tools

import xml.parsers.expat

3 handler functions
def start_element (name, attrs):

print ’Start element:’, name, attrs
def end_element (name) :
print 'End element:’, name

def char_data (data) :
print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate ()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>

<parent id="top"><childl name="paul">Text goes here</childl>
<child2 name="fred">More text</child2>

</parent>""", 1)

The output from this program is:

Start element: parent {’id’: "top’}
Start element: childl {’name’: ’'paul’}
Character data: ’"Text goes here’

End element: childl

Character data: ’\n’

Start element: child2 {’'name’: ’'fred’}
Character data: ’"More text’

End element: child2

Character data: ’'\n’

End element: parent

8.5.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the quantifier, the
name, and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in the model object of the xml.parsers.expat
module. These constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

XML_CTYPE_ANY
The element named by the model name was declared to have a content model of ANY.

XML _CTYPE_ CHOICE
The named element allows a choice from a number of options; this is used for content models such as (A
| B | C).

XML_CTYPE_EMPTY
Elements which are declared to be EMPTY have this model type.

XML_CTYPE_MIXED
XML_CTYPE_NAME

XML_CTYPE_SEQ
Models which represent a series of models which follow one after the other are indicated with this model

8.5. xml.parsers.expat — Fast XML parsing using Expat 257

type. This is used for models such as (A, B, C).
The constants in the quantifier group are:

XML__CQUANT_NONE
No modifier is given, so it can appear exactly once, as for A.

XML_CQUANT_OPT
The model is optional: it can appear once or not at all, as for A?.

XML, CQUANT_PLUS
The model must occur one or more times (like A+).

XML_CQUANT_ REP
The model must occur zero or more times, as for Ax.

8.5.5 Expat error constants

The following constants are provided in the errors object of the xml.parsers.expat module. These
constants are useful in interpreting some of the attributes of the ExpatError exception objects raised when an
error has occurred.

The errors object has the following attributes:
XML_ERROR _ASYNC_ENTITY

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

XML _ERROR_BAD CHAR REF
A character reference referred to a character which is illegal in XML (for example, character 0, or ‘& #0;).

XMI, ERROR_BINARY ENTITY REF
An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

XML_ERROR DUPLICATE_ATTRIBUTE
An attribute was used more than once in a start tag.

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_INVALID_TOKEN
Raised when an input byte could not properly be assigned to a character; for example, a NUL byte (value
0) in a UTF-8 input stream.

XML, ERROR JUNK_AFTER DOC_ELEMENT
Something other than whitespace occurred after the document element.

XML_ERROR_MISPLACED_XMIL_ PI
An XML declaration was found somewhere other than the start of the input data.

XML_ERROR_NO_ELEMENTS
The document contains no elements (XML requires all documents to contain exactly one top-level element)..

XML_ERROR_NO_MEMORY
Expat was not able to allocate memory internally.

XMI, ERROR _PARAM ENTITY REF
A parameter entity reference was found where it was not allowed.

XML_ERROR_PARTIAL_CHAR
An incomplete character was found in the input.

XML_ERROR_RECURSIVE_ENTITY_ REF
An entity reference contained another reference to the same entity; possibly via a different name, and
possibly indirectly.

XML_ERROR_SYNTAX
Some unspecified syntax error was encountered.

258 Chapter 8. Structured Markup Processing Tools

XML_ERROR_TAG_MISMATCH
An end tag did not match the innermost open start tag.

XML ERROR_UNCLOSED_TOKEN
Some token (such as a start tag) was not closed before the end of the stream or the next token was encoun-
tered.

XML_ERROR_UNDEFINED_ENTITY
A reference was made to a entity which was not defined.

XML_ERROR_UNKNOWN_ENCODING
The document encoding is not supported by Expat.

XML_ERROR_UNCLOSED_CDATA_SECTION
A CDATA marked section was not closed.

XML_ERROR_EXTERNAL_ENTITY_ HANDLING

XML_ERROR_NOT_STANDALONE
The parser determined that the document was not “standalone” though it declared itself to be in the XML
declaration, and the Not StandaloneHandler was set and returned O.

XML_ERROR_UNEXPECTED_STATE
XML_ERROR_ENTITY DECLARED_IN PE

XML_ERROR_FEATURE_REQUIRES_XMI, DTD
An operation was requested that requires DTD support to be compiled in, but Expat was configured without
DTD support. This should never be reported by a standard build of the xm1 .parsers.expat module.

XML_ERROR_CANT CHANGE_FEATURE_ONCE_PARSING
A behavioral change was requested after parsing started that can only be changed before parsing has started.
This is (currently) only raised by UseForeignDTD ().

XML_ERROR_UNBOUND_PREFIX
An undeclared prefix was found when namespace processing was enabled.

XML, ERROR_UNDECLARING_PREFIX
The document attempted to remove the namespace declaration associated with a prefix.

XML_ERROR_INCOMPLETE_PE
A parameter entity contained incomplete markup.

XML ERROR_XML DECL
The document contained no document element at all.

XML_ERROR_TEXT_DECL
There was an error parsing a text declaration in an external entity.

XML, ERROR_PUBLICID
Characters were found in the public id that are not allowed.

XML_ERROR_SUSPENDED
The requested operation was made on a suspended parser, but isn’t allowed. This includes attempts to
provide additional input or to stop the parser.

XML_ERROR_NOT_SUSPENDED
An attempt to resume the parser was made when the parser had not been suspended.

XML_ERROR_ABORTED
This should not be reported to Python applications.

XML_ERROR_FINISHED
The requested operation was made on a parser which was finished parsing input, but isn’t allowed. This
includes attempts to provide additional input or to stop the parser.

XML_ERROR_SUSPEND_PE

8.5. xml.parsers.expat — Fast XML parsing using Expat 259

8.6 =xml.dom — The Document Object Model API

New in version 2.0.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consortium (W3C)
for accessing and modifying XML documents. A DOM implementation presents an XML document as a tree
structure, or allows client code to build such a structure from scratch. It then gives access to the structure through
a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the
document at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a
text node, you have no access to a containing element. When you write a SAX application, you need to keep track
of your program’s position in the document somewhere in your own code. SAX does not do it for you. Also, if
you need to look ahead in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could
build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is
a standard tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation. The mapping of the Level 3
specification, currently only available in draft form, is being developed by the Python XML Special Interest
Group as part of the PyXML package. Refer to the documentation bundled with that package for information on
the current state of DOM Level 3 support.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered
at all by DOM Level 1, and Level 2 provides only limited improvements: There is a DOMImplementation
object class which provides access to Document creation methods, but no way to access an XML
reader/parser/Document builder in an implementation-independent way. There is also no well-defined way to
access these methods without an existing Document object. In Python, each DOM implementation will provide
a function getDOMImplementation (). DOM Level 3 adds a Load/Store specification, which defines an
interface to the reader, but this is not yet available in the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification; this portion of the reference manual describes
the interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not
required (though implementations are free to support the strict mapping from IDL). See section 8.6.3, “Confor-
mance,” for a detailed discussion of mapping requirements.

See Also:

Document Object Model (DOM) Level 2 Specification
(http://www.w3.0org/TR/DOM-Level-2-Core/)
The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level I Specification
(http://www.w3.0rg/TR/REC-DOM-Level-1/)
The W3C recommendation for the DOM supported by xml .dom.minidom.

PyXML
(http://pyxml.sourceforge.net)
Users that require a full-featured implementation of DOM should use the PyXML package.

Python Language Mapping Specification
(http://www.omg.org/docs/formal/02-11-05.pdf)
This specifies the mapping from OMG IDL to Python.

8.6.1 Module Contents

The xm1 . dom contains the following functions:

260 Chapter 8. Structured Markup Processing Tools

http://www.python.org/sigs/xml-sig/
http://www.python.org/sigs/xml-sig/
http://pyxml.sourceforge.net/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://pyxml.sourceforge.net
http://www.omg.org/docs/formal/02-11-05.pdf

registerDOMImplementation (name, factory)
Register the factory function with the name name. The factory function should return an object which
implements the DOMImplementation interface. The factory function can return the same object every
time, or a new one for each call, as appropriate for the specific implementation (e.g. if that implementation
supports some customization).

getDOMImplementation ([name[, features]])
Return a suitable DOM implementation. The name is either well-known, the module name of a
DOM implementation, or None. If it is not None, imports the corresponding module and returns a
DOMImplementation object if the import succeeds. If no name is given, and if the environment variable
PYTHON_DOM is set, this variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required feature set. If
no implementation can be found, raise an ImportError. The features list must be a sequence of (feature,

version) pairs which are passed to the hasFeature () method on available DOMImplementation
objects.

Some convenience constants are also provided:

EMPTY_ NAMESPACE
The value used to indicate that no namespace is associated with a node in the DOM. This is typically
found as the namespaceURT of a node, or used as the namespaceURI parameter to a namespaces-specific
method. New in version 2.2.

XML_NAMESPACE
The namespace URI associated with the reserved prefix xm1, as defined by Namespaces in XML (section 4).
New in version 2.2.

XMLNS_NAMESPACE
The namespace URI for namespace declarations, as defined by Document Object Model (DOM) Level 2
Core Specification (section 1.1.8). New in version 2.2.

XHTML_NAMESPACE
The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible HyperText Markup Language
(section 3.1.1). New in version 2.2.

In addition, xm1 . dom contains a base Node class and the DOM exception classes. The Node class provided
by this module does not implement any of the methods or attributes defined by the DOM specification; concrete
DOM implementations must provide those. The Node class provided as part of this module does provide the
constants used for the nodeType attribute on concrete Node objects; they are located within the class rather than
at the module level to conform with the DOM specifications.

8.6.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you
must do this, however, so this usage is not yet documented.

Interface Section | Purpose

DOMImplementation 8.6.2 Interface to the underlying implementation.

Node 8.6.2 Base interface for most objects in a document.
NodeList 8.6.2 Interface for a sequence of nodes.

DocumentType 8.6.2 Information about the declarations needed to process a document.
Document 8.6.2 Object which represents an entire document.
Element 8.6.2 Element nodes in the document hierarchy.

Attr 8.6.2 Attribute value nodes on element nodes.

Comment 8.6.2 Representation of comments in the source document.
Text 8.6.2 Nodes containing textual content from the document.
ProcessingInstruction | 8.6.2 Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

8.6. xml.dom — The Document Object Model API 261

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/xhtml1/

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of par-
ticular features in the DOM they are using. DOM Level 2 added the ability to create new Document and
Document Type objects using the DOMImplementation as well.

hasFeature (feature, version)
Return true if the feature identified by the pair of strings feature and version is implemented.

createDocument (namespaceUri, qualifiedName, doctype)
Return a new Document object (the root of the DOM), with a child Element object having the
given namespaceUri and qualifiedName. The doctype must be a DocumentType object created by
createDocumentType (), or None. In the Python DOM API, the first two arguments can also be
None in order to indicate that no Element child is to be created.

createDocumentType (qualifiedName, publicld, systemld)
Return a new Document Type object that encapsulates the given qualifiedName, publicld, and systemld
strings, representing the information contained in an XML document type declaration.

Node Objects

All of the components of an XML document are subclasses of Node.

nodeType
An integer representing the node type. Symbolic constants for the types are on the Node ob-
ject: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCUMENT_NODE, DOCUMENT_TYPE_-
NODE, NOTATION_NODE. This is a read-only attribute.

parentNode
The parent of the current node, or None for the document node. The value is always a Node object or
None. For Element nodes, this will be the parent element, except for the root element, in which case it
will be the Document object. For At t r nodes, this is always None. This is a read-only attribute.

attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide None
for this attribute. This is a read-only attribute.

previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before the self element’s start-tag. Of course, XML documents are made up of more than
just elements so the previous sibling could be text, a comment, or something else. If this node is the first
child of the parent, this attribute will be None. This is a read-only attribute.

nextSibling
The node that immediately follows this one with the same parent. See also previousSibling. If this is
the last child of the parent, this attribute will be None. This is a read-only attribute.

childNodes
A list of nodes contained within this node. This is a read-only attribute.

firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

localName
The part of the t agName following the colon if there is one, else the entire t agName. The value is a string.

prefix
The part of the t agName preceding the colon if there is one, else the empty string. The value is a string, or
None

namespaceURI

262 Chapter 8. Structured Markup Processing Tools

The namespace associated with the element name. This will be a string or None. This is a read-only
attribute.

nodeName
This has a different meaning for each node type; see the DOM specification for details. You can always
get the information you would get here from another property such as the tagName property for elements
or the name property for attributes. For all node types, the value of this attribute will be either a string or
None. This is a read-only attribute.

nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation is
similar to that with nodeName. The value is a string or None.

hasAttributes ()
Returns true if the node has any attributes.

hasChildNodes ()
Returns true if the node has any child nodes.

isSameNode (other)
Returns true if other refers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but this
particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this method
in the Python DOM interface (though any new W3C API for this would also be supported).

appendChild (newChild)
Add a new child node to this node at the end of the list of children, returning newChild.

insertBefore (newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this node; if
not, ValueError is raised. newChild is returned. If refChild is None, it inserts newChild at the end of
the children’s list.

removeChild (0ldChild)
Remove a child node. 0ldChild must be a child of this node; if not, ValueError is raised. oldChild is
returned on success. If 0ldChild will not be used further, its unlink () method should be called.

replaceChild (newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this node; if not,
ValueError is raised.

normalize ()
Join adjacent text nodes so that all stretches of text are stored as single Text instances. This simplifies
processing text from a DOM tree for many applications. New in version 2.1.

cloneNode (deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodelList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recommen-
dation: the Element objects provides one as its list of child nodes, and the getElement sByTagName () and
getElement sByTagNameNS () methods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

item (i)
Return the i’th item from the sequence, if there is one, or None. The index i is not allowed to be less then
zero or greater than or equal to the length of the sequence.

length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow NodeList

8.6. xml.dom — The Document Object Model API 263

objects to be used as Python sequences. All NodeList implementations must include support for __len__ ()
and __getitem__ (); this allows iteration over the NodeList in for statements and proper support for the
len () built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must also
supportthe ___setitem__ () and __delitem__ () methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser
uses it and can provide the information) is available from a Document Type object. The Document Type for a
document is available from the Document object’s doctype attribute; if there is no DOCTYPE declaration for
the document, the document’s doct ype attribute will be set to None instead of an instance of this interface.

Document Type is a specialization of Node, and adds the following attributes:

publicId
The public identifier for the external subset of the document type definition. This will be a string or None.

systemId
The system identifier for the external subset of the document type definition. This will be a URI as a string,
or None.

internalSubset
A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should be None.

name
The name of the root element as given in the DOCTYPE declaration, if present.

entities
This is a NamedNodeMap giving the definitions of external entities. For entity names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommendation).
This may be None if the information is not provided by the parser, or if no entities are defined.

notations
This is a NamedNodeMap giving the definitions of notations. For notation names defined more than once,
only the first definition is provided (others are ignored as required by the XML recommendation). This may
be None if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing in-
structions, comments etc. Remeber that it inherits properties from Node.

documentElement
The one and only root element of the document.

createElement (fagName)
Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such as insertBefore () or appendChild ().

createElementNS (namespaceURI, tagName)
Create and return a new element with a namespace. The ragName may have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods
such as insertBefore () or appendChild().

createTextNode (data)
Create and return a text node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

createComment (data)
Create and return a comment node containing the data passed as a parameter. As with the other creation
methods, this one does not insert the node into the tree.

264 Chapter 8. Structured Markup Processing Tools

createProcessingInstruction (farget, data)
Create and return a processing instruction node containing the target and data passed as parameters. As
with the other creation methods, this one does not insert the node into the tree.

createAttribute (name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must use setAttributeNode () on the appropriate Element object to use the newly
created attribute instance.

createAttributeNS (namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix. This method does
not associate the attribute node with any particular element. You must use setAttributeNode () on
the appropriate Element object to use the newly created attribute instance.

getElement sByTagName (fagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

getElement sByTagNameNS (namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

tagName
The element type name. In a namespace-using document it may have colons in it. The value is a string.

getElementsByTagName (fagName)
Same as equivalent method in the Document class.

getElement sByTagNameNS (tagName)
Same as equivalent method in the Document class.

hasAttribute (name)
Returns true if the element has an attribute named by name.

hasAttributeNS (namespaceURI, localName)
Returns true if the element has an attribute named by namespaceURI and localName.

getAttribute (name)
Return the value of the attribute named by name as a string. If no such attribute exists, an empty string is
returned, as if the attribute had no value.

getAttributeNode (attrname)
Return the At t r node for the attribute named by attrname.

getAttributeNS (namespaceURI, localName)
Return the value of the attribute named by namespaceURI and localName as a string. If no such attribute
exists, an empty string is returned, as if the attribute had no value.

getAttributeNodeNS (namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

removeAttribute (name)
Remove an attribute by name. No exception is raised if there is no matching attribute.

removeAttributeNode (oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr is
raised.

removeAttributeNS (namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a gname. No exception is raised if there is
no matching attribute.

setAttribute (name, value)

8.6. xml.dom — The Document Object Model API 265

Set an attribute value from a string.

setAttributeNode (newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the name attribute
matches. If a replacement occurs, the old attribute node will be returned. If newArsr is already in use,
InuseAttributeErr will be raised.

setAttributeNodeNS (newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the namespaceURI
and localName attributes match. If a replacement occurs, the old attribute node will be returned. If
newAttr is already in use, InuseAttributeErr will be raised.

setAttributeNS (namespaceURI, gname, value)
Set an attribute value from a string, given a namespaceURI and a gname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

name
The attribute name. In a namespace-using document it may have colons in it.

localName
The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

prefix
The part of the name preceding the colon if there is one, else the empty string.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

length
The length of the attribute list.

item (index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be
consistent for the life of a DOM. Each item is an attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can
use the standardized getAttributex () family of methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child nodes.

data
The content of the comment as a string. The attribute contains all characters between the leading <! —— and
trailing ——>, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the
DOM’s XML extension, portions of the text enclosed in CDATA marked sections are stored in CDATASection
objects. These two interfaces are identical, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

data
The content of the text node as a string.

266 Chapter 8. Structured Markup Processing Tools

Note: The use of a CDATASect ion node does not indicate that the node represents a complete CDATA marked
section, only that the content of the node was part of a CDATA section. A single CDATA section may be
represented by more than one node in the document tree. There is no way to determine whether two adjacent
CDATASect ion nodes represent different CDATA marked sections.

Processinglnstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and cannot have
child nodes.

target
The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

data
The content of the processing instruction following the first whitespace character.

Exceptions

New in version 2.1.

The DOM Level 2 recommendation defines a single exception, DOMExcept ion, and a number of constants that
allow applications to determine what sort of error occurred. DOMException instances carry a code attribute
that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific excep-
tion exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate
specific exception, each of which carries the appropriate value for the code attribute.

exception DOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly instan-
tiated.

exception DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in the Python
DOM implementations, but may be received from DOM implementations not written in Python.

exception HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exception IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception InuseAttributeErr
Raised when an attempt is made to insert an At t r node that is already present elsewhere in the document.

exception InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create an Element node with
a space in the element type name will cause this error to be raised.

exception InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception InvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer usable.

exception NamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to the Namespaces in
XML recommendation, this exception is raised.

exception NotFoundErr
Exception when a node does not exist in the referenced context. For example,

8.6. xml.dom — The Document Object Model API 267

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

NamedNodeMap . removeNamedItem () will raise this if the node passed in does not exist in
the map.

exception Not SupportedErr
Raised when the implementation does not support the requested type of object or operation.

exception NoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exception NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exception SyntaxErr
Raised when an invalid or illegal string is specified.

exception WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the implementation
does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to
this table:

Constant

Exception

DOMSTRING_SIZE_ERR
HIERARCHY_ REQUEST_ERR
INDEX_SIZE_ERR
INUSE_ATTRIBUTE_ERR
INVALID_ACCESS_ERR
INVALID_CHARACTER_ERR
INVALID_MODIFICATION_ERR
INVALID_ STATE_ERR
NAMESPACE_ERR
NOT_FOUND_ERR
NOT_SUPPORTED_ERR
NO_DATA_ALLOWED_ERR
NO_MODIFICATION_ALLOWED_ERR
SYNTAX_ERR
WRONG_DOCUMENT_ERR

DomstringSizeErr
HierarchyRequestErr
IndexSizeErr
InuseAttributeErr
InvalidAccessErr
InvalidCharacterErr
InvalidModificationErr
InvalidStateErr
NamespaceErr
NotFoundErr
NotSupportedErr
NoDataAllowedErr
NoModificationAllowedErr
SyntaxErr
WrongDocumentErr

8.6.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C
DOM recommendations, and the OMG IDL mapping for Python.

Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types according to the following
table.

IDL Type Python Type

boolean IntegerType (with a value of 0 or 1)
int IntegerType

long int IntegerType

unsigned int | IntegerType

Additionally, the DOMSt ring defined in the recommendation is mapped to a Python string or Unicode string.
Applications should be able to handle Unicode whenever a string is returned from the DOM.

The IDL null value is mapped to None, which may be accepted or provided by the implementation whenever
null is allowed by the APL

268 Chapter 8. Structured Markup Processing Tools

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in much
the way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;
attribute string anotherValue;

yields three accessor functions: a “get” method for somevValue (_get_someValue ()), and “get” and “set”
methods for anotherValue (_get_anotherValue () and _set_anotherValue ()). The mapping, in
particular, does not require that the IDL attributes are accessible as normal Python attributes: object . someValue
is not required to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the typical
surrogates generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the
client if the DOM objects are accessed via CORBA. While this does require some additional consideration for
CORBA DOM clients, the implementers with experience using DOM over CORBA from Python do not consider
this a problem. Attributes that are declared readonly may not restrict write access in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should take the form defined by
the Python IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly
from Python. “Set” accessors should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API, such as the notion of certain
objects, such as the return value of getElement sByTagName (), being “live”. The Python DOM API does
not require implementations to enforce such requirements.

8.7 xml.dom.minidom — Lightweight DOM implementation

New in version 2.0.

xml.dom.minidom is alight-weight implementation of the Document Object Model interface. It is intended to
be simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. With xml .dom.minidom, this is done
through the parse functions:

from xml.dom.minidom import parse, parseString

doml = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open (’/c:\\temp\\mydata.xml’)
dom2 = parse (datasource) # parse an open file
dom3 = parseString (’/<myxml>Some data<empty/> some more data</myxml>’)

The parse () function can take either a filename or an open file object.

parse (filename_or file, parser)
Return a Document from the given input. filename_or_file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the
parser and activate namespace support; other parser configuration (like setting an entity resolver) must have
been done in advance.

If you have XML in a string, you can use the parseString () function instead:

parseString (string[, parser])
Return a Document that represents the string. This method creates a St ringIO object for the string and
passes that on to parse.

8.7. xml.dom.minidom — Lightweight DOM implementation 269

Both functions return a Document object representing the content of the document.

What the parse () and parseString () functions do is connect an XML parser with a “DOM builder” that
can accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions
are perhaps misleading, but are easy to grasp when learning the interfaces. The parsing of the document will be
completed before these functions return; it’s simply that these functions do not provide a parser implementation
themselves.

You can also create a Document by calling a method on a “DOM Implementation” object. You can get
this object either by calling the getDOMImplementation () function in the xml.dom package or the
xml.dom.minidom module. Using the implementation from the xml.dom.minidom module will always
return a Document instance from the minidom implementation, while the version from xml.dom may pro-
vide an alternate implementation (this is likely if you have the PyXML package installed). Once you have a
Document, you can add child nodes to it to populate the DOM:

from xml.dom.minidom import getDOMImplementation
impl = getDOMImplementation ()

newdoc = impl.createDocument (None, "some_tag", None)
top_element = newdoc.documentElement

text = newdoc.createTextNode (' Some textual content.’)
top_element.appendChild (text)

Once you have a DOM document object, you can access the parts of your XML document through its properties
and methods. These properties are defined in the DOM specification. The main property of the document object
is the documentElement property. It gives you the main element in the XML document: the one that holds all
others. Here is an example program:

dom3 = parseString ("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM, you should clean it up. This is necessary because some versions of Python
do not support garbage collection of objects that refer to each other in a cycle. Until this restriction is removed
from all versions of Python, it is safest to write your code as if cycles would not be cleaned up.

The way to clean up a DOM is to call its unlink () method:

doml.unlink ()
dom2.unlink ()
dom3.unlink ()

unlink () is a xml.dom.minidom-specific extension to the DOM API. After calling unlink () on a node,
the node and its descendants are essentially useless.

See Also:

Document Object Model (DOM) Level 1 Specification
(http://www.w3.0org/TR/REC-DOM-Level-1/)
The W3C recommendation for the DOM supported by xm1l .dom.minidom.

8.7.1 DOM Objects

The definition of the DOM API for Python is given as part of the xm1 . dom module documentation. This section
lists the differences between the API and xm1 .dom.minidom.

unlink ()
Break internal references within the DOM so that it will be garbage collected on versions of Python without

270 Chapter 8. Structured Markup Processing Tools

http://pyxml.sourceforge.net/
http://www.w3.org/TR/REC-DOM-Level-1/

cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available
sooner, so calling this on DOM objects as soon as they are no longer needed is good practice. This only
needs to be called on the Document object, but may be called on child nodes to discard children of that
node.

writexml (writer[, indent=" ”[,addindentz ” [,newlz 7]]])
Write XML to the writer object. The writer should have a write () method which matches that of the file
object interface. The indent parameter is the indentation of the current node. The addindent parameter is
the incremental indentation to use for subnodes of the current one. The newl parameter specifies the string
to use to terminate newlines.

Changed in version 2.1: The optional keyword parameters indent, addindent, and newl were added to sup-
port pretty output.

Changed in version 2.3: For the Document node, an additional keyword argument encoding can be used
to specify the encoding field of the XML header.

toxml ([encoding])
Return the XML that the DOM represents as a string.

With no argument, the XML header does not specify an encoding, and the result is Unicode string if the
default encoding cannot represent all characters in the document. Encoding this string in an encoding other
than UTF-8 is likely incorrect, since UTF-8 is the default encoding of XML.

With an explicit encoding argument, the result is a byte string in the specified encoding. It is recommended
that this argument is always specified. To avoid UnicodeError exceptions in case of unrepresentable
text data, the encoding argument should be specified as "utf-8”.

Changed in version 2.3: the encoding argument was introduced.

toprettyxml ([indent[, newl]])
Return a pretty-printed version of the document. indent specifies the indentation string and defaults to a
tabulator; newl specifies the string emitted at the end of each line and defaults to \n.

New in version 2.1. Changed in version 2.3: the encoding argument; see t oxml () .
The following standard DOM methods have special considerations with xm1 . dom.minidom:

cloneNode (deep)
Although this method was present in the version of xm1 . dom.minidom packaged with Python 2.0, it was
seriously broken. This has been corrected for subsequent releases.

8.7.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take
much advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\

<slideshow>

<title>Demo slideshow</title>

<slide><title>Slide title</title>

<point>This is a demo</point>

<point>0f a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>

<point>To have more than</point>
<point>one slide</point>

</slide>

</slideshow>
mmw

dom = xml.dom.minidom.parseString (document)

8.7. xml.dom.minidom — Lightweight DOM implementation 271

def getText (nodelist):

rg = "n
for node in nodelist:
if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

def handleSlideshow (slideshow) :
print "<html>"
handleSlideshowTitle (slideshow.getElementsByTagName ("title") [0])
slides = slideshow.getElementsByTagName ("slide")
handleToc (slides)
handleSlides (slides)
print "</html>"

def handleSlides(slides):
for slide in slides:
handleSlide (slide)

def handleSlide (slide) :
handleSlideTitle(slide.getElementsByTagName ("title") [0])
handlePoints (slide.getElementsByTagName ("point"))

def handleSlideshowTitle(title) :
print "<title>%$s</title>" % getText (title.childNodes)

def handleSlideTitle(title):
print "<h2>%s</h2>" % getText (title.childNodes)

def handlePoints (points) :
print ""
for point in points:
handlePoint (point)
print ""

def handlePoint (point) :
print "<1i>%s</1li>" % getText (point.childNodes)

def handleToc (slides) :
for slide in slides:
title = slide.getElementsByTagName ("title") [0]
print "<p>%s</p>" % getText (title.childNodes)

handleSlideshow (dom)

8.7.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (pri-
marily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

e Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves;
they should use the creator functions available on the Document object. Derived interfaces support all
operations (and attributes) from the base interfaces, plus any new operations.

e Operations are used as methods. Since the DOM uses only in parameters, the arguments are passed in
normal order (from left to right). There are no optional arguments. void operations return None.

e [DL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for
Python, an attribute foo can also be accessed through accessor methods _get_foo () and _set_foo ().
readonly attributes must not be changed; this is not enforced at runtime.

272 Chapter 8. Structured Markup Processing Tools

e The types short int, unsigned int, unsigned long long, and boolean all map to Python
integer objects.

e The type DOMString maps to Python strings. xml.dom.minidom supports either byte or Unicode
strings, but will normally produce Unicode strings. Values of type DOMSt ring may also be None where
allowed to have the IDL nul1l value by the DOM specification from the W3C.

e const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE); they must not be changed.

e DOMException is currently not supported in xm1 . dom.minidom. Instead, xm1 .dom.minidom uses
standard Python exceptions such as TypeError and AttributeError.

e NodeList objects are implemented using Python’s built-in list type. Starting with Python 2.2, these
objects provide the interface defined in the DOM specification, but with earlier versions of Python they
do not support the official API. They are, however, much more “Pythonic” than the interface defined in the
W3C recommendations.

The following interfaces have no implementation in xm1 . dom.minidom:

e DOMTimeStamp

e DocumentType (added in Python 2.1)

e DOMImplementation (added in Python 2.1)
e CharacterData

e CDATASection

e Notation

e Entity

e EntityReference

e DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

8.8 xml.dom.pulldom— Support for building partial DOM trees

New in version 2.0.

xml.dom.pulldom allows building only selected portions of a Document Object Model representation of a
document from SAX events.

class Pul1DOM ([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

class DOMEventStream (stream, parser, bufsize)

class SAX2DOM ([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

parse (stream_or_string [parser[, bufsize]])
parseString (string[, parser])

default bufsize
Default value for the bufsize parameter to parse (). Changed in version 2.1: The value of this variable
can be changed before calling parse () and the new value will take effect.

8.8. xml.dom.pulldom — Support for building partial DOM trees 273

8.8.1 DOMEventStream Objects

getEvent ()
expandNode (node)

reset ()

8.9 =xml.sax — Support for SAX2 parsers

New in version 2.0.

The xm1 . sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most
used by users of the SAX APL.

The convenience functions are:

make_parser ([parser,list])
Create and return a SAX XMLReader object. The first parser found will be used. If parser_list is provided,
it must be a sequence of strings which name modules that have a function named create_parser ().
Modules listed in parser_list will be used before modules in the default list of parsers.

parse (filename_or_stream, handler[, errorJzandler])
Create a SAX parser and use it to parse a document. The document, passed in as filename_or_stream, can
be a filename or a file object. The handler parameter needs to be a SAX ContentHandler instance. If
error_handler is given, it must be a SAX ErrorHandler instance; if omitted, SAXParseException
will be raised on all errors. There is no return value; all work must be done by the handler passed in.

parseString (string, handler[, errorjlandler])
Similar to parse (), but parses from a buffer string received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this
context is another term for parser, i.e. some piece of code that reads the bytes or characters from the input source,
and produces a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a
method on the handler. A SAX application must therefore obtain a reader object, create or open the input sources,
create the handlers, and connect these objects all together. As the final step of preparation, the reader is called to
parse the input. During parsing, methods on the handler objects are called based on structural and syntactic events
from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the applica-
tion itself. Since Python does not have an explicit notion of interface, they are formally introduced as
classes, but applications may use implementations which do not inherit from the provided classes. The
InputSource, Locator, Attributes, AttributesNS, and XMLReader interfaces are defined in the
module xml . sax.xmlreader. The handler interfaces are defined in xm1 . sax.handler. For convenience,
InputSource (which is often instantiated directly) and the handler classes are also available from xm1 . sax.
These interfaces are described below.

In addition to these classes, xm1 . sax provides the following exception classes.

exception SAXException (msg [exception])
Encapsulate an XML error or warning. This class can contain basic error or warning information from
either the XML parser or the application: it can be subclassed to provide additional functionality or to add
localization. Note that although the handlers defined in the ErrorHandler interface receive instances
of this exception, it is not required to actually raise the exception — it is also useful as a container for
information.

When instantiated, msg should be a human-readable description of the error. The optional exception param-
eter, if given, should be None or an exception that was caught by the parsing code and is being passed along
as information.

274 Chapter 8. Structured Markup Processing Tools

This is the base class for the other SAX exception classes.

exception SAXParseException (msg, exception, locator)
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as the SAXExcept ion interface.

exception SAXNotRecognizedException (msg[, exception])
Subclass of SAXExcept ion raised when a SAX XMLReader is confronted with an unrecognized feature
or property. SAX applications and extensions may use this class for similar purposes.

exception SAXNot SupportedException (msg [exception])
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is not
supported, or to set a property to a value that the implementation does not support. SAX applications and
extensions may use this class for similar purposes.

See Also:

SAX: The Simple API for XML

(http://www.saxproject.org/)
This site is the focal point for the definition of the SAX APL. It provides a Java implementation and online
documentation. Links to implementations and historical information are also available.

Module xml.sax.handler (section 8.10):
Definitions of the interfaces for application-provided objects.

Module xml.sax.saxutils (section 8.11):
Convenience functions for use in SAX applications.

Module xml .sax.xmlreader (section 8.12):
Definitions of the interfaces for parser-provided objects.

8.9.1 SAXException Objects

The SAXException exception class supports the following methods:

getMessage ()
Return a human-readable message describing the error condition.

getException ()
Return an encapsulated exception object, or None.

8.10 xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity resolvers.
Applications normally only need to implement those interfaces whose events they are interested in; they can
implement the interfaces in a single object or in multiple objects. Handler implementations should inherit from
the base classes provided in the module xml . sax.handler, so that all methods get default implementations.

class ContentHandler
This is the main callback interface in SAX, and the one most important to applications. The order of events
in this interface mirrors the order of the information in the document.

class DTDHandler
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).
class EntityResolver

Basic interface for resolving entities. If you create an object implementing this interface, then register the
object with your Parser, the parser will call the method in your object to resolve all external entities.

8.10. xml.sax.handler — Base classes for SAX handlers 275

http://www.saxproject.org/

class ErrorHandler
Interface used by the parser to present error and warning messages to the application. The methods of this
object control whether errors are immediately converted to exceptions or are handled in some other way.

In addition to these classes, xm1 . sax .handler provides symbolic constants for the feature and property names.

feature namespaces
Value: "http://xml.org/sax/features/namespaces™”
true: Perform Namespace processing.
false: Optionally do not perform Namespace processing (implies namespace-prefixes; default).
access: (parsing) read-only; (not parsing) read/write

feature_namespace_prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original pre-
fixed names (default).
access: (parsing) read-only; (not parsing) read/write

feature_string interning
Value: "http://xml.org/sax/features/string—interning”
true: All element names, prefixes, attribute names, Namespace URIs, and local names are interned using
the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

feature_validation
Value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

feature_external_ges
Value: "http://xml.org/sax/features/external-general—-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

feature_external_ pes
Value: "http://xml.org/sax/features/external-parameter—-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

all features
List of all features.

property_ lexical_handler
Value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

property_declaration_handler
Value: "http://xml.org/sax/properties/declaration—-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed enti-
ties.
access: read/write

property_dom_ node
Value: "http://xml.org/sax/properties/dom-node™"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not parsing,

276 Chapter 8. Structured Markup Processing Tools

the root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

property_xml_string
Value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.
access: read-only

all_properties
List of all known property names.

8.10.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are called
by the parser on the appropriate events in the input document:

setDocumentLocator (locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it
must supply the locator to the application by invoking this method before invoking any of the other methods
in the DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if
the parser is not reporting an error. Typically, the application will use this information for reporting its
own errors (such as character content that does not match an application’s business rules). The information
returned by the locator is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

startDocument ()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTD-
Handler (except for setDocumentLocator ()).

endDocument ()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse.
The parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable
error) or reached the end of input.

startPrefixMapping (prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX XML reader
will automatically replace prefixes for element and attribute names when the feature_namespaces
feature is enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute
values, where they cannot safely be expanded automatically; the startPrefixMapping () and
endPrefixMapping () events supply the information to the application to expand prefixes in those
contexts itself, if necessary.

Note that startPrefixMapping () and endPrefixMapping () events are not guaranteed to be
properly nested relative to each-other: all startPrefixMapping () events will occur before the corre-
sponding startElement () event, and all endPrefixMapping () events will occur after the corre-
sponding endElement () event, but their order is not guaranteed.

endPrefixMapping (prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping () for details. This event will always occur after the corresponding
endElement () event, but the order of endPrefixMapping () events is not otherwise guaranteed.

8.10. xml.sax.handler — Base classes for SAX handlers 277

startElement (name, attrs)

Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the atfrs parameter
holds an object of the At t ributes interface containing the attributes of the element. The object passed
as attrs may be re-used by the parser; holding on to a reference to it is not a reliable way to keep a copy of
the attributes. To keep a copy of the attributes, use the copy () method of the attrs object.

endElement (name)

Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement () event.

startElementNS (name, gname, attrs)

Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname) tuple, the gname param-
eter contains the raw XML 1.0 name used in the source document, and the attrs parameter holds an instance
of the AttributesNS interface containing the attributes of the element. If no namespace is associated
with the element, the uri component of name will be None. The object passed as attrs may be re-used by
the parser; holding on to a reference to it is not a reliable way to keep a copy of the attributes. To keep a
copy of the attributes, use the copy () method of the attrs object.

Parsers may set the gname parameter to None, unless the feature_namespace_prefixes feature is
activated.

endElementNS (name, gname)

Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS () method,
likewise the gname parameter.

characters (content)

Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contigu-
ous character data in a single chunk, or they may split it into several chunks; however, all of the characters
in any single event must come from the same external entity so that the Locator provides useful information.

content may be a Unicode string or a byte string; the expat reader module produces always Unicode
strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-
like interface for this method. Since most parsers used from Python did not take advantage of the older
interface, the simpler signature was chosen to replace it. To convert old code to the new interface, use
content instead of slicing content with the old offset and length parameters.

ignorableWhitespace (whitespace)

Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML
1.0 recommendation, section 2.10): non-validating parsers may also use this method if they are capable of
parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several
chunks; however, all of the characters in any single event must come from the same external entity, so that
the Locator provides useful information.

processingInstruction (target, data)

Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instruc-
tions may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML
1.0, section 4.3.1) using this method.

skippedEntity (name)

Receive notification of a skipped entity.

278

Chapter 8. Structured Markup Processing Tools

attributes-objects.html
attributes-ns-objects.html

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip entities
if they have not seen the declarations (because, for example, the entity was declared in an external DTD
subset). All processors may skip external entities, depending on the values of the feature_external_ -
ges and the feature_external_ pes properties.

8.10.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl (name, publicld, systemld)
Handle a notation declaration event.

unparsedEntityDecl (name, publicld, systemld, ndata)
Handle an unparsed entity declaration event.

8.10.3 EntityResolver Objects

resolveEntity (publicld, systemld)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or
an InputSource to read from. The default implementation returns systemld.

8.10.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If you create
an object that implements this interface, then register the object with your XMLReader, the parser will call the
methods in your object to report all warnings and errors. There are three levels of errors available: warnings,
(possibly) recoverable errors, and unrecoverable errors. All methods take a SAXParseException as the only
parameter. Errors and warnings may be converted to an exception by raising the passed-in exception object.

error (exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing
may continue, but further document information should not be expected by the application. Allowing the
parser to continue may allow additional errors to be discovered in the input document.

fatalError (exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when
this method returns.

warning (exception)
Called when the parser presents minor warning information to the application. Parsing is expected to con-
tinue when this method returns, and document information will continue to be passed to the application.
Raising an exception in this method will cause parsing to end.

8.11 xml.sax.saxutils— SAX Ultilities

New in version 2.0.

The module xml .sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

escape (data[, entities])

[

Escape ‘&’, ‘<’, and ‘>’ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value.

unescape (data [entities])
Unescape ‘samp;’, ‘&1t;’, and ‘> ;’ in a string of data.

8.11. xml.sax.saxutils — SAX Ultilities 279

You can unescape other strings of data by passing a dictionary as the optional entities parameter. The keys
and values must all be strings; each key will be replaced with its corresponding value.

New in version 2.3.

quoteattr (data [entities])
Similar to escape (), but also prepares data to be used as an attribute value. The return value is a quoted
version of data with any additional required replacements. quoteattr () will select a quote character
based on the content of data, attempting to avoid encoding any quote characters in the string. If both single-
and double-quote characters are already in data, the double-quote characters will be encoded and data will
be wrapped in double-quotes. The resulting string can be used directly as an attribute value:

>>> print "<element attr=%s>" % quoteattr ("ab ’ cd \" ef")
<element attr="ab ’ cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference con-
crete syntax. New in version 2.2.

class XMLGenerator ([out[, encoding]])
This class implements the ContentHandler interface by writing SAX events back into an XML docu-
ment. In other words, using an XMLGenerator as the content handler will reproduce the original docu-
ment being parsed. out should be a file-like object which will default to sys.stdout. encoding is the encoding
of the output stream which defaults to # iso-8859-1".

class XMLFilterBase (base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses
can override specific methods to modify the event stream or the configuration requests as they pass through.

prepare_input_source (sonrce[, base])
This function takes an input source and an optional base URL and returns a fully resolved InputSource
object ready for reading. The input source can be given as a string, a file-like object, or an Input Source
object; parsers will use this function to implement the polymorphic source argument to their parse ()
method.

8.12 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement the XMLReader interface. They are implemented in a Python module, which must
provide a function create_parser (). This function is invoked by xml.sax.make_parser () with no
arguments to create a new parser object.

class XMLReader ()
Base class which can be inherited by SAX parsers.

class IncrementalParser ()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as
they get available. Note that the reader will normally not read the entire file, but read it in chunks as well;
still parse () won’t return until the entire document is processed. So these interfaces should be used if the
blocking behaviour of parse () is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to
accept new data, either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close
and reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

class Locator ()
Interface for associating a SAX event with a document location. A locator object will return valid results

280 Chapter 8. Structured Markup Processing Tools

only during calls to DocumentHandler methods; at any other time, the results are unpredictable. If informa-
tion is not available, methods may return None.

class InputSource ([systemld])
Encapsulation of the information needed by the XMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader .parse () method and for return-
ing from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify Input Source
objects passed to it from the application, although it may make copies and modify those.

class AttributesImpl (attrs)
This is an implementation of the Attributes interface (see section 8.12.5). This is a dictionary-like
object which represents the element attributes in a startElement () call. In addition to the most useful
dictionary operations, it supports a number of other methods as described by the interface. Objects of this
class should be instantiated by readers; atfrs must be a dictionary-like object containing a mapping from
attribute names to attribute values.

class AttributesNSImpl (attrs, gnames)
Namespace-aware variant of AttributesImpl, which will be passed to startElementNS (). Itis
derived from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and
localname. In addition, it provides a number of methods expecting qualified names as they appear in the
original document. This class implements the At t ributesNS interface (see section 8.12.6).

8.12.1 XMLReader Objects

The XMLReader interface supports the following methods:

parse (source)
Process an input source, producing SAX events. The source object can be a system identifier (a string
identifying the input source — typically a file name or an URL), a file-like object, or an InputSource
object. When parse () returns, the input is completely processed, and the parser object can be discarded
or reset. As a limitation, the current implementation only accepts byte streams; processing of character
streams is for further study.

getContentHandler ()
Return the current ContentHandler.

setContentHandler (handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

getDTDHandler ()
Return the current DTDHandler.

setDTDHandler (handler)
Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

getEntityResolver ()
Return the current EntityResolver.

setEntityResolver (handler)
Set the current Ent ityResolver. If no EntityResolver is set, attempts to resolve an external entity
will result in opening the system identifier for the entity, and fail if it is not available.

getErrorHandler ()
Return the current ErrorHandler.

setErrorHandler (handler)
Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

setLocale (locale)

8.12. xml.sax.xmlreader — Interface for XML parsers 281

attributes-objects.html
attributes-ns-objects.html

Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the
requested locale, however, they must throw a SAX exception. Applications may request a locale change in
the middle of a parse.

getFeature (featurename)
Return the current setting for feature featurename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the mod-
ule xml.sax.handler.

setFeature (featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException israised.
If the feature or its setting is not supported by the parser, SAXNotSupportedException is raised.

getProperty (propertyname)
Return the current setting for property propertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler.

setProperty (propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is
raised. If the property or its setting is not supported by the parser, SAXNotSupportedException is raised.

8.12.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

feed (data)
Process a chunk of data.

close ()
Assume the end of the document. That will check well-formedness conditions that can be checked only at
the end, invoke handlers, and may clean up resources allocated during parsing.

reset ()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.

8.12.3 Locator Objects

Instances of Locator provide these methods:

getColumnNumber ()
Return the column number where the current event ends.

getLineNumber ()
Return the line number where the current event ends.

getPublicId()
Return the public identifier for the current event.

getSystemId()
Return the system identifier for the current event.

8.12.4 InputSource Objects
setPublicId (id)
Sets the public identifier of this Input Source.

getPublicId()
Returns the public identifier of this Input Source.

282 Chapter 8. Structured Markup Processing Tools

setSystemId (id)
Sets the system identifier of this Input Source.

getSystemId()
Returns the system identifier of this Input Source.

setEncoding (encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of the InputSource is ignored if the Input Source also contains a character
stream.

getEncoding ()
Get the character encoding of this InputSource.

setByteStream (bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this
input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding
method.

getByteStream/()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

setCharacterStream (charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like
that performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to
open a URI connection to the system identifier.

getCharacterStream()
Get the character stream for this input source.

8.12.5 The Attributes Interface
Attributes objects implement a portion of the mapping protocol, including the methods copy (), get (),
has_key (), items (), keys (), and values (). The following methods are also provided:

getLength ()
Return the number of attributes.

getNames ()
Return the names of the attributes.

getType (name)
Returns the type of the attribute name, which is normally * CDATA' .

getValue (name)
Return the value of attribute name.

8.12.6 The AttributesNSs Interface

This interface is a subtype of the Attributes interface (see section 8.12.5). All methods supported by that
interface are also available on Att ributesNS objects.

The following methods are also available:

8.12. xml.sax.xmlreader — Interface for XML parsers 283

attributes-objects.html

getValueByQName (name)
Return the value for a qualified name.

getNameByQName (name)
Return the (namespace, localname) pair for a qualified name.

getQNameByName (name)
Return the qualified name for a (namespace, localname) pair.

getQNames ()
Return the qualified names of all attributes.

8.13 xml.etree.ElementTree — The ElementTree XML API

New in version 2.5.

The Element type is a flexible container object, designed to store hierarchical data structures in memory. The type
can be described as a cross between a list and a dictionary.

Each element has a number of properties associated with it:

e a tag which is a string identifying what kind of data this element represents (the element type, in other
words).

¢ a number of attributes, stored in a Python dictionary.
e atext string.
e an optional tail string.

¢ a number of child elements, stored in a Python sequence

To create an element instance, use the Element or SubElement factory functions.
The ElementTree class can be used to wrap an element structure, and convert it from and to XML.

A C implementation of this API is available as xm1.etree.cElementTree.

8.13.1 Functions

Comment ([text])
Comment element factory. This factory function creates a special element that will be serialized as an XML
comment. The comment string can be either an 8-bit ASCII string or a Unicode string. fext is a string
containing the comment string.

Returns:
An element instance, representing a comment.

dump (elem)
Writes an element tree or element structure to sys.stdout. This function should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s written as an ordinary XML file.

elem is an element tree or an individual element.

Element (tag[, attrib] [, *¥extra])
Element factory. This function returns an object implementing the standard Element interface. The exact
class or type of that object is implementation dependent, but it will always be compatible with the _Ele-
mentInterface class in this module.

The element name, attribute names, and attribute values can be either 8-bit ASCII strings or Unicode strings.
tag is the element name. attrib is an optional dictionary, containing element attributes. extra contains
additional attributes, given as keyword arguments.

284 Chapter 8. Structured Markup Processing Tools

Returns:
An element instance.

fromstring (rext)
Parses an XML section from a string constant. Same as XML. text is a string containing XML data.

Returns:
An Element instance.

iselement (element)
Checks if an object appears to be a valid element object. element is an element instance.

Returns:
A true value if this is an element object.

iterparse (source[, events])
Parses an XML section into an element tree incrementally, and reports what’s going on to the user. source
is a filename or file object containing XML data. events is a list of events to report back. If omitted, only
“end” events are reported.

Returns:
A (event, elem) iterator.

parse (source [parser])
Parses an XML section into an element tree. source is a filename or file object containing XML data. parser
is an optional parser instance. If not given, the standard XMLTreeBuilder parser is used.

Returns:
An ElementTree instance

ProcessingInstruction (target[, text])
PI element factory. This factory function creates a special element that will be serialized as an XML pro-
cessing instruction. farget is a string containing the PI target. fext is a string containing the PI contents, if
given.

Returns:
An element instance, representing a PI.

SubElement (parent, tag[, attrib] [**extra])
Subelement factory. This function creates an element instance, and appends it to an existing element.

The element name, attribute names, and attribute values can be either 8-bit ASCII strings or Unicode strings.
parent is the parent element. fag is the subelement name. attrib is an optional dictionary, containing element
attributes. extra contains additional attributes, given as keyword arguments.

Returns:
An element instance.

tostring (element[, encoding])
Generates a string representation of an XML element, including all subelements. element is an Element
instance. encoding is the output encoding (default is US-ASCII).

Returns:
An encoded string containing the XML data.

XML (fext)
Parses an XML section from a string constant. This function can be used to embed “XML literals” in Python
code. fext is a string containing XML data.

Returns:
An Element instance.

XMLID (fext)
Parses an XML section from a string constant, and also returns a dictionary which maps from element id:s
to elements. fext is a string containing XML data.

Returns:
A tuple containing an Element instance and a dictionary.

8.13. xml.etree.ElementTree — The ElementTree XML API 285

8.13.2 ElementTree Objects

class ElementTree ([element,] [ﬁle])
ElementTree wrapper class. This class represents an entire element hierarchy, and adds some extra support
for serialization to and from standard XML.

element is the root element. The tree is initialized with the contents of the XML file if given.
setroot (element)

Replaces the root element for this tree. This discards the current contents of the tree, and replaces it with
the given element. Use with care. element is an element instance.

find (path)
Finds the first toplevel element with given tag. Same as getroot().find(path). path is the element to look for.

Returns:
The first matching element, or None if no element was found.

findall (path)
Finds all toplevel elements with the given tag. Same as getroot().findall(path). path is the element to look
for.

Returns:
A list or iterator containing all matching elements, in section order.

findtext (path [, default])
Finds the element text for the first toplevel element with given tag. Same as getroot().findtext(path). path is
the toplevel element to look for. default is the value to return if the element was not found.

Returns:
The text content of the first matching element, or the default value no element was found. Note that if
the element has is found, but has no text content, this method returns an empty string.

getiterator ([tag])
Creates a tree iterator for the root element. The iterator loops over all elements in this tree, in section order.
tag is the tag to look for (default is to return all elements)

Returns:
An iterator.

getroot ()
Gets the root element for this tree.

Returns:
An element instance.

parse (source [parser])
Loads an external XML section into this element tree. source is a file name or file object. parser is an
optional parser instance. If not given, the standard XMLTreeBuilder parser is used.

Returns:
The section root element.

write (ﬁle[, encoding])
Writes the element tree to a file, as XML. file is a file name, or a file object opened for writing. encoding is
the output encoding (default is US-ASCII).

8.13.3 QName Objects

class QName (text_or_uri [tag])
QName wrapper. This can be used to wrap a QName attribute value, in order to get proper namespace
handling on output. fext_or_uri is a string containing the QName value, in the form {uri}local, or, if the tag
argument is given, the URI part of a QName. If fag is given, the first argument is interpreted as an URI, and
this argument is interpreted as a local name.

Returns:
An opaque object, representing the QName.

286 Chapter 8. Structured Markup Processing Tools

8.13.4 TreeBuilder Objects

class TreeBuilder ([elemeanactory])
Generic element structure builder. This builder converts a sequence of start, data, and end method calls to
a well-formed element structure. You can use this class to build an element structure using a custom XML
parser, or a parser for some other XML-like format. The element_factory is called to create new Element
instances when given.

close ()
Flushes the parser buffers, and returns the toplevel documen element.

Returns:
An Element instance.

data (data)
Adds text to the current element. data is a string. This should be either an 8-bit string containing ASCII
text, or a Unicode string.

end (fag)
Closes the current element. fag is the element name.
Returns:
The closed element.
start (tag, attrs)
Opens a new element. fag is the element name. attrs is a dictionary containing element attributes.

Returns:
The opened element.

8.13.5 XMLTreeBuilder Objects

class XMLTreeBuilder ([html,] [target])
Element structure builder for XML source data, based on the expat parser. html are predefined HTML
entities. This flag is not supported by the current implementation. farget is the target object. If omitted, the
builder uses an instance of the standard TreeBuilder class.

close ()
Finishes feeding data to the parser.
Returns:
An element structure.

doctype (name, pubid, system)
Handles a doctype declaration. name is the doctype name. pubid is the public identifier. system is the
system identifier.

feed (data)
Feeds data to the parser.

data is encoded data.

8.13. xml.etree.ElementTree — The ElementTree XML API 287

288

CHAPTER
NINE

File Formats

The modules described in this chapter parse various miscellaneous file formats that aren’t markup languages or
are related to e-mail.

csv Write and read tabular data to and from delimited files.

ConfigParser Configuration file parser.

robotparser Loads a ‘robots.txt’ file and answers questions about fetchability of other URLSs.
netrc Loading of “.netrc’ files.

xdrlib Encoders and decoders for the External Data Representation (XDR).

9.1 csv — CSV File Reading and Writing

New in version 2.3.

The so-called CSV (Comma Separated Values) format is the most common import and export format for spread-
sheets and databases. There is no “CSV standard”, so the format is operationally defined by the many applications
which read and write it. The lack of a standard means that subtle differences often exist in the data produced and
consumed by different applications. These differences can make it annoying to process CSV files from multiple
sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is pos-
sible to write a single module which can efficiently manipulate such data, hiding the details of reading and writing
the data from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows programmers to say,
“write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,”
without knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV
formats understood by other applications or define their own special-purpose CSV formats.

The csv module’s reader and writer objects read and write sequences. Programmers can also read and write
data in dictionary form using the DictReader and DictWriter classes.

Note: This version of the csv module doesn’t support Unicode input. Also, there are currently some issues
regarding ASCII NUL characters. Accordingly, all input should be UTF-8 or printable ASCII to be safe; see the
examples in section 9.1.5. These restrictions will be removed in the future.

See Also:

PEP 305, “CSV File API”
The Python Enhancement Proposal which proposed this addition to Python.

9.1.1 Module Contents

The csv module defines the following functions:

reader (csvﬁle[, dialect="excel’][, ﬁntparam])
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object which
supports the iterator protocol and returns a string each time its next method is called — file objects and list
objects are both suitable. If csvfile is a file object, it must be opened with the ’b’ flag on platforms where that
makes a difference. An optional dialect parameter can be given which is used to define a set of parameters

289

specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect class or one of
the strings returned by the 1ist_dialects function. The other optional fimtparam keyword arguments
can be given to override individual formatting parameters in the current dialect. For more information about
the dialect and formatting parameters, see section 9.1.2, “Dialects and Formatting Parameters” for details
of these parameters.

All data read are returned as strings. No automatic data type conversion is performed.

Changed in version 2.5: The parser is now stricter with respect to multi-line quoted fields. Previously,
if a line ended within a quoted field without a terminating newline character, a newline would be inserted
into the returned field. This behavior caused problems when reading files which contained carriage return
characters within fields. The behavior was changed to return the field without inserting newlines. As a
consequence, if newlines embedded within fields are important, the input should be split into lines in a
manner which preserves the newline characters.

writer (csvﬁle[, dialect="excel’][, fmtpamm])

Return a writer object responsible for converting the user’s data into delimited strings on the given file-
like object. csvfile can be any object with a write method. If csvfile is a file object, it must be opened
with the ’b’ flag on platforms where that makes a difference. An optional dialect parameter can be given
which is used to define a set of parameters specific to a particular CSV dialect. It may be an instance of
a subclass of the Dialect class or one of the strings returned by the 1ist_dialects function. The
other optional fintparam keyword arguments can be given to override individual formatting parameters in
the current dialect. For more information about the dialect and formatting parameters, see section 9.1.2,
“Dialects and Formatting Parameters” for details of these parameters. To make it as easy as possible to
interface with modules which implement the DB API, the value None is written as the empty string. While
this isn’t a reversible transformation, it makes it easier to dump SQL NULL data values to CSV files without
preprocessing the data returned from a cursor. fetchx () call. All other non-string data are stringified
with str () before being written.

register dialect (name [dialect] [fmtpamm])
Associate dialect with name. name must be a string or Unicode object. The dialect can be specified either
by passing a sub-class of Dialect, or by fintparam keyword arguments, or both, with keyword arguments
overriding parameters of the dialect. For more information about the dialect and formatting parameters, see
section 9.1.2, “Dialects and Formatting Parameters” for details of these parameters.

unregister_dialect (name)
Delete the dialect associated with name from the dialect registry. An Error is raised if name is not a
registered dialect name.

get_dialect (name)
Return the dialect associated with name. An Error is raised if name is not a registered dialect name.

list_dialects ()
Return the names of all registered dialects.

field_size limit ([new_limit])
Returns the current maximum field size allowed by the parser. If new_limit is given, this becomes the new
limit. New in version 2.5.

The csv module defines the following classes:

class DictReader (csvﬁle[, fieldnames=None, [, restkey:None[, restval:None[, dialect="excel’ [, *args,

*skwds | | 1]1)

Create an object which operates like a regular reader but maps the information read into a dict whose keys
are given by the optional fieldnames parameter. If the fieldnames parameter is omitted, the values in the
first row of the csvfile will be used as the fieldnames. If the row read has fewer fields than the fieldnames
sequence, the value of restval will be used as the default value. If the row read has more fields than the
fieldnames sequence, the remaining data is added as a sequence keyed by the value of restkey. If the row
read has fewer fields than the fieldnames sequence, the remaining keys take the value of the optional restval
parameter. Any other optional or keyword arguments are passed to the underlying reader instance.

class DictWriter (csvfile, fieldnames|, restval=""[, extrasaction="raise’|, dialect="excel’[, *args,

“skwds]]]])
Create an object which operates like a regular writer but maps dictionaries onto output rows. The fieldnames

parameter identifies the order in which values in the dictionary passed to the writerow () method are

290 Chapter 9. File Formats

written to the csvfile. The optional restval parameter specifies the value to be written if the dictionary is
missing a key in fieldnames. If the dictionary passed to the writerow () method contains a key not found
in fieldnames, the optional extrasaction parameter indicates what action to take. If itis setto ' raise’ a
ValueError is raised. If it is set to ignore’, extra values in the dictionary are ignored. Any other
optional or keyword arguments are passed to the underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of the DictWriter is not optional.
Since Python’s dict objects are not ordered, there is not enough information available to deduce the order
in which the row should be written to the csvfile.

class Dialect
The Dialect class is a container class relied on primarily for its attributes, which are used to define the
parameters for a specific reader or writer instance.

class excel ()
The excel class defines the usual properties of an Excel-generated CSV file.

class excel tab ()
The excel_tab class defines the usual properties of an Excel-generated TAB-delimited file.

class Sniffer ()
The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

sniff (sample [,delimiters:None])
Analyze the given sample and return a Dialect subclass reflecting the parameters found. If the optional
delimiters parameter is given, it is interpreted as a string containing possible valid delimiter characters.

has_header (sample)
Analyze the sample text (presumed to be in CSV format) and return True if the first row appears to be a
series of column headers.

The csv module defines the following constants:

QUOTE_ALL
Instructs writer objects to quote all fields.

QUOTE_MINIMAL
Instructs writer objects to only quote those fields which contain special characters such as delimiter,
quotechar or any of the characters in lineterminator.

QUOTE__NONNUMERIC
Instructs writer objects to quote all non-numeric fields.

Instructs the reader to convert all non-quoted fields to type float.

QUOTE_NONE
Instructs writer objects to never quote fields. When the current delimiter occurs in output data it is
preceded by the current escapechar character. If escapechar is not set, the writer will raise Error if any
characters that require escaping are encountered.

Instructs reader to perform no special processing of quote characters.
The csv module defines the following exception:

exception Error
Raised by any of the functions when an error is detected.

9.1.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are grouped
together into dialects. A dialect is a subclass of the Dialect class having a set of specific methods and a single
validate () method. When creating reader or writer objects, the programmer can specify a string or
a subclass of the Dialect class as the dialect parameter. In addition to, or instead of, the dialect parameter,
the programmer can also specify individual formatting parameters, which have the same names as the attributes
defined below for the Dialect class.

9.1. csv — CSV File Reading and Writing 291

Dialects support the following attributes:

delimiter
A one-character string used to separate fields. It defaults to ’ , ’ .

doublequote
Controls how instances of quotechar appearing inside a field should be themselves be quoted. When True,
the character is doubled. When False, the escapechar is used as a prefix to the quotechar. It defaults to
True.

On output, if doublequote is False and no escapechar is set, Error is raised if a quotechar is found in a
field.

escapechar
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and the
quotechar if doublequote is False. On reading, the escapechar removes any special meaning from the
following character. It defaults to None, which disables escaping.

lineterminator
The string used to terminate lines produced by the writer. It defaultsto " \r\n’.

Note: The reader is hard-coded to recognise either \r’ or ’ \n’ as end-of-line, and ignores linetermi-
nator. This behavior may change in the future.

quotechar
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar,
or which contain new-line characters. It defaults to * " .

quoting
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of
the QUOTE_ * constants (see section 9.1.1) and defaults to QUOTE_MINIMAL.

skipinitialspace
When True, whitespace immediately following the delimiter is ignored. The default is False.

9.1.3 Reader Objects

Reader objects (DictReader instances and objects returned by the reader () function) have the following
public methods:

next ()
Return the next row of the reader’s iterable object as a list, parsed according to the current dialect.

Reader objects have the following public attributes:

dialect
A read-only description of the dialect in use by the parser.

line num
The number of lines read from the source iterator. This is not the same as the number of records returned,
as records can span multiple lines.

9.1.4 Writer Objects

Writer objects (DictWriter instances and objects returned by the writer () function) have the following
public methods. A row must be a sequence of strings or numbers for Writer objects and a dictionary mapping
fieldnames to strings or numbers (by passing them through str () first) for DictWriter objects. Note that
complex numbers are written out surrounded by parens. This may cause some problems for other programs which
read CSV files (assuming they support complex numbers at all).

writerow (row)
Write the row parameter to the writer’s file object, formatted according to the current dialect.

writerows (rows)
Write all the rows parameters (a list of row objects as described above) to the writer’s file object, formatted

292 Chapter 9. File Formats

according to the current dialect.
Writer objects have the following public attribute:

dialect
A read-only description of the dialect in use by the writer.

9.1.5 Examples

The simplest example of reading a CSV file:

import csv
reader = csv.reader (open("some.csv", "rb"))
for row in reader:

print row

Reading a file with an alternate format:

import csv
reader = csv.reader (open ("passwd", "rb"), delimiter=’:’, quoting=csv.QUOTE_NONE)

for row in reader:
print row

The corresponding simplest possible writing example is:

import csv
writer = csv.writer (open("some.csv", "wb"))
writer.writerows (someiterable)

Registering a new dialect:

import csv

csv.register_dialect (Yunixpwd’, delimiter=’:’, quoting=csv.QUOTE_NONE)

reader = csv.reader (open ("passwd", "rb"), ’"unixpwd’)

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys

filename = "some.csv"
reader = csv.reader (open(filename, "rb"))
try:

for row in reader:
print row
except csv.Error, e:
sys.exit (' file %s, line %d: %s’ % (filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be done:

9.1. csv — CSV File Reading and Writing 293

import csv
for row in csv.reader ([’one,two,three’]):
print row

The csv module doesn’t directly support reading and writing Unicode, but it is 8-bit-clean save for some problems
with ASCII NUL characters. So you can write functions or classes that handle the encoding and decoding for you
as long as you avoid encodings like UTF-16 that use NULs. UTF-8 is recommended.

unicode_csv_reader below is a generator that wraps csv. reader to handle Unicode CSV data (a list of
Unicode strings). utf_8_encoder is a generator that encodes the Unicode strings as UTF-8, one string (or
row) at a time. The encoded strings are parsed by the CSV reader, and unicode_csv_reader decodes the
UTF-8-encoded cells back into Unicode:

import csv

def unicode_csv_reader (unicode_csv_data, dialect=csv.excel, *xkwargs):
csv.py doesn’t do Unicode; encode temporarily as UTF-8:
csv_reader = csv.reader (utf_8_encoder (unicode_csv_data),
dialect=dialect, =*xkwargs)
for row in csv_reader:
decode UTF-8 back to Unicode, cell by cell:
yvield [unicode(cell, "utf-8’) for cell in row]

def utf_8_encoder (unicode_csv_data) :
for line in unicode_csv_data:
yield line.encode ('utf-8’)

For all other encodings the following UnicodeReader and UnicodeWriter classes can be used. They take
an additional encoding parameter in their constructor and make sure that the data passes the real reader or writer
encoded as UTF-8:

294 Chapter 9. File Formats

import csv, codecs, cStringIO

class UTF8Recoder:

Iterator that reads an encoded stream and reencodes the input to UTF-8
mwnww
def __init__ (self, f, encoding):

self.reader = codecs.getreader (encoding) (f)

def _ iter_ (self):
return self

def next (self):
return self.reader.next () .encode ("utf-8")

class UnicodeReader:
nnn
A CSV reader which will iterate over lines in the CSV file "f",

which is encoded in the given encoding.
nmnwn

def __init__ (self, f, dialect=csv.excel, encoding="utf-8", *xkwds):
f = UTF8Recoder (f, encoding)
self.reader = csv.reader (f, dialect=dialect, =xxkwds)

def next (self):
row = self.reader.next ()
return [unicode (s, "utf-8") for s in row]

def _ iter_ (self):
return self

class UnicodeWriter:
nnn
A CSV writer which will write rows to CSV file "f",

which is encoded in the given encoding.
nnn

def __init__ (self, f, dialect=csv.excel, encoding="utf-8", *xkwds):
Redirect output to a queue
self.queue = cStringIO.StringIO ()
self.writer = csv.writer (self.queue, dialect=dialect, xxkwds)
self.stream = £
self.encoder = codecs.getincrementalencoder (encoding) ()

def writerow(self, row):

self.writer.writerow([s.encode ("utf-8") for s in row])
Fetch UTF-8 output from the queue

data = self.queue.getvalue()

data = data.decode ("utf-8")

... and reencode it into the target encoding

data = self.encoder.encode (data)

write to the target stream
self.stream.write (data)

empty queue
self.queue.truncate (0)

def writerows (self, rows):
for row in rows:
self.writerow (row)

9.1. csv — CSV File Reading and Writing 295

9.2 cConfigParser — Configuration file parser

This module defines the class ConfigParser. The ConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows INI files.
You can use this to write Python programs which can be customized by end users easily.

Warning: This library does not interpret or write the value-type prefixes used in the Windows Registry
extended version of INI syntax.

The configuration file consists of sections, led by a ‘[section]’ header and followed by ‘name: value’
entries, with continuations in the style of RFC 822; ‘name=value’ is also accepted. Note that leading whitespace
is removed from values. The optional values can contain format strings which refer to other values in the same
section, or values in a special DEFAULT section. Additional defaults can be provided on initialization and retrieval.
Lines beginning with ‘#’ or ¢; * are ignored and may be used to provide comments.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob

would resolve the ‘% (dir) s’ to the value of ‘dir’ (‘frob’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary. Additional
defaults may be passed into the get () method which will override all others.

class RawConfigParser ([defaults])
The basic configuration object. When defaults is given, it is initialized into the dictionary of intrinsic
defaults. This class does not support the magical interpolation behavior. New in version 2.3.

class ConfigParser ([defaults])
Derived class of RawConfigParser that implements the magical interpolation feature and adds optional
arguments to the get () and items () methods. The values in defaults must be appropriate for the ‘% () s’
string interpolation. Note that __name__is an intrinsic default; its value is the section name, and will override
any value provided in defaults.

All option names used in interpolation will be passed through the opt ionxform () method just like any
other option name reference. For example, using the default implementation of opt ionxform () (which
converts option names to lower case), the values ‘foo % (bar) s’ and ‘foo % (BAR) s’ are equivalent.

class SafeConfigParser ([defaults])
Derived class of ConfigParser that implements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don’t
need to be compatible with older versions of Python. New in version 2.3.

exception NoSectionError
Exception raised when a specified section is not found.

exception DuplicateSectionError
Exception raised if add_section () is called with the name of a section that is already present.

exception NoOptionError
Exception raised when a specified option is not found in the specified section.

exception InterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exception InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX_INTERPOLATION_DEPTH. Subclass of InterpolationError.

exception InterpolationMissingOptionError

296 Chapter 9. File Formats

Exception raised when an option referenced from a value does not exist. Subclass of
InterpolationError. New in version 2.3.

exception InterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass of InterpolationError. New in version 2.3.

exception MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception ParsingError
Exception raised when errors occur attempting to parse a file.

MAX INTERPOLATION_DEPTH
The maximum depth for recursive interpolation for get () when the raw parameter is false. This is relevant
only for the ConfigParser class.

See Also:

Module shlex (section 22.2):
Support for a creating UNIX shell-like mini-languages which can be used as an alternate format for appli-
cation configuration files.

9.2.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections available; DEFAULT is not included in the list.

add_section (section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has_section (section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not acknowl-
edged.

options (section)
Returns a list of options available in the specified section.

has_option (section, option)
If the given section exists, and contains the given option, return True; otherwise return False. New in
version 1.6.

read (filenames)

Attempt to read and parse a list of filenames, returning a list of filenames which were successfully parsed.
If filenames is a string or Unicode string, it is treated as a single filename. If a file named in filenames
cannot be opened, that file will be ignored. This is designed so that you can specify a list of potential
configuration file locations (for example, the current directory, the user’s home directory, and some system-
wide directory), and all existing configuration files in the list will be read. If none of the named files exist,
the ConfigParser instance will contain an empty dataset. An application which requires initial values
to be loaded from a file should load the required file or files using readfp () before calling read () for
any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser ()
config.readfp (open (’defaults.cfg’))
config.read([’site.cfg’, os.path.expanduser (’”/.myapp.cfg’)])

Changed in version 2.4: Returns list of successfully parsed filenames.

9.2. configParser — Configuration file parser 297

readfp (fp [ﬁlename])
Read and parse configuration data from the file or file-like object in fp (only the readline () method is

used). If filename is omitted and fp has a name attribute, that is used for filename; the default is ‘<?72?>’.

get (section, option)
Get an option value for the named section.

getint (section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat (section, option)
A convenience method which coerces the option in the specified section to a floating point number.

getboolean (section, option)
A convenience method which coerces the option in the specified section to a Boolean value. Note that the
accepted values for the option are "1", "yes", "true", and "on", which cause this method to return
True,and "0", "no", "false", and "of £", which cause it to return False. These string values are
checked in a case-insensitive manner. Any other value will cause it to raise ValueError.

items (section)
Return a list of (name, value) pairs for each option in the given section.

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError.
While it is possible to use RawConfigParser (or ConfigParser with raw parameters set to true) for
internal storage of non-string values, full functionality (including interpolation and output to files) can only
be achieved using string values. New in version 1.6.

write (fileobject)
Write a representation of the configuration to the specified file object. This representation can be parsed by
a future read () call. New in version 1.6.

remove_option (section, option)
Remove the specified option from the specified section. If the section does not exist, raise
NoSectionError. If the option existed to be removed, return True; otherwise return False. New in
version 1.6.

remove_section (section)
Remove the specified section from the configuration. If the section in fact existed, return True. Otherwise
return False.

optionxform (option)
Transforms the option name option as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version of
option; subclasses may override this or client code can set an attribute of this name on instances to affect
this behavior. Setting this to str (), for example, would make option names case sensitive.

9.2.2 ConfigParser Objects

The ConfigParser class extends some methods of the RawConfigParser interface, adding some optional
arguments.

get (section, option[, raw[, vars]])
Get an option value for the named section. All the ‘%’ interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the options vars provided, unless the raw argument is
true.

items (section[, raw[, vars]])
Return a list of (name, value) pairs for each option in the given section. Optional arguments have the
same meaning as for the get () method. New in version 2.3.

298 Chapter 9. File Formats

9.2.3 SafeConfigParser Objects

The SafeConfigParser class implements the same extended interface as ConfigParser, with the follow-
ing addition:

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError.
value must be a string (st r or unicode); if not, TypeError is raised. New in version 2.4.

9.3 robotparser — Parser for robots.txt

This module provides a single class, RobotFileParser, which answers questions about whether or not a
particular user agent can fetch a URL on the Web site that published the ‘robots.txt’ file. For more details on the
structure of ‘robots.txt’ files, see http:/www.robotstxt.org/wc/norobots.html.

class RobotFileParser ()
This class provides a set of methods to read, parse and answer questions about a single ‘robots.ixt’ file.

set_url (url)
Sets the URL referring to a ‘robots.txt’ file.

read ()
Reads the ‘robots.txt” URL and feeds it to the parser.

parse (lines)
Parses the lines argument.

can_fetch (useragent, url)
Returns True if the useragent is allowed to fetch the url according to the rules contained in the parsed
‘robots.txt’ file.

mtime ()
Returns the time the robots. txt file was last fetched. This is useful for long-running web spiders
that need to check for new robots. txt files periodically.

modified()
Sets the time the robots. txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser

>>> rp = robotparser.RobotFileParser ()

>>> rp.set_url ("http://www.musi-cal.com/robots.txt")

>>> rp.read()

>>> rp.can_fetch("+«", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False

>>> rp.can_fetch ("+", "http://www.musi-cal.com/")

True

9.4 netrc — netrc file processing

New in version 1.5.2.

The netrc class parses and encapsulates the netrc file format used by the UNIX ftp program and other FTP
clients.

class netrc ([ﬁle])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s home directory will
be read. Parse errors will raise Net rcParseError with diagnostic information including the file name,
line number, and terminating token.

9.3. robotparser — Parser for robots.txt 299

http://www.robotstxt.org/wc/norobots.html

exception NetrcParseError
Exception raised by the net rc class when syntactical errors are encountered in source text. Instances of
this exception provide three interesting attributes: msg is a textual explanation of the error, £ilename is
the name of the source file, and 1ineno gives the line number on which the error was found.

9.4.1 netrc Objects

A netrc instance has the following methods:

authenticators (host)
Return a 3-tuple (login, account, password) of authenticators for host. If the netrc file did not contain
an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor
default entry is available, return None.

__repr_ ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances of net rc have public instance variables:

hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any, is
represented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

Note: Passwords are limited to a subset of the ASCII character set. Versions of this module prior to 2.3 were ex-
tremely limited. Starting with 2.3, all ASCII punctuation is allowed in passwords. However, note that whitespace
and non-printable characters are not allowed in passwords. This is a limitation of the way the .netrc file is parsed
and may be removed in the future.

9.5 xdrlib — Encode and decode XDR data

The xdrlib module supports the External Data Representation Standard as described in RFC 1014, written by
Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for
unpacking from XDR representation. There are also two exception classes.

class Packer ()
Packer is the class for packing data into XDR representation. The Packer class is instantiated with no
arguments.

class Unpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input
buffer is given as data.

See Also:

RFC 1014, “XDR: External Data Representation Standard”
This RFC defined the encoding of data which was XDR at the time this module was originally written. It
has apparently been obsoleted by RFC 1832.

RFC 1832, “XDR: External Data Representation Standard”
Newer RFC that provides a revised definition of XDR.

9.5.1 Packer Objects

Packer instances have the following methods:

300 Chapter 9. File Formats

get_buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack_type ()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported: pack_uint (), pack_int (), pack_enum (), pack_bool (), pack_uhyper (), and
pack_hyper ().

pack_float (value)
Packs the single-precision floating point number value.

pack_double (value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

pack_fstring (n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer. The string
is padded with null bytes if necessary to guaranteed 4 byte alignment.

pack_fopaque (n, data)
Packs a fixed length opaque data stream, similarly to pack_fstring().

pack_string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer, then the
string data is packed with pack_fstring().

pack_opaque (data)
Packs a variable length opaque data string, similarly to pack_string ().

pack_bytes (bytes)
Packs a variable length byte stream, similarly to pack_string ().

The following methods support packing arrays and lists:

pack_list (list, pack_item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is
not available until the entire list has been walked. For each item in the list, an unsigned integer 1 is packed
first, followed by the data value from the list. pack_item is the function that is called to pack the individual
item. At the end of the list, an unsigned integer O is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

pack_farray (n, array, pack_item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into the
buffer, but a ValueError exception is raised if 1en (array) is not equal to n. As above, pack_item is the
function used to pack each element.

pack_array (list, pack_item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned
integer, then each element is packed as in pack_farray () above.

9.5.2 Unpacker Objects

The Unpacker class offers the following methods:

reset (data)
Resets the string buffer with the given data.

9.5. xdrlib — Encode and decode XDR data 301

get_position ()
Returns the current unpack position in the data buffer.

set_position (position)
Sets the data buffer unpack position to position. You should be careful about using get_position ()
and set_position ().

get_buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_fype (), and take no arguments. They return the unpacked object.

unpack_float ()
Unpacks a single-precision floating point number.

unpack_double ()
Unpacks a double-precision floating point number, similarly to unpack_float ().

In addition, the following methods unpack strings, bytes, and opaque data:

unpack_fstring (n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null bytes
to guaranteed 4 byte alignment is assumed.

unpack_fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack_fstring ().

unpack_string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned
integer, then the string data is unpacked with unpack_fstring ().

unpack_opaque ()
Unpacks and returns a variable length opaque data string, similarly to unpack_string ().

unpack_bytes ()
Unpacks and returns a variable length byte stream, similarly to unpack_string().

The following methods support unpacking arrays and lists:

unpack_1list (unpack_item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first
unpacking an unsigned integer flag. If the flag is 1, then the item is unpacked and appended to the list. A
flag of 0 indicates the end of the list. unpack_item is the function that is called to unpack the items.

unpack_farray (n, unpack_item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. 7 is number of list elements to
expect in the buffer. As above, unpack_item is the function used to unpack each element.

unpack_array (unpack_item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is unpacked as
an unsigned integer, then each element is unpacked as in unpack_farray () above.

9.5.3 Exceptions

Exceptions in this module are coded as class instances:

exception Error
The base exception class. Error has a single public data member msg containing the description of the
error.

exception ConversionError
Class derived from Error. Contains no additional instance variables.

302 Chapter 9. File Formats

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:
p.pack_double (8.01)
except xdrlib.ConversionError, instance:
print ’'packing the double failed:’, instance.msg

9.5. xdrlib — Encode and decode XDR data 303

304

CHAPTER
TEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available
at the discretion of the installation. Here’s an overview:

hashlib Secure hash and message digest algorithms.

hmac Keyed-Hashing for Message Authentication (HMAC) implementation for Python.
md5 RSA’s MDS5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.

Hardcore cypherpunks will probably find the cryptographic modules written by A.M. Kuchling of further interest;
the package contains modules for various encryption algorithms, most notably AES. These modules are not dis-
tributed with Python but available separately. See the URL http://www.amk.ca/python/code/crypto.html for more
information.

10.1 hashlib — Secure hashes and message digests

New in version 2.5.

This module implements a common interface to many different secure hash and message digest algorithms. In-
cluded are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHAS512 (defined in FIPS
180-2) as well as RSA’s MDS5 algorithm (defined in Internet RFC 1321). The terms secure hash and message
digest are interchangeable. Older algorithms were called message digests. The modern term is secure hash.

Warning: Some algorithms have known hash collision weaknesses, see the FAQ at the end.

There is one constructor method named for each type of hash. All return a hash object with the same simple
interface. For example: use shal () to create a SHA1 hash object. You can now feed this object with arbitrary
strings using the update () method. At any point you can ask it for the digest of the concatenation of the strings
fed to it so far using the digest () or hexdigest () methods.

Constructors for hash algorithms that are always present in this module are md5 (), shal (), sha224 (),
sha256 (), sha384 (), and sha512 (). Additional algorithms may also be available depending upon the
OpenSSL library that Python uses on your platform.

For example, to obtain the digest of the string ' Nobody inspects the spammish repetition’:

>>> import hashlib

>>> m = hashlib.mdb5 ()

>>> m.update ("Nobody inspects")

>>> m.update (" the spammish repetition")

>>> m.digest ()
"\xbbd\x9c\x83\xdd\xle\xa5\xc9\xdI\xde\xcI\xal\x8d\xf0\xff\xe9’

More condensed:

305

http://www.amk.ca/python/code/crypto.html

>>> hashlib.sha224 ("Nobody inspects the spammish repetition") .hexdigest ()
"a4337bcd5a8£c544c03£52dc550cd6ele87021bc896588bd79e901e2’

A generic new () constructor that takes the string name of the desired algorithm as its first parameter also exists
to allow access to the above listed hashes as well as any other algorithms that your OpenSSL library may offer.
The named constructors are much faster than new () and should be preferred.

Using new () with an algorithm provided by OpenSSL.:

>>> h = hashlib.new ('’ ripemdl1l60’)

>>> h.update ("Nobody inspects the spammish repetition")
>>> h.hexdigest ()
"ccd4abcelb3df48aec5d22d1£16b894a0b89%4eccc’

The following values are provided as constant attributes of the hash objects returned by the constructors:

digest_size
The size of the resulting digest in bytes.

A hash object has the following methods:

update (arg)
Update the hash object with the string arg. Repeated calls are equivalent to a single call with the concate-
nation of all the arguments: m.update (a); m.update (b) is equivalent to m.update (a+b).

digest ()
Return the digest of the strings passed to the update () method so far. This is a string of digest_size
bytes which may contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest () except the digest is returned as a string of double length, containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of strings

that share a common initial substring.
See Also:

Module hmac (section 10.2):
A module to generate message authentication codes using hashes.

Module base64 (section 7.11):
Another way to encode binary hashes for non-binary environments.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
The FIPS 180-2 publication on Secure Hash Algorithms.

http://www.cryptography.com/cnews/hash.html
Hash Collision FAQ with information on which algorithms have known issues and what that means regard-
ing their use.

10.2 hmac — Keyed-Hashing for Message Authentication

New in version 2.2.
This module implements the HMAC algorithm as described by RFC 2104.

new (key [msg [digestmod]])
Return a new hmac object. If msg is present, the method call update (msg) is made. digestmod is the
digest constructor or module for the HMAC object to use. It defaults to the hashlib.md5 constructor.

306 Chapter 10. Cryptographic Services

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.cryptography.com/cnews/hash.html

Note: The md5 hash has known weaknesses but remains the default for backwards compatibility. Choose a
better one for your application.

An HMAC object has the following methods:

update (msg)
Update the hmac object with the string msg. Repeated calls are equivalent to a single call with the concate-
nation of all the arguments: m.update (a) ; m.update (b) isequivalentto m.update (a + b).

digest ()
Return the digest of the strings passed to the update () method so far. This string will be the same length
as the digest_size of the digest given to the constructor. It may contain non-ASCII characters, including NUL
bytes.

hexdigest ()
Like digest () except the digest is returned as a string twice the length containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of strings

that share a common initial substring.
See Also:

Module hashlib (section 10.1):
The python module providing secure hash functions.

10.3 md5 — MDS5 message digest algorithm

Deprecated since release 2.5. Use the hash1ib module instead.

This module implements the interface to RSA’s MDS5 message digest algorithm (see also Internet RFC 1321). Its
use is quite straightforward: use new () to create an mdS object. You can now feed this object with arbitrary
strings using the update () method, and at any point you can ask it for the digest (a strong kind of 128-bit
checksum, a.k.a. “fingerprint”) of the concatenation of the strings fed to it so far using the digest () method.

For example, to obtain the digest of the string ' Nobody inspects the spammish repetition’:

>>> import mdb5

>>> m = md5.new()

>>> m.update ("Nobody inspects")

>>> m.update (" the spammish repetition")

>>> m.digest ()
"\xbbd\x9c\x83\xdd\xle\xa5\xc9\xd9\xde\xc9\xal\x8d\xf0\xff\xe9’

More condensed:

>>> md5.new ("Nobody inspects the spammish repetition") .digest ()
"\xbbd\x9c\x83\xdd\xle\xa5\xc9\xd9\xde\xc9\xal\x8d\xfO\xff\xe9’

The following values are provided as constants in the module and as attributes of the mdS objects returned by
new () :

digest_size
The size of the resulting digest in bytes. This is always 16.

The md5 module provides the following functions:

new ([arg])
Return a new md5 object. If arg is present, the method call update (arg) is made.

10.3. md5 — MD5 message digest algorithm 307

md>5 ([arg])
For backward compatibility reasons, this is an alternative name for the new () function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the concatena-
tion of all the arguments: m.update (a); m.update (b) isequivalent to m.update (a+b).

digest ()
Return the digest of the strings passed to the update () method so far. This is a 16-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest () except the digest is returned as a string of length 32, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings

that share a common initial substring.
See Also:

Module sha (section 10.4):
Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered a more
secure hash.

10.4 sha — SHA-1 message digest algorithm

Deprecated since release 2.5. Use the hash1ib module instead.

This module implements the interface to NIST’s secure hash algorithm, known as SHA-1. SHA-1 is an improved
version of the original SHA hash algorithm. It is used in the same way as the md5 module: use new () to create
an sha object, then feed this object with arbitrary strings using the update () method, and at any point you can
ask it for the digest of the concatenation of the strings fed to it so far. SHA-1 digests are 160 bits instead of MD5’s
128 bits.

new ([string])
Return a new sha object. If string is present, the method call update (string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned by
new () :

blocksize
Size of the blocks fed into the hash function; this is always 1. This size is used to allow an arbitrary string
to be hashed.

digest_size
The size of the resulting digest in bytes. This is always 20.

An sha object has the same methods as md5 objects:

update (arg)
Update the sha object with the string arg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update (a) ; m.update (b) isequivalenttom.update (a+b).

digest ()
Return the digest of the strings passed to the update () method so far. This is a 20-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest () except the digest is returned as a string of length 40, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy ()

308 Chapter 10. Cryptographic Services

Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Secure Hash Standard
(http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf)

The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-2: Secure Hash Standard, pub-
lished in August 2002.

Cryptographic Toolkit (Secure Hashing)
(http://csrc.nist.gov/encryption/tkhash.html)
Links from NIST to various information on secure hashing.

10.4. sha — SHA-1 message digest algorithm 309

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/encryption/tkhash.html

310

CHAPTER
ELEVEN

File and Directory Access

The modules described in this chapter deal with disk files and directories. For example, there are modules for
reading the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of
modules in this chapter is:

os.path Common pathname manipulations.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
stat Utilities for interpreting the results of os.stat (), o0s.lstat () and os.fstat ().
statvfs Constants for interpreting the result of os.statvfs ().

filecmp Compare files efficiently.

tempfile Generate temporary files and directories.

glob UNIX shell style pathname pattern expansion.

fnmatch UNIX shell style filename pattern matching.

linecache This module provides random access to individual lines from text files.

shutil High-level file operations, including copying.

dircache Return directory listing, with cache mechanism.
Also see section 3.9 for a description of Python’s built-in file objects.
See Also:

Module os (section 14.1):
Operating system interfaces, including functions to work with files at a lower level than the built-in file
object.

11.1 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathnames. splitunc () and
ismount () do handle them correctly.

abspath (path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent to
normpath (join (os.getcwd (), path)). New in version 1.5.2.

basename (path)
Return the base name of pathname path. This is the second half of the pair returned by split (path).
Note that the result of this function is different from the UNIX basename program; where basename for
" /foo/bar/’ returns ' bar’, the basename () function returns an empty string (* *).

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in /list. If list is
empty, return the empty string (* 7). Note that this may return invalid paths because it works a character at
a time.

dirname (path)
Return the directory name of pathname path. This is the first half of the pair returned by split (path) .

311

exists (path)
Return True if path refers to an existing path. Returns False for broken symbolic links. On some
platforms, this function may return False if permission is not granted to execute os.stat () on the
requested file, even if the path physically exists.

lexists (path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists () on platforms lacking os.1lstat (). New in version 2.4.

expanduser (path)
On UNIX, return the argument with an initial component of ‘™’ or ‘~user’ replaced by that user’s home
directory. An initial ‘~’ is replaced by the environment variable HOME if it is set; otherwise the current
user’s home directory is looked up in the password directory through the built-in module pwd. An initial
‘“user’ is looked up directly in the password directory.

On Windows, only ‘™’ is supported; it is replaced by the environment variable HOME or by a combination
of HOMEDRIVE and HOMEPATH.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or °$ {name}’
are replaced by the value of environment variable name. Malformed variable names and references to non-
existing variables are left unchanged.

getatime (path)
Return the time of last access of path. The return value is a number giving the number of seconds since the
epoch (see the t ime module). Raise os . error if the file does not exist or is inaccessible. New in version
1.5.2. Changed in version 2.3: If os.stat_float_times () returns True, the result is a floating point
number.

getmtime (path)
Return the time of last modification of path. The return value is a number giving the number of seconds
since the epoch (see the t ime module). Raise os . error if the file does not exist or is inaccessible. New
in version 1.5.2. Changed in version 2.3: If os.stat_float_times () returns True, the result is a
floating point number.

getctime (path)
Return the system’s ctime which, on some systems (like UNIX) is the time of the last change, and, on others
(like Windows), is the creation time for path. The return value is a number giving the number of seconds
since the epoch (see the t ime module). Raise os.error if the file does not exist or is inaccessible. New
in version 2.3.

getsize (path)
Return the size, in bytes, of path. Raise os.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
Return True if path is an absolute pathname (begins with a slash).

isfile (path)
Return True if path is an existing regular file. This follows symbolic links, so both islink () and
isfile () can be true for the same path.

isdir (path)
Return True if path is an existing directory. This follows symbolic links, so both islink () and
isdir () can be true for the same path.

islink (path)
Return True if path refers to a directory entry that is a symbolic link. Always False if symbolic links are
not supported.

ismount (path)
Return True if pathname path is a mount point: a point in a file system where a different file system has
been mounted. The function checks whether path’s parent, ‘path/..’, is on a different device than path, or
whether ‘path/..” and path point to the same i-node on the same device — this should detect mount points

312 Chapter 11. File and Directory Access

for all UNI1X and POSIX variants.

join (pathl [path2 []])
Join one or more path components intelligently. If any component is an absolute path, all previous com-
ponents (on Windows, including the previous drive letter, if there was one) are thrown away, and joining
continues. The return value is the concatenation of pathl, and optionally path2, etc., with exactly one direc-
tory separator (os . sep) inserted between components, unless path2 is empty. Note that on Windows, since
there is a current directory for each drive, os.path. join ("c:", "foo") represents a path relative to
the current directory on drive ‘C:” (‘c:foo’), not ‘c:\\foo’.

normcase (path)
Normalize the case of a pathname. On UNIX, this returns the path unchanged; on case-insensitive filesys-
tems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references so that A/ /B, A/ . /B
and A/foo/../B all become A/B. It does not normalize the case (use normcase () for that). On Win-
dows, it converts forward slashes to backward slashes. It should be understood that this may change the
meaning of the path if it contains symbolic links!

realpath (path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path
(if they are supported by the operating system). New in version 2.2.

samefile (pathl, path2)
Return True if both pathname arguments refer to the same file or directory (as indicated by device number
and i-node number). Raise an exception if a os.stat () call on either pathname fails. Availability:
Macintosh, UNIX.

sameopenfile (fpl, fp2)
Return True if the file descriptors fpI and fp2 refer to the same file. Availability: Macintosh, UNIX.

samestat (statl, stat2)
Return True if the stat tuples stat! and stat2 refer to the same file. These structures may have been
returned by £stat (), 1stat (), or stat (). This function implements the underlying comparison used
by samefile () and sameopenfile (). Availability: Macintosh, UNIX.

split (path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is
everything leading up to that. The fail part will never contain a slash; if path ends in a slash, tail will be
empty. If there is no slash in path, head will be empty. If path is empty, both head and tail are empty.
Trailing slashes are stripped from head unless it is the root (one or more slashes only). In nearly all cases,
join (head, tail) equals path (the only exception being when there were multiple slashes separating head
from tail).

splitdrive (path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the empty
string. On systems which do not use drive specifications, drive will always be the empty string. In all cases,
drive + tail will be the same as path. New in version 1.3.

splitext (path)
Split the pathname path into a pair (root, ext) suchthatroot + ext == path, and ext is empty or begins
with a period and contains at most one period.

splitunc (path)
Split the pathname path into a pair (unc, rest) so that unc is the UNC mount point (such as
r’\\host\mount’), if present, and rest the rest of the path (such as r’ \path\file.ext’). For
paths containing drive letters, unc will always be the empty string. Availability: Windows.

walk (path, visit, arg)
Calls the function visit with arguments (arg, dirname, names) for each directory in the directory tree
rooted at path (including path itself, if it is a directory). The argument dirname specifies the visited direc-
tory, the argument names lists the files in the directory (gotten from os.listdir (dirname)). The visit
function may modify names to influence the set of directories visited below dirname, e.g. to avoid visiting

11.1. os.path — Common pathname manipulations 313

certain parts of the tree. (The object referred to by names must be modified in place, using del or slice
assignment.)

Note: Symbolic links to directories are not treated as subdirectories, and that walk () therefore will
not visit them. To visit linked directories you must identify them with os.path.islink (file) and
os.path.isdir (file), and invoke walk () as necessary.

Note: The newer os.walk () generator supplies similar functionality and can be easier to use.
supports_unicode_filenames

True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system),
and if os.listdir () returns Unicode strings for a Unicode argument. New in version 2.3.

11.2 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input () :
process (line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is ’ -’ , it is also replaced by sys . stdin. To specify an alternative list of filenames, pass it as the
first argument to input (). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call
to input () or FileInput (). If an I/O error occurs during opening or reading a file, IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for inter-
active use, or if it has been explicitly reset (e.g. using sys.stdin.seek (0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable
at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

You can control how files are opened by providing an opening hook via the openhook parameter to input ()
or FileInput (). The hook must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. Two useful hooks are already provided by this module.

The following function is the primary interface of this module:

input ([ﬁles[, inplace[, backup[, mode [, openhook]]]]])
Create an instance of the FileInput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be passed
along to the constructor of the FileInput class.

Changed in version 2.5: Added the mode and openhook parameters.

The following functions use the global state created by input () ; if there is no active state, Runt imeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileno ()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and
between files), returns —1. New in version 2.5.

lineno()
Return the cumulative line number of the line that has just been read. Before the first line has been read,

314 Chapter 11. File and Directory Access

returns 0. After the last line of the last file has been read, returns the line number of that line.

filelineno ()
Return the line number in the current file. Before the first line has been read, returns 0. After the last line
of the last file has been read, returns the line number of that line within the file.

isfirstline ()
Returns true if the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read from sys. stdin, otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not
read from the file will not count towards the cumulative line count. The filename is not changed until after
the first line of the next file has been read. Before the first line has been read, this function has no effect;
it cannot be used to skip the first file. After the last line of the last file has been read, this function has no
effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class FileInput ([ﬁles[, inplace[, backup[, mode [, openhook]]]]])
Class FileInput is the implementation; its methods filename (), fileno (), lineno (),
fileline (), isfirstline(), isstdin (), nextfile () and close () correspond to the func-
tions of the same name in the module. In addition it has a readline () method which returns the next
input line, and a __getitem__ () method which implements the sequence behavior. The sequence must
be accessed in strictly sequential order; random access and readline () cannot be mixed.

With mode you can specify which file mode will be passed to open (). It mustbe oneof " r’, ' rU’, ' U’
and ' rb’.

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together.

Changed in version 2.5: Added the mode and openhook parameters.

Optional in-place filtering: if the keyword argument inplace=1 is passed to input () or to the FileInput
constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of the
same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter
that rewrites its input file in place. If the keyword argument backup=' .<some extension>’ is also given,
it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
" .bak’ and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesyst