Python Library Reference

Release 2.2

Guido van Rossum

Fred L. Drake, Jr., editor

December 21, 2001

PythonLabs
Email: python-docs@python.org



Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.






CONTENTS

1 Introduction 1

2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in FUNCtioNS . . . . . . . L e e 3
2.2 BUIlt-INTYPES . . . o e e e 12
2.3  BUilt-in EXCEPLIONS . . . . . . e e e e e e 27

3 Python Runtime Services 31
3.1 sys — System-specific parameters and functions. . . . . . . ... ... o oL 31
3.2 gc — Garbage Collectorinterface. . . . . . . . . . . . .. e 36
3.3 weakref —Weakreferences. . . . . . . . e 38
3.4 fpectl —Floating pointexceptioncontrol . . . . . . . .. .. ... ... ... .. . ... 41
3.5 atexit —Exithandlers. . . . . . . . ... 43
3.6 types —Namesforallbuilt-intypes. . . . . . .. .. 44
3.7 UserDict — Class wrapper for dictionaryobjects . . . . .. ... .. .. ... ... ...... 45
3.8 UserList —Classwrapperforlistobjects . . . .. ... ... .. ... . ... . ... ..... 46
3.9 UserString — Class wrapper forstringobjects. . . . . ... .. ... ... ... ....... 46
3.10 operator — Standard operatorsasfunctions.. . . . ... ... ... .. 47
3.11 inspect —Inspectliveobjects. . . . . . . . ... 51
3.12 traceback — Printorretrieve a stacktraceback. . . . . . ... ... o oL 55
3.13 linecache —Randomaccesstotextlines. . . . . .. .. . . ... .. ... . ... ... ... 57
3.14 pickle — Python objectserialization . . . .. .. ... ... .. ... . ... . .. .. 57
3.15 cPickle — Afasterpickle . . . .. 66
3.16 copy _reg — Registempickle supportfunctions. . . . .. ... ... . oL 66
3.17 shelve — Python objectpersistence. . . . . . . . . . . 67
3.18 copy — Shallow and deep copy operations . . . . . . . . . . . . . . . . e 68
3.19 marshal — Internal Python object serialization. . . . . .. ... ... ... .. ......... 69
3.20 warnings —Warningcontrol. . . . . . ... 70
3.21 imp — Accessthémport internals. . . . . . . . .. 72
3.22 code — Interpreterbase classes . . . . . . . . . 75
3.23 codeop — Compile Pythoncode . . . . . . . . . . . . .. . .. e 77
3.24 pprint —Dataprettyprinter . . . . . . . .. e e e e e e e e e 78
3.25 repr — Alternaterepr() implementation. . . . . . .. ... o o 80
3.26 new — Creation of runtime internal objects. . . . . . . . . . . ... .. oo 82
3.27 site — Site-specific configurationhook . . . . . . . . . . ... L 82
3.28 user — User-specific configurationhook . . . . . .. . ... ... . oo 83
3.29 __builtin __ —Built-infunctions. . . . . . ... 84
3.30 __main __ — Top-level scriptenvironment. . . . . . . . .. . ... ... ... 84




4 String Services 85

4.1 string —Commonstringoperations . . . . . . .. .. e e e e 85
4.2 re —Regularexpression operations . . . . . . . ... 88
4.3 struct —Interpretstrings as packed binarydata . . . . ... ... ... L 97
4.4  difflib — Helpers forcomputingdeltas . . . . . .. ... ... . ... . .. .. .. .. 99
45 fpformat — Floating pointconversions. . . . . . . . . . . . e 106
4.6 Stringl0 — Read and write stringsasfiles. . . . ... ... ... ... .. ... ... ... .. 107
4.7 cStringlO  — Faster version oBtringlO . . . . .. 107
4.8 codecs — Codecregistryandbaseclasses. . . . . . ... . ... ..o 108
4.9 unicodedata —Unicode Database. . . . . . . . . . . .. . ... 112
Miscellaneous Services 115
5.1 pydoc — Documentation generator and online helpsystem. . . . . . . .. ... ... ... .. 115
5.2 doctest — Testdocstringsrepresentreality . . . . ... ... ... .. ... .. . 0. 116
5.3 unittest —Unittestingframework. . . . . . . . . . .. ... . ... e 123
5.4 math — Mathematical functions. . . . . . . . . .. . . 132
5.5 cmath — Mathematical functions for complexnumbers . . . . . . . ... ... ... ... ... 134
5.6 random — Generate pseudo-randomnumbers. . . . . . . .. 135
5.7 whrandom — Pseudo-random numbergenerator. . . . . . . . . . . . ... e 138
5.8 bisect — Array bisection algorithm . . . . . . . . . ... ... ... 139
5.9 array — Efficientarraysofnumericvalues. . ... . ... .. .. ... ... ... . ... ... 140
5.10 ConfigParser = — Configurationfileparser. . . . . . . . . . ... .. . . . . o L. 142
5.11 fileinput — Iterate over lines from multiple input streams . . . . . ... .. ... ... ... 145
5.12 xreadlines  — Efficientiterationoverafile. . . . . . . .. .. .. oo oo oL 146
5.13 calendar — General calendar-related functions. . . . . . . . .. ... ... ... ... ... 147
5.14 cmd— Support for line-oriented command interpretets. . . . . . . ... ... oL 148
5.15 shlex — Simple lexicalanalysis . . . . . . . . . . . . . e 150
Generic Operating System Services 153
6.1 o0s — Miscellaneous operating systeminterfaces. . . . . . . .. .. .. ... . ... ... ... 153
6.2 os.path — Common pathname manipulations. . . . . . ... ... ... ... .. ....... 166
6.3 dircache — Cacheddirectorylistings. . . . . . . . . . . . . .. 168
6.4 stat — Interpretingstat() results. . . . . .. L 169
6.5 statcache — Anoptimization ofos.stat() . .. ... .. ... .. ... .. ... . 170
6.6 statvfs — Constants used withs.statvfs() . . . . .. ... ... ... . . .o .. 171
6.7 fileemp — File and Directory Comparisons . . . . . . . . . v v i i i e e e 172
6.8 popen2 — Subprocesses with accessible l/Ostreams. . . . . . .. ... ... ... .. .... 173
6.9 time —Timeaccessand ConversSionS . . . . . . . . . . o v i it e 174
6.10 sched — Eventscheduler. . . . . . . . . e 178
6.11 mutex — Mutual exclusion support. . . . . . . . . . . e e 179
6.12 getpass — Portable passwordinput. . . . . . . . . ... 180
6.13 curses — Terminal handling for character-cell displays. . . . . . . ... ... ... ... ... 180
6.14 curses.textpad — Text input widget for curses programs . . . . . . . . . . ... 195
6.15 curses.wrapper  — Terminal handler for cursesprograms . . . . . . . .. ... ... .... 196
6.16 curses.ascii — Utilities for ASCll characters . . . . . . . . . . . . 197
6.17 curses.panel — A panelstack extensionforcurses.. . . ... ... ... ... ... ..., 199
6.18 getopt — Parser forcommand lineoptions. . . . . . . . . . ... ... o 200
6.19 tempfile = — Generate temporaryfilenames. . . . . ... ... ... ... ... . . oL 202
6.20 errno — Standard errnosystemsymbols. . . . . ... oL oL Lo Lo 202
6.21 glob — UNIx style pathname patternexpansion. . . . . . .. ... .. .. ... ... ..... 208
6.22 fnmatch — UNix filename patternmatching . . . . . . .. .. ... ... ... ... ...... 209
6.23 shutii —High-levelfile operations . . . . . . . . . . . . . .. ... 209
6.24 locale — Internationalizationservices . . . . . . . . . . . e 211
6.25 gettext — Multilingual internationalization services. . . . . . . . . .. .. ... ... ... .. 216




7

10

11

Optional Operating System Services 225
7.1 signal — Sethandlersforasynchronousevents. . . . .. .. .. .. ... . ... ... 225
7.2 socket — Low-level networkinginterface. . . . . .. . . ... oL 227
7.3 select — Waiting for I/O completion. . . . . . . . . . .. . 235
7.4 thread — Multiple threadsofcontrol. . . . . . . .. ... .. ... ... .. .. ... .. 236
7.5 threading — Higher-level threadinginterface. . . . . .. ... .. .. ... ... ....... 238
7.6 Queue —Asynchronizedqueueclass. . . . . . . . . ... ... e 245
7.7 mmap— Memory-mapped file support . . . .. ... 246
7.8 anydbm — Generic access to DBM-styledatabases . . . . . . ... ... ... L. 247
7.9 dumbdbm— Portable DBM implementation . . . . . . . .. .. .. o 248
7.10 dbhash — DBM-style interface to the BSD database libraty. . . . . .. ... ... ... .... 249
7.11 whichdb — Guess which DBM module created adatabase. . . . . . . ... ... .. ..... 250
7.12 bsddb — Interface to Berkeley DB library . . . . . . . . . . 250
7.13 zlib — Compression compatible withzip . . . . . . . . ... 252
7.14 gzip — Support forgzipfiles . . . . . . . L 254
7.15 zipfile — Workwith ZIP archives. . . . . . . . . . . . .. e 254
7.16 readline —GNUreadlineinterface. . . . . . . . . . . . . . e 258
7.17 rlcompleter =~ — Completion function for GNU readline. . . . . .. . ... ... ... ..... 259
Unix Specific Services 261
8.1 posix — The most common POSIXsystemcalls. . . . .. ... ... ... .. .. ....... 261
8.2 pwd—Thepassworddatabase. . . . . . . . . . . . . . ... 262
8.3 grp —Thegroupdatabase . . . . . . . . . . e 263
8.4 crypt —Functiontocheck MiX passwords. . . . . . . . . . ..o 264
8.5 dl —CallCfunctionsinsharedobjects . . . . . . .. ... ... .. .. ... .. ... ..., 264
8.6 dbm— Simple “database” interface. . . . . . . . .. ... . 265
8.7 gdbm— GNU'sreinterpretationofdbm. . . . . . ... ... ... ... 266
8.8 termios —POSIXstylettycontrol. . . . . . . . . . 267
8.9 TERMIOS— Constants used with thermios module . . . . . ... ... ... ... ...... 268
8.10 tty — Terminal controlfunctions. . . . . . . . . . . . . . .. .. 268
8.11 pty — Pseudo-terminal utilities . . . . . . . . . . . .. e 269
8.12 fentl — Thefentl() andioctl() systemcalls. . . . ... ... ... ... ... ... 269
8.13 pipes — Interfaceto shell pipelines . . . . . . . . . . . . 271
8.14 posixfile — File-like objects with locking support . . . . . . .. . ... .. oL 272
8.15 resource — Resource usage information. . . . . . .. .. ... L L e 274
8.16 nis — Interfaceto Sun’s NIS (YellowPages) . . . . . . . . . . . . . .. . . .. . .. .. ..., 276
8.17 syslog — UNix sysloglibraryroutines . . . . . . . . . . . . .. . ... . e 276
8.18 commands— Utilities for runningcommands . . . . . . . . .. 277
The Python Debugger 279
9.1 DebuggerCommands . . . . . . . .. e e 280
9.2 How ItWOrks . . . . . e 282
The Python Profiler 285
10.1 Introductiontothe profiler . . . . . . . . . . .. 285
10.2 How Is This Profiler Different From The Old Profiler?. . . . . . . . . .. ... ... ... .... 285
10.3 InstantUsers Manual. . . . . . . . . . e e 286
10.4 What Is Deterministic Profiling?. . . . . . . . . . . . . . .. e 288
10.5 Reference Manual . . . . . . . . . . e 288
10.6 LimitationS. . . . o o o v e e e 291
10.7 Calibration. . . . . . . . e 291
10.8 Extensions — Deriving Better Profilers. . . . . . . . . . ... 292
Internet Protocols and Support 293
11.1 webbrowser — Convenient Web-browsercontroller. . . . . .. .. .. ... ... ....... 293




12

13

11.2 cgi — Common Gateway Interface support.. . . . . . . . . . . . . e 295

11.3 cgitb — Traceback managerforCGlscripts. . . . . . . . . . . .. . . ... . . . ... 302
11.4 urlib  — Open arbitrary resourcesby URL . . . . . . . . . ... o 303
11.5 urllib2  — extensible library foropeningURLS . . . . . . . . . .. ... .. ... 307
11.6 httplib  —HTTP protocolclient. . . . . . . . . . . . . . . e 313
11.7 ftplib —FTPprotocolclient. . . . . . . . . . . . e 316
11.8 gopherlib — Gopher protocolclient . . . . . . .. . . ... .. ... e 319
11.9 poplib —POP3protocolclient. . . . . . . . . . . . 319
11.10imaplib — IMAP4 protocol client . . . . . . . . . . . e 321
11.12nntplib  —NNTP protocolclient. . . . . . . . . . . 325
11.12smtplib  — SMTP protocol client. . . . . . . . . . . . . . e 328
11.13telnetlib —Telnetclient . . . . . . .. 331
11.14urlparse —Parse URLsintocomponents. . . . . . . . . . . o oo v i i 334
11.15SocketServer — A framework for network servers. . . . . .. ... L oL 335
11.16BaseHTTPServer —BasicHTTP server . . . . . . . . . . . it 337
11.17SimpleHTTPServer — Simple HTTP requesthandler . . . . . . .. ... ... ... ... .. 340
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler . . . . . . .. ... ... ... .... 340
11.19Cookie — HTTP state management. . . . . . . . . . . o 0 i i i i e e e e e 341
11.20xmlrpclib  — XML-RPCclientaccess . . . . . . . . . . i 345
11.21SimpleXMLRPCServer —Basic XML-RPCserver. . . . . . . . . ... ... 348
11.22asyncore — Asynchronous sockethandler. . . . . . . . .. ... .. .. ... ... ... ... 348
Internet Data Handling 353
12.1 formatter = — Generic output formatting . . . . . . . . ... Lo 353
12.2 email — Anemail and MIME handlingpackage . . . . . .. .. ... .. ... ......... 357
12.3 mailcap — Mailcap file handling.. . . . . . . . . . . . . . . . . e 375
12.4 mailbox — Read various mailboxformats . . . . . . ... .. ... ... o oo 375
12.5 mhlib — Accessto MH mailboxes . . . . . . . . . . . .. 377
12.6 mimetools — Tools for parsing MIME messages . . . . . . . . . . .. 379
12.7 mimetypes — Map filenamesto MIME types. . . . . . . . . . . . . . . . . . 380
12.8 MimeWriter — Generic MIME filewriter . . . . . . . . . . ... 382
12.9 mimify — MIME processingof mailmessages. . . . . . . . . . . . . . e 383
12.10multifile — Support for files containing distinctparts. . . . . . . .. ... o oL 384
12.11rfc822 —Parse RFC 2822 mailheaders. . . . . . . . . . . . 386
12.12base64 — Encode and decode MIME base64 data. . . . . . . .. ... ... ... ....... 390
12.13binascii — Convert between binaryamdscil . . . . . . . . .. o 390
12.14binhex — Encode and decode binhex4files . . . . . . . . .. . ... .. . o oo 392
12.15quopri — Encode and decode MIME quoted-printabledata . . . . . ... ... .. ... ... 392
12.16uu — Encode and decode uuencodefiles . . . . . . ... 393
12.17xdrlib  —Encode and decode XDRdata. . . . . . . . . . . . .. 394
12.18netrc —netrcfile processing. . . . . . . . . L e e e 396
12.19robotparser — Parserforrobots.txt . . . . . . . . ... 397
Structured Markup Processing Tools 399
13.1 HTMLParser — Simple HTML and XHTML parser. . . . . . . . . . . v i v v v .. 399
13.2 sgmllib  — Simple SGML parser. . . . . . . . 0 e e e e 401
13.3 htmllib — AparserforHTMLdocuments . . . . . . . . . . . i i i i 403
13.4 htmlentitydefs — Definitions of HTML general entities . . . . . . ... ... ... .. ... 404
13.5 xml.parsers.expat — Fast XML parsingusingExpat . . . . ... ... ... oL 405
13.6 xml.dom — The Document Object Model APL. . . . . . . . . . . ... .. .. ... ... .... 411
13.7 xml.dom.minidom — Lightweight DOM implementation. . . . . ... ... ... ... .... 421
13.8 xml.dom.pulldom  — Support for building partial DOMtrees . . . . . . ... ... ... ... 425
13.9 xml.sax — Supportfor SAX2 parsers. . . . . . . o o 426
13.10xml.sax.handler — BaseclassesforSAXhandlers . . . . .. .. ... oo, 427




14

15

16

17

18

19

13.11xml.sax.saxutils — SAXUtilities . . . . . . e 431

13.12xml.sax.xmlreader — Interface for XML parsers. . . . . . . . . ... ..o 432
13.13xmllib  — A parserfor XML documents. . . . . . . . . . ... 436
Multimedia Services 441
14.1 audioop — Manipulateraw audiodata . . . . . . . .. ... 441
14.2 imageop — Manipulaterawimagedata. . . . . . . . . . . ..o 444
14.3 aifc — Read and write AIFFand AIFCfiles. . . . . . . . . . . . . o o 445
14.4 sunau — Read and write Sun AUfiles . . . . . . . . . 447
145 wave — Read and write WAV files. . . . . . . . . . e 449
14.6 chunk —Read IFFchunkeddata. . . . . . . . . . . .. . .. . . . 451
14.7 colorsys — Conversions between colorsystems . . . . . . . .. ... ... . ... 452
14.8 rghimg — Read and write “SGIRGB"files . . . . . . . . . .. . ... .. 453
14.9 imghdr — Determinethetypeofanimage . . . . . . .. . . .. . .. ... .. ... . ..... 454
14.10sndhdr — Determinetype of soundfile . . . . . . . . . .. ... . ... . .. o 454
Cryptographic Services 457
15.1 hmac — Keyed-Hashing for Message Authentication. . . . . . . .. .. ... ... .. ..... 457
15.2 md5— MD5 message digestalgorithm. . . . . . . . . . . ... ... L 458
15.3 sha — SHA message digestalgorithm. . . . . . . . . . .. .. ... .. .. . . . 459
15.4 mpz— GNU arbitrary magnitude integers . . . . . . . . . . . 459
15.5 rotor — Enigma-like encryption anddecryption . . . . . . . . . ... oo 461
Graphical User Interfaces with Tk 463
16.1 Tkinter — Pythoninterfaceto Tcl/TK. . . . . . . . . . . . . . . o 463
16.2 Tix —Extensionwidgetsfor TK. . . . . . . . . . 474
16.3 ScrolledText — Scrolled TextWidget. . . . . . . . . . . . . . e 479
16.4 turtle —TurtlegraphicsforTk . . . . . . . . . . . . e 479
16.5 Idle . . . . e 481
16.6 Other Graphical User Interface Packages . . . . . . . . . . . . . i o 485
Restricted Execution 487
17.1 rexec — Restricted execution framework . . . . . . . . ... L 488
17.2 Bastion — Restrictingaccesstoobjects . . . . . . . . . .. ... L Lo 490
Python Language Services 493
18.1 parser — Access Pythonparsetrees. . . . . . . . . . . . . . 493
18.2 symbol — Constants used with Python parsetrees . . . . . . ... .. ... ... ... .... 502
18.3 token — Constants used with Python parsetrees . . . . . . . . .. .. ... ... ... .... 503
18.4 keyword — Testing for Pythonkeywords . . . . . . .. .. . .. ... .. ... .. .. ..., 503
18.5 tokenize — Tokenizer for Pythonsource. . . . . . . . . . . . . . . . . . .. e 503
18.6 tabnanny — Detection of ambiguousindentation . . . .. .. ... ... ... .. ....... 504
18.7 pyclbr — Python class browser support . . . . . . . ... 505
18.8 py_compile — Compile Pythonsourcefiles. . . . . ... .. ... ... . ... .. ..... 505
18.9 compileall — Byte-compile Python libraries . . . . . . . ... ... ... .. ... .. ..., 506
18.10dis — Disassembler for Pythonbytecode. . . . . . . . . . . . ... ... . ... . ... ..., 506
18.11 distutils — Building and installing Python modules. . . . . .. ... ... ... ....... 513
Python compiler package 515
19.1 Thebasicinterface . . . . . . . . . L 515
19.2 LimitationS. . . . o o o o e e 516
19.3 Python Abstract Syntax. . . . . . . . . . . e e 516
19.4 Using Visitors to Walk ASTS . . . . . . . . o e 521
19.5 Bytecode Generation. . . . . . . . . e e e e e e e 522




20 SGI IRIX Specific Services 523
20.1 al —Audiofunctionsonthe SGI . . . . . . . . .. 523
20.2 AL —Constants used withthed module . . . . . . .. . ... ... ... ... . 525
20.3 cd — CD-ROM accesson SGISYStems . . . . . . . . . i it it e e 525
20.4 fl — FORMS library for graphical userinterfaces. . . . . . . .. .. .. ... ... .. ..... 529
20.5 FL — Constantsused withtife module . . . . . . . . . .. .. ... . 533
20.6 flp — Functions for loading stored FORMS designs. . . . . . . . . .. .. ... ... ..... 534
20.7 fm — Font Managefinterface. . . . . . . . . . e 534
20.8 gl — Graphics Libraryinterface . . . . . . . . . .. 535
20.9 DEVICE— Constantsused withthtgd module . . . . . . . ... ... .. ... ... ....... 537
20.10GL— Constants used withtld module . . . . . . . . . ... ... ... . ... . ... . ..., 537
20.11limgfile  — Support for SGlimglibfiles . . . . . . . . . . .. ... ... 537
20.12jpeg — Read andwrite JPEGfiles. . . . . . . . . 538

21 SunOS Specific Services 541
21.1 sunaudiodev — AccesstoSunaudiohardware. . . . . .. ... .. .. L 541
21.2 SUNAUDIODEW- Constants used witbunaudiodev . . . . . . .. .. .. ... ... ..... 542

22 MS Windows Specific Services 543
22.1 msvcert — Useful routines from the MS VC++runtime . . . . . . . . . . . ... 543
22.2 _winreg —WIiNdOWS regiStry 8CCESS . . . .+« v v v i i i e e e e e 544
22.3 winsound — Sound-playing interface for Windows. . . . . . . . .. ... ... . oL 549

A Undocumented Modules 551
Al Frameworks . . . . . . . e e 551
A.2 Miscellaneous useful utilities. . . . . . . . . . e 551
A.3 Platform specificmodules . . . . . . . ... e 551
A4 Multimedia. . . . . . 552
A5 Obsolete . . . . 552
A.6 SGl-specific Extension modules. . . . . . . . . 553

B Reporting Bugs 555

C History and License 557
C.1 Historyofthesoftware . . . . . . . . . . . . e 557
C.2 Terms and conditions for accessing or otherwise using Python . . . . . .. ... ... ..... 557

Module Index 561

Index 565

Vi



CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten ) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!







CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import  __( name[, globals[, Iocals[, fromlist]]] )
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_owmport __()

function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,
globals(), locals(), [I) ;  the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) . Note that even though

locals() and['eggs’] are passed in as arguments, theamport __() function does not set the local
variable nameaggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-empigomlistargument is given, the
module named bypameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find #ggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.




import string

def my_import(name):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, argi, keywordﬁ)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a sequence. Timectionis called withargsas the argument list; the number of
arguments is the the length of the tuple. If the optidmglwordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the the argument list. Calling
apply() is different from just callingunctior( args) , since in that case there is always exactly one argument.
The use ofpply() is equivalent tdunction(* args ** keyword}.

buffer ( objec{, offse[, size] ])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer For examplechr(97)  returns the string
'a’ . Thisis the inverse obrd() . The argument must be in the range [0..255], inclusiedueError  will
be raised ifi is outside that range.

cmp( X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile ( string, filename, kinEi flags[, donLinherit] ])
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable
value if it wasn’t read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can bexec’ if string consists of a sequence of statemetagal’  if it consists
of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else ame will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character'fn’ ), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ | use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with

4 Chapter 2. Built-in Functions, Types, and Exceptions



those future statements that are in effect in the code that is calling compile. flagsargument is given and
dont_inheritis not (or is zero) then the future statements specified bfldgsargument are used in addition to
those that would be used anywaydbBnt_inherit is a non-zero integer then tflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmapiler _flag attribute on the_Feature
instance in the__future __ module.

complex (real[, imag])
Create a complex number with the valgal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat()

delattr  ( object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(  x, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequende
Return a new dictionary initialized from the optional argument. If an argument is not specified, return a new
empty dictionary. If the argument is a mapping object, return a dictionary mapping the same keys to the same
values as does the mapping object. Else the argument must be a sequence, a container that supports iteration,
or an iterator object. The elements of the argument must each also be of one of those kinds, and each must in
turn contain exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s
value. If a given key is seen more than once, the last value associated with it is retained in the new dictionary.
For example, these all return a dictionary equdlito 2, 2: 3}

edict{l: 2, 2. 3})

edict({l: 2, 2. 3}.items())
edict({1: 2, 2: 3}.iteritems())
edict(zip((1, 2), (2, 3))
edict([[2, 3], [1, 2]])
edict([(i-1, i) for i in (2, 3)])

dir ( [object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attribute for that object. This information is gleaned from the objectiict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. For example, for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, 'stderr’, ’stdin’, 'stdout’]

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(ig, a %
b) , whereq is usuallymath.floor( a / b) but may be 1 less than that. Inany casé b + a % bis
very close ta, if a % bis non-zero it has the same signtaend0 <= abs( a % b) < abs( b).

2.1. Built-in Functions 5



eval (expressio[n gIobaIs[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthtealsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatadit®() ). In this
case pass a code object instead of a string. The code object must have been compiledgyas$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile  ( file[, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import  statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to trgdobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment wheerecfile() is called. The return value done.

Warning: The defaultocalsact as described for functidacals() below: modifications to the defauticals
dictionary should not be attempted. Pass an expbicials dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamd, modd, bufsizd )
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 'sfopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,’'w+’ and’a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&r' . When opening a binary file, you should appélnd to themodevalue

for improved portability. (It's useful even on systems which don'’t treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is u$ed.

Thefile() constructor is new in Python 2.2. The previous spellimygegn() , is retained for compatibility,
and is an alias fofile()

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don'tsetveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

6 Chapter 2. Built-in Functions, Types, and Exceptions



filter  ( function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratoridf is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementésbthat
are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensitaigaatof( X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr  ( object, namE, default])
Return the value of the named attributedaliject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgiattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr ( object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0if not. (This is implemented by callingetattr(  object namg and seeing whether it raises an exception
or not.)

hash ( objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ( [object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

hex ( x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal. For example, on a 32-bit machex;1) yields Oxffffffff’
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®aprflowError exception.

id ( objec)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thégpme
value. (Implementation note: this is the address of the object.)

input ( [prompt])
Equivalent toeval(raw _input( prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®irgaxError  will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

2.1. Built-in Functions 7



If the readline  module was loaded, thenput()  will use it to provide elaborate line editing and history
features.

Consider using theaw _input()  function for general input from users.

int (x[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi( x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36], or zero. Hadix is zero, the proper radix is guessed based on the contents of string; the
interpretation is the same as for integer literalsatfix is specified andt is not a stringTypeError is raised.
Otherwise, the argument may be a plain or long integer or a floating point number. Conversion of floating point
numbers to integers truncates (towards zero).

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(never get garbage collected).

isinstance  ( object, classinfp
Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or a object of the given type, the function always returns falsgad$infois neither a class object
nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedxldksinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass  ( classl, classp
Return true iftlasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError  exception is raised.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with
integer arguments starting @). If it does not support either of those protocolypeError is raised. If
the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ( [sequenc})
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objeetqufncés already a list, a copy is made
and returned, similar teequende] . Forinstanceljst(’abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returng[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAdning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (x[, radix])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number

8 Chapter 2. Built-in Functions, Types, and Exceptions



of arbitrary size, possibly embedded in whitespace; this behaves identisiinmp.atol( X) . Theradix
argument is interpreted in the same way asifitf) , and may only be given whexis a string. Otherwise,

the argument may be a plain or long integer or a floating point number, and a long integer with the same value
is returned. Conversion of floating point numbers to integers truncates (towards zero).

map( function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniédt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Thg arguments may be any kind of sequence; the result is
always a list.

max( s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min ( s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbicté;1)  yields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®©aerflowError exception.

open ( filename{, mode{, bufsize]])
An alias for thefile() function above.

ord (¢
Return theascii value of a string of one character or a Unicode character. &@df’a’) returns the integer
97, ord(u’
u2020’) returns8224. This is the inverse ofhr() for strings and ofinichr()  for Unicode characters.
pow( x, Y, z])

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than

pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For examplH)**2 returns100, but 10**-2 returns0.01 . (This last feature

was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydnust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupemf) returned platform-dependent results
depending on floating-point rounding accidents.)

range ( [start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2
* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

2.1. Built-in Functions 9



>>> range(10)

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ( [prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &diresm read,
EOFError israised. Example:

>>> s = raw_input(’--> )

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline  module was loaded, thelaw _input()  will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])

Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload ( modulg

Re-parse and re-initialize an already importeddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tlmoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor

__main __and__builtin  __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usirgm ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefamthe

10

Chapter 2. Built-in Functions, Types, and Exceptions



statement, another is to useport and qualified namesi{odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr ( objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for exampled(0.5) is1.0 and
round(-0.5) is-1.0 ).

setattr (. object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr( %, ' foobar, 123) is equivalent tox. foobar = 123.

slice  ( [start,] stop{, step])
Return a slice object representing the set of indices specifiedriye( start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attrithaies , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For exampla[start:stop:step] "or ‘a[start:stop, i] '

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr( objec) is thatstr( objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple ( [sequenc})
Return a tuple whose items are the same and in the same oslEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objeetfuencés already a tuple, it is returned unchanged.
For instancetuple('abc’) returns returnga’, 'b’, 'c’) andtuple([1, 2, 3)) returns(l,
2, 3) .

type (objec)
Return the type of anbject The return value is a type object. The standard motjygdes defines names for
all built-in types. For instance:

>>> import types
>>> if type(X) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgmrexamplepunichr(97)
returns the string'a’ . This is the inverse oérd() for Unicode strings. The argument must be in the range
[0..65535], inclusiveValueError s raised otherwise. New in version 2.0.

unicode (objec{, encodini, errors]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are given,unicode()  will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding. Error handling is done accordingteors; this specifies the treatment of characters which are invalid

2.1. Built-in Functions 11



in the input encoding. lerrorsis ’strict’ (the default), a/alueError s raised on errors, while a value

of 'ignore’ causes errors to be silently ignored, and a valu&egflace’ causes the official Unicode
replacement charactéd+FFFDQ to be used to replace input characters which cannot be decoded. See also the
codecs module.

If no optional parameters are givempicode()  will mimic the behaviour ofstr()  except that it returns
Unicode strings instead of 8-bit strings. More preciselghjectis an Unicode string or subclass it will return a
Unicode string without any additional decoding applied. For objects which provideinicode __ method,

it will call this method without arguments to create a Unicode string. For all other objects, the 8-bit string
version or representation is requested and then converted to a Unicode string using the codec for the default
encoding in'strict’ mode. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefirted.

xrange ( [start,] stop{, step])
This function is very similar t#ange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xafange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth).

zip (seql,.)
This function returns a list of tuples, where thth tuple contains théth element from each of the argument
sequences. At least one sequence is required, otherwWigeedrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint  statement.

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while  condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, for exampl&,OL, 0.0 , O] .

e any empty sequence, for examgle,, () ,[] .

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

12 Chapter 2. Built-in Functions, Types, and Exceptions



e any empty mapping, for examplig, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that
method returns zerd.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retimnfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey (2)
not x if X is false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operatorspsd a == bis interpreted asot ( a == b), and
a == not bis a syntax error.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampgley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both cases not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose betwseennd C! :-) I= is the

preferred spellings> is obsolescent.

5Additional information on these special methods may be found ifPthieon Reference Manual

2.2. Built-in Types 13



Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrtipe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

2.2.4 Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleditegers are implemented usingng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a humeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the $ame rule.
The functionant() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
xX/y guotient ofx andy Q)
X %y remainder ok / y
- X X hegated
+X x unchanged
abs( x) absolute value or magnitude f
int( x) x converted to integer (2)
long( X) x converted to long integer (2)
float( x) x converted to floating point
complex( re, im) | a complex number with real pas, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod( X, V) thepair(x / 'y, X %vy) 3)
pow(X, V) x to the powely
X ** oy x to the powely
6As a consequence, the Iidt, 2] is considered equal §d.0, 2.0] , and similar for tuples.

14 Chapter 2. Built-in Functions, Types, and Exceptions



Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdians
andceil()  inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofl * has the same priority as the other unary numeric operatieiigfid ‘- ).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwise or of x andy
X"y bitwise exclusive oof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits ), (2
X >> n | xshifted right byn bits (), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéadueError
(2) A left shift by n bits is equivalent to multiplication bgow(2,
(3) A right shift by n bits is equivalent to division bgow(2,

2.2.5 lterator Types

New in version 2.2.

to be raised.

n) without overflow check.

n) without overflow check.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the

iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter

—0

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which

supports both breadth-first and depth-first traversal.) This method correspondspto iter

structure for Python objects in the Python/C API.

slot of the type

The iterator objects themselves are required to support the following two methods, which together fibemattie

protocot

2.2. Built-in Types

15



__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used Vgth the
andin statements. This method corresponds tottheiter  slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisgttipdteration exception.
This method corresponds to the _iternext  slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasija, b, ¢] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesgsbe.g., or() . A single item

tuple must have a trailing comma, e.@l,)

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() .. They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the
xrange() function. They don’t support slicing, concatenation or repetition, and usingiot in , min() or
max() onthem is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thédnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal toax, elsel
s+t the concatenation afandt
s * n, n * s | nshallow copies of concatenated Q)
9 ] i'th item of s, origin O (2
g i ] slice ofsfromi toj 2), (3)
len( 9) length ofs
min( s) smallest item of
max( s) largest item of

Notes:

(1) Values ofnless tharD are treated a8 (which yields an empty sequence of the same typ®.adote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

"They must have since the parser can't tell the type of the operands.

16 Chapter 2. Built-in Functions, Types, and Exceptions



>>> lists = [[]] * 3
>>> lists

M 0 m

>>> |ists[0].append(3)
>>> lists

(3], 3], [31

What has happened is tHestts s a list containing three copies of the l[fl  (a one-element list containing
an empty list), but the contained list is shared by each copy. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> |ists[2].append(7)

>>> lists

(3], [8), [71

(2) If i orj is negative, the index is relative to the end of the strieg( s) + iorlen( s) + jis substituted. But
note thatO is still 0.

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich thai <= k < j. If i orj is greater
thanlen( s), uselen( s). If i is omitted, usé. If j is omitted, usden( s). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl{, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

decode ( [encodingi, errors]])
Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.
errors may be given to set a different error handling scheme. The defdstti’ , meaning that encoding
errors raisé/alueError . Other possible values atignore’ andreplace’ . New in version 2.2.

encode ( [encodini,errors] ])
Return an encoded version of the string. Default encoding is the current default string encarding may
be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that encoding
errors raise &alueError . Other possible values atignore’ and’replace’ . New inversion 2.0.

endswith ( suffiy{, starf, end] ])
Return true if the string ends with the specifidfix otherwise return false. With optionsiart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ( [tabsizd)
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

2.2. Built-in Types 17



find ( sut{, starl[, end] ] )
Return the lowest index in the string where substsabis found, such thadubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retttnif subis not found.

index ( sut{, starl[, end]])
Like find() , but raisevalueError  when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

istitle 0
Return true if the string is a titlecased string: uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden( s).

lower ()
Return a copy of the string converted to lowercase.

Istrip ()
Return a copy of the string with leading whitespace removed.

replace (old, nevs[, maxsplit])
Return a copy of the string with all occurrences of substoiyreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

rfind  ( sub[,start [,end] ] )
Return the highest index in the string where substsimgis found, such thatubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Retttnon failure.

rindex ( sut{, starl{, end]])
Like rfind() but raises/alueError  when the substringubis not found.

rjust (width)
Return the string right justified in a string of lengthdth. Padding is done using spaces. The original string is
returned ifwidthis less thaden( s) .

rstrip ()
Return a copy of the string with trailing whitespace removed.

18 Chapter 2. Built-in Functions, Types, and Exceptions



split ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostaxsplit
splits are done. I§epis not specified oNone, any whitespace string is a separator.

splitlines ( [keepend];)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith  ( prefix[, starl[, end] ])
Return true if string starts with therefix, otherwise return false. With optionatart, test string beginning at
that position. With optionaénd stop comparing string at that position.

strip ()
Return a copy of the string with leading and trailing whitespace removed.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argulaletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String and Unicode objects have one unique built-in operatiorfdperator (modulo). Giveformat %valuegwhere
formatis a string or Unicode objectypconversion specifications fiormatare replaced with zero or more elements
of values The effect is similar to the usirgprintf() in the C language. lfiormatis a Unicode object, or if any of
the objects being converted using #sconversion are Unicode objects, the result will be a Unicode object as well.

If formatrequires a single argumentaluesmay be a single non-tuple obje&. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

. The % character, which marks the start of the specifier.
. Mapping key value (optional), consisting of an identifier in parentheses (for exaisqeename) ).

. Conversion flags (optional), which affect the result of some conversion types.

A W ON P

. Minimum field width (optional). If specified as ah’*(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

8A tuple object in this case should be a singleton.

2.2. Built-in Types 19



If the right argument is a dictionary (or any kind of mapping), then the formats in the sttiisthave a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0" | The conversion will be zero padded.

- The converted value is left adjusted (overridey.

‘o (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+' | Asign character ¢ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
i’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase).
‘X Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
‘f Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same ase’ if exponent is greater than -4 or less than precisibnptherwise.
‘G Same asE'’ if exponent is greater than -4 or less than precisiéhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr() ).
‘s’ String (converts any python object usisty() ).
‘08 No argument is converted, results in%é tharacter in the result. (The complete specificatio?¥)

Since Python strings have an explicit lengtbs conversions do not assume thi@t  is the end of the string.

For safety reasons, floating point precisions are clipped t&/&Gonversions for numbers whose absolute value is
over 1e25 are replaced Bygconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésg  andre .

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

20 Chapter 2. Built-in Functions, Types, and Exceptions



XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing anietife function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexds an arbitrary object):

Operation Result Notes
qgi] = X itemi of sis replaced by
gi:j] = t slice ofsfromi toj is replaced by
del g i:]] same as i: j] = []
s.append( X) same agflen( sylen( 9] = [ X (1)
sextend( X) same agllen( 9)len( 9] = x (2)
s.count( X) return number of’'s for whichg[ i] == x
sindex( X) return smallest such tha i] == x 3)
sinsert( i, X) sameas|i:i] = [ X] ifi >=0 (4)
s.pop( [i]) sameax = di]; del g i]; return X (5)
sremove( X) same aglel 9 sindex( X)] 3)
sreverse() reverses the items afin place (6)
s.sort( [cmpfund) sort the items o§in place (6), (7)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError  whenxis not found ins.

(4) When a negative index is passed as the first parameter ingbe() method, the new element is prepended
to the sequence.

(5) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(6) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

(7) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return a negative, zero or positive number depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process down
considerably; e.g. to sort a list in reverse order it is much faster to use calls to the mstitfjis and
reverse()  than to use the built-in functiosort() ~ with a comparison function that reverses the ordering of
the elements.

2.2. Built-in Types 21



2.2.7 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (&.@nd1.0 ) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wleeaedb are mappingsk is a key, ands andx are arbitrary
objects):

Operation Result Notes
len( a) the number of items ia
al K] the item ofa with key k (2)
ak = v setal k] tov
del a[ K removea[ k] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy oh
a.has _key( k) 1if ahas a ke, else0
kin a Equivalent toa.has key(k) (2)
k notin a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update( b) for k in  b.keys(): alk] = blk]
a.values() a copy ofa’s list of values 3)
a.get( k[, x|) a[ Kl if k in a, elsex 4)
a.setdefault( K|, x]) a[ k] if k in a, elsex (also setting it) (5)
a.popitem() remove and return an arbitrargy, value pair | (6)
a.iteritems() return an iterator ovekgéy, valug pairs (2)
a.iterkeys() return an iterator over the mapping’s keys (2)
a.itervalues() return an iterator over the mapping’s values | (2)

Notes:

(1) Raises &KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random orderkéfys() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creatipnalfie key) pairs
usingzip() :‘pairs = zip(  a.values(), a.keys())

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missing x is both returned and inserted into the dictionary as
the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

22 Chapter 2. Built-in Functions, Types, and Exceptions



2.2.8 File Objects

File objects are implemented using G&lio package and can be created with the built-in construfit()
described in section 2.1, “Built-in Function¥’They are also returned by some other built-in functions and methods,
such a®s.popen() andos.fdopen()  and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&nror is raised. This includes situations where
the operation is not defined for some reason, $ikek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise &/alueError  after the file has been closed. Callidgse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faldate: If a file-like object is not associated

with a real file, this method shoulibtbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl  module oros.read()  and friends.Note: File-like objects which do not have a real file descriptor
shouldnot provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hit®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aiOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline  ( [size])
Read one entire line from the file. A trailing newline character is kept in the $tr{bgt may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢taihen
is hit immediately. Note: Unlike stdio ’s fgets() , the returned string contains null characteY@’( ) if
they occurred in the input.

readlines  ( [sizehinﬂ)
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mhint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
Equivalent toxreadlines.xreadlines( file) . (See thexreadlines module for more information.)
New in version 2.1.

seek ( offse{, whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file’'s end). There is no return value. Note that if the file is opened for appending (@oder 'a+’ ), any

10%file() is new in Python 2.2. The older built-mpen() is an alias foffile()

11The advantage of leaving the newline on is that an empty string can be returned t@ areaithout being ambiguous. Another advantage is
that (in cases where it might matter, for example. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last
line of a file ended in a newline or not (yes this happens!).

2.2. Built-in Types 23



seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’ ), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+' ).

tell ()
Return the file’s current position, likgdio s ftell()

truncate  ( [size])
Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Blix versions support this operation).

write  ('str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush()  orclose() method is called.

writelines ( sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to matatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redilé.@adline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe()  method
changes the value. It may not be available on all file-like objects.

mode
The I/O mode for the file. If the file was created using tipeen()  built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vautfdgpace  attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace  attribute. Note: This attribute is not used to control thint statement, but to allow the
implementation oprint  to keep track of its internal state.

2.2.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objantport  foo does not require a module object nanfiedto exist, rather
it requires an (externafefinitionfor a module nametbo somewhere.)

24 Chapter 2. Built-in Functions, Types, and Exceptions



A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta_thiet
attribute is not possible (you can write __dict __['a’] = 1 , which definesn.a to bel, but you can't write

m. __dict __ = {} .

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ’/usr/local/lib/python2.2/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function’'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same_aslict
wheremis the module in which the functidhwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach metadata to
functions. Regular attribute dot-notation is used to get and set such attribldtsthat the current implementation

only supports function attributes on user-defined functions. Function attributes on built-in functions may be supported
in the future.

Functions have another special attribite _dict __ (a.k.a.f.func _dict ) which contains the namespace used
to support function attributes._dict __ andfunc _dict can be accessed directly or set to a dictionary object. A
function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methioals:self is the object on
which the method operates, andm _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func( m.im _self, arg-1, arg-2, ..., arg-n).

Class instance methods are eithetundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this satfe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSgpeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im _func ), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resul®y/pe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

2.2. Built-in Types 25



class C:
def method(self):
pass

c=C(

c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the builtémpile()  function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval()  function.

See thePython Reference Manufdr more information.
Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhds defines names for all standard built-in types.

Types are written like thisctype 'int’>
The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.
The Ellipsis Object

This object is used by extended slice notation (seé”yteon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteltipsis (a built-in name).

It is written asEllipsis

Internal Objects

See thePython Reference Manufdr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.2.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

26 Chapter 2. Built-in Functions, Types, and Exceptions



__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Use the built-in functiordir()  to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Use the built-in functiordir()  to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

2.3 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the nexdef@ions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace as well esabgtions  module.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootElasption , the associated value is present as

the exception instance&gs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in the
Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’saargs attribute, as a tuple.

2.3. Built-in Exceptions 27



exceptionStandardError
The base class for all built-in exceptions exc8pbplteration and SystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly sys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instearces attribute (it is assumed
to be an error number), and the second item is available ostteor  attribute (it is usually the associated
error message). The tuple itself is also available oratige attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename  attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefithe and
strerror  attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when aassert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut()  or raw _input() ) hits an end-of-file conditiong0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when aimport  statement fails to find the module definition or whefniam ... import fails to
find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

28 Chapter 2. Built-in Functions, Types, and Exceptions



exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@introl-C  or Delete ). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipot()  orraw _input() ) is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@doc()  function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

exceptionNotimplementedError
This exception is derived froRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived froenvironmentError and is used primarily as thies module’sos.error  excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethleref .proxy()  function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref .ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iteratorisext() method to signal that there are no further values. This is derived Exuep-
tion rather tharStandardError , since this is not considered an error in its normal application. New in
version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occurimpant statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

Instances of this class have atttribufilename , lineno , offset andtext for easier access to the details.
str()  of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

2.3. Built-in Exceptions 29



the Python interpretesys.version it is also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit
This exception is raised by theys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
Csexit()  function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthgyis).
Also, this exception derives directly froException and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfevally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit()  function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfook() ).

exceptionTypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcledeaiError . New in
version 2.0.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegkrror

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporedriman

value. Theerrno andstrerror values are created from the return values of@atLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedtmngs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

30 Chapter 2. Built-in Functions, Types, and Exceptions



CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new

site

user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle  support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of timaport  statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr()  implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

31



The list of command line arguments passed to a Python saigiv[0]  is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder

An indicator of the native byte order. This will have the valbig'  on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way -modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value

If valueis notNone, this function prints it tesys.stdout  , and saves itin_builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk

This function prints out a given traceback and exceptiosywstderr

When an exception is raised and uncaught, the interpreter oalexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook __
__excepthook _

These objects contain the original valuesdidplayhook  andexcepthook at the start of the program.
They are saved so thdisplayhook  andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being

handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its

caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is

defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgpe valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class obja@)ie gets the exception parameter (#ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don't need access to the traceback,
the best solution is to use something likkge, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotwy with a

32

Chapter 3. Python Runtime Services



... finally statement) or to caltxc _info()  in a function that does not itself handle an exceptiNote:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info()  instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handigd, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. th®c¢onfig.h’ header file) are installed in the di-
rectoryexec _prefix + ’/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ( [arg])
Exit from Python. This is implemented by raising tBgstemExit  exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdevelopeakik) programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed te®ys.stderr and results in an exit code of 1. In particulays.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlz¢exit module.Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or ween exit() s called.

getdefaultencoding 0

Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags 0
Return the current value of the flags that are usedlligoen() calls. The flag constants are defined in dhe
andDLFCNmodules. Availability: Wix. New in version 2.2.

getrefcount  (objec)
Return the reference count of tieject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeiréscount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit

prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ( [depth])

3.1. sys — System-specific parameters and functions 33



Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including

proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
# use some advanced feature

else:
# use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrhport pdb; pdb.pm() " to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo()  above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1  — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload()  on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is inserbedorethe entries inserted as a result of PYTHONPATH.

platform

This string contains a platform identifier, e.gunos5’  or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix

34 Chapter 3. Python Runtime Services



A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the strindustr/local’ . This can be set at build time with theprefix argument to

the configure script. The main collection of Python library modules is installed in the direqtosfix +
"Mlib/python versionn while the platform independent header files (all exceptonfig.h’) are stored in
prefix + ’/include/python version , whereversionis equal toversion[:3]

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &> ' and’... ' . If a non-string object is
assigned to either variable, gfr()  is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a values= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (name
Set the current default string encoding used by the Unicode implementatialamiédoes not match any
available encodind,ookupError s raised. This function is only intended to be used bydie module
implementation and, where needed ditecustomize . Once used by theite  module, it is removed from
thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter fiibpen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dIl.RTLD _GLOBAL). Symbolic names for the flag modules
can be either found in the! module, or in thdDLFCNmodule. IfDLFCNis not available, it can be generated
from */usr/include/dlfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile ( profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (sesettrace() ), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simplixogtern

setrecursionlimit (‘limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limitis platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered ssitigice() for each thread being debugged.

stdin

stdout

stderr
File objects corresponding to the interpreter’'s standard input, output and error stretims. is used for
all interpreter input except for scripts but including calldgriput()  andraw _input() . stdout is used

3.1. sys — System-specific parameters and functions 35



for the output ofprint  and expression statements and for the prompiemit()  andraw _input()

The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr

needn’t be built-in file objects: any object is acceptable as long as it had#tey) method that takes a

string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal0B. When set td or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the farmersion (# build_number build_date build_time)
[ compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version _info
Atuple containing the five components of the version numisggjor, minor, micro, releaselevelandserial. All

values excepteleaseleveare integers; the release levelatpha’ ,’beta’ |, ’candidate’ , orfinal’
Theversion _info value corresponding to the Python version 2.QRis 0, 0, ‘final’, 0) . New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Referwathengs
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactekeodion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError  is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

36 Chapter 3. Python Runtime Services



enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug ( flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

set _threshold  ( thresholdd), threshold{, thresholdd ] )
Set the garbage collection thresholds (the collection frequency). Stitegholdo zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@}idhan object survives a collection it is moved

into the next older generation. Since generaRois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ thresholdl threshold? .

get _referrers  (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found. New in version 2.2.

The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with_del __() methods: Objects that have _del __() methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, itisn't possible for Python to guess a safe order in which to runttlel __() methods. If you know
a safe order, you can force the issue by examininggrbagelist, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of beinggartregelist, so
they should be removed frogarbagetoo. For example, after breaking cycles,all gc.garbagel[:] to
empty the list. It's generally better to avoid the issue by not creating cycles containing objects déh ()
methods, andarbagecan be examined in that case to verify that no such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wsttt _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE

IPrior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

3.2. gc — Garbage Collector interface 37



Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to terbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLBErDEBUGUNCOLLECTABLIS set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.

Theweakref module allows the Python programmer to crea&ak reference® objects.

In the discussion which follows, the temaferentmeans the object which is referred to by a weak reference.
XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions written in Python
(but not in C), and methods (both bound and unbound). Extension types can easily be made to support weak references;
see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, caIIback])
Return a weak reference tbject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will close to be
returned. Ifcallbackis provided, it will be called when the object is about to be finalized; the weak reference
object will be passed as the only parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjectd __ () method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even afteotiject
was deleted. Ihash() is called the first time only after thrabjectwas deleted, the call will raisEypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oélihack). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

proxy (objec{, callback])
Return a proxy tambjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on whethebjectis callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable

38 Chapter 3. Python Runtime Services



nature, and prevent their use as dictionary keglbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount  ( objec)
Return the number of weak references and proxies which refajéxt

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

classWeakValueDictionary ( [dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standardReferenceError  exception.

See Also:

PEP 0205, Weak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> 0 = Object()
>>> r = weakref.ref(o)
>>> 02 = r()

>>> 0 is 02

1

If the referent no longer exists, calling the reference object reiNome:

3.3. weakref — Weak references 39



>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresf§joris not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

# r is a weak reference object
0 =r1(
if o is None:
# referent has been garbage collected

print "Object has been allocated; can’t frobnicate.”
else:

print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs

of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incl®y®©aject* field in the instance structure for
the use of the weak reference mechanism; it must be initializétiol by the object’s constructor. It must also set

thetp _weaklistoffset field of the corresponding type object to the offset of the field. For example, the instance
type is defined with the following structure:

40 Chapter 3. Python Runtime Services



typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance",

[* Lots of stuff omitted for brevity... */

offsetof(PylnstanceObject, in_weakreflist) /* tp_weaklistoffset */

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
listis nonNULL

static void
instance_dealloc(PylInstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

3.4. fpectl — Floating point exception control 41



(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf" is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. TiHigectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generéil@8F6E whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySI6G#®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation @IGFPE, and set up an appropriate signal handler.

turnoff  _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpieitte  module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[ more output from test elided ]

>>> jmport math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl  to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to supportfipectt  module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.

42 Chapter 3. Python Runtime Services



See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengifodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystymeexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to agxit  without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounshymexitfunc

register  ( func{, *args[, **kargs] ] )
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsegister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline  (section 7.16):
Useful example oétexit  to read and writeeadline  history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.5. atexit — Exit handlers 43



3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * ' — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygef in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType

The type ofNone.
TypeType

The type of type objects (such as returnedype() ).
IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).
FloatType

The type of floating point numbers (e .0 ).
ComplexType

The type of complex numbers (e 0] ).
StringType

The type of character strings (e!§pam’ ).
UnicodeType

The type of Unicode character strings (auSpam’ ).
TupleType

The type of tuples (e.d1, 2, 3, 'Spam’) ).
ListType

The type of lists (e.g[0, 1, 2, 3] ).
DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0} ).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

44 Chapter 3. Python Runtime Services



CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen()  or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Ilsjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A list containingString TypeandUnicodeTypeised to facilitate easier checking for any string object, €.dn
types.StringTypes

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the dictibimary

type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines thElserDict class:

classUserDict ([initialdata])

3.7. UserDict — Class wrapper for dictionary objects 45



Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2s2iT)ict instances provide
the following attribute:

data
A real dictionary used to store the contents oftheerDict  class.

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from thelsiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thElserList class:

classUserList  ( [Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblel@ia the
attribute ofUserList  instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancegsdrList  (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiods2fL&), instances
provide the following attribute:

data
A real Python list object used to store the contents oftkerList class.

Subclassing requirements: Subclasses dfJserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString  class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-instr type instead of usintserString  (there is no built-in equivalent telutableString ).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString  module defines the following classes:

46 Chapter 3. Python Runtime Services



classUserString ([sequenc}a)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString  instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString  (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr()  function.

classMutableString ([sequenc})
This class is derived from thdserString  above and redefines strings to ineitable Mutable strings can’t
be used as dictionary keys, because dictionaries reguimaitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overrideashe ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.2.6, “String Meth-
ods”),UserString  instances provide the following attribute:

data
A real Python string or Unicode object used to store the content dfseeString  class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a, b

eq(a, b

ne( a, b)

ge(a, b

ot (a, b

_It __(a/b

_le __(ab

__eq__(a,b

__ne__(ab

__ge__(a/b

_gt_(a/b
Perform “rich comparisons” betweenandb. Specificallylt( a, b) is equivalenttaa < b,le( a b) is
equivalenttea <= b, eq( a, b) isequivalenttea == b, ne(a, b) isequivalenttaa !'= b, gt( a, b)
is equivalent tea > b andge( a, b) is equivalenttca >= b. Note that unlike the built-itmp() , these
functions can return any value, which may or may not be interpretable as a Boolean value. Bgthtine
Reference Manudbr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests and Boolean operations:

not _( 0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation. The result is affected by tienzero __() and__len __() methods.)

3.10. operator — Standard operators as functions. 47



truth (o)
Returnl if ois true, and 0 otherwise.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

and _(a, b
__and__(a,b
Return the bitwise and af andb.

div (a, b
_div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv  (a, b)
__floordiv.  __(a,b)
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent to' 0. The namesinvert() and
__invert __() were added in Python 2.0.

Ishift  (a, b)
__Ishift  __(a, b
Returna shifted left byb.

mod( a, b)
__mod__(a,b
Returna %b.

mul ( a, b)
__mul__(a,b
Returna* b, for a andb numbers.

neg( o)
_neg__(0)
Returno negated.

or _(a,b
__or__(a,b
Return the bitwise or of andb.

pos (0)
__pos__(0)
Returno positive.

rshift  (a, b

__rshift  __(a, b
Returna shifted right byb.

sub(a, b)
__sub__(a,b

48 Chapter 3. Python Runtime Services



Returna- b.

truediv (a, b
__truediv. __(a, b
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

countOf (a,b)
Return the number of occurrencestah a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value ad at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)
Return the index of the first of occurrenceloih a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence arlis an integer.

sequencelncludes  (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a,b, 9
__setitem __(a,b,0
Set the value oh at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,y
Set the slice o& from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objdote: Be careful not to misinterpret
the results of these functions; ongCallable() has any measure of reliability with instance objects. For example:

3.10. operator — Standard operators as functions. 49



>>> class C:
pass

>>> jmport operator
>>> 0 = C()
>>> operator.isMappingType(0)

isCallable  (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodahe __() method.

isMappingType (0)
Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objestfarning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

50 Chapter 3. Python Runtime Services



Operation Syntax Function
Addition a+b add( a, b)
Concatenation seql + seq2 | concat( seql seq3l
Containment Test 0 in seq contains( seq O0)
Division al b div( a, b) # without__future __.division
Division al b truediv( a, b) # with __future __.division
Division all b floordiv( a, b)
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor( a, b)
Bitwise Inversion ! invert( a)
Bitwise Or al b or _(a b)
Indexed Assignment ofk] = v setitem( o, k, V)
Indexed Deletion del of K] delitem( o, K)
Indexing of K] getitem( o, K)
Left Shift a<<b Ishift( a, b)
Modulo a%b mod(a, b)
Multiplication a*b mul( a, b)
Negation (Arithmetic) - a neg( a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshift( a, b)
Sequence Repitition seq* i repeat( seq i)
Slice Assignment seq i: j] =values| setslice( seq i, j, valueg
Slice Deletion del seqi:j] delslice( seq i, j)
Slicing seq i: j] getslice( seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub( a, b)
Truth Test o] truth( o)
Ordering a<b It( a, h)
Ordering a<=b le( a, b)
Equality a==>b eqg(a, b)
Difference al=b ne(a, b)
Ordering a>=ob ge(a, b)
Ordering a>b gt( a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

3.11.1 Types and members

Thegetmembers() function retrieves the members of an object such as a class or module. The nine functions whose
names begin with “is” are mainly provided as convenient choices for the second argumgetthembers() . They
also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 51



Note:

(1) Changed in version 2.2m _class

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__nhame__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,Mone
function | __doc__ documentation string
__hame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as _doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string

__nhame__
__self__

getmembers (objec{, predicatd)

original name of this function or method

instance to which a method is bound,Mone

used to refer to the class that defined the method.

52

Chapter 3. Python Runtime Services



Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opt&diehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo  ( path)
Return a tuple of values that describe how Python will interpret the file identifigehtiyif it is a module, or
None if it would not be identified as a module. The return tupl¢ iame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packafiixis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’( or
rb’ ), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in timp module; see the documentation for that module for more information on
module types.

getmodulename ( path)
Return the name of the module named by thegdéh, without including the names of enclosing packages. This
uses the same algortihm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule ( objec)
Return true if the object is a module.

isclass ( objec)
Return true if the object is a class.

ismethod ( objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback  ( objec)
Return true if the object is a traceback.

isframe ( objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine  ( objec)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc ( objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments ( objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile  (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule ( objec)
Try to guess which module an object was defined in.

3.11. inspect — Inspect live objects 53



getsourcefile ( objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError  if
the object is a built-in module, class, or function.

getsourcelines ( objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource ( objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Eror is raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree ( classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is retuangsl: varargs
varkw, defaultg . argsis a list of the argument names (it may contain nested ligegargsandvarkware the
names of th¢ and** arguments oNone. defaultsis a tuple of default argument values; if this tuple mas
elements, they correspond to the lagiements listed imrgs

getargvalues  (framé
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, localg). argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of thfeand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}pnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues ( args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valuefoﬂmat
Format a pretty argument spec from the four values returnegttargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro ( cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list. The optionebntextargument specifies the number of lines of context to return, which
are centered around the current line.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of

54 Chapter 3. Python Runtime Services



all objects which can be accessed from the objects which form the cycle can become much longer even if Python's
optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly broken
to avoid the delayed destruction of objects and increased memory consumption which occurs.

getframeinfo (frame[, contexﬂ)
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record. The optional second argument specifies the number of lines of context to return, which are
centered around the current line.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes  ( tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ( [context])
Return a list of frame records for the stack above the caller’s frame.

trace ( [contexﬂ)
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayasldes _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr  ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file] ])
Print exception information and up tamit stack trace entries frontracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): "> (2) it prints the exceptiortypeandvalueafter the stack trace; (3) ffpeis Syn-
taxError  andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret
indicating the approximate position of the error.

print _exc ( [limit[, file] ])
This is a shorthand for print _exception(sys.exc _type, sys.exc  _value,
sys.exc _traceback, limit, file)’. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last  _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for

3.12. traceback — Print or retrieve a stack traceback 55



print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback tiajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Tletis a string with leading and trailing whitespace
stripped,; if the source is not available ithione.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formagxas for
tract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError  exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, tb, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb ( tb[, limit])

A shorthand foformat _list(extract _tb( th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack( f, limit)) .

tb _lineno (th)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

56 Chapter 3. Python Runtime Services



import sys, traceback

def run_user_code(envdir):
source = raw_input(">>>

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache  module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache  module defines the following functions:

getline (filename, linenp
Get linelineno from file namedilename This function will never throw an exception — it will returh on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

Thepickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
unpickling) is alternatively known as “serialization”, “marshallirfggr “flattening”, however the preferred term used

2Don't confuse this with thenarshal module

3.13. linecache — Random access to text lines 57



here is “pickling” and “unpickling” to avoid confusing.

This documentation describes both fhiekle module and thePickle module.

3.14.1 Relationship to other Python modules

Thepickle module has an optimized cousin called tdikickle module. As its name impliesPickle is written

in C, so it can be up to 1000 times faster timeckle . However it does not support subclassing of Fiekler()
andUnpickler() classes, because @ickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performanaePidkle . Other than that, the interfaces of

the two modules are nearly identical;, the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively descntiektee and

cPickle  modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caltedrshal , but in generabickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serializaidkle  stores such objects only once, and ensures

that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instandds. can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support ‘pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arisepithke  serialization format is guaranteed to be
backwards compatible across Python releases.

e Thepickle module doesn’t handle code objects, whichritershal module does. This avoids the possibility
of smuggling Trojan horses into a program throughgiokle  modulé.

Note that serialization is a more primitive notion than persistence; althpiele  reads and writes file objects, it

does not handle the issue of haming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform

the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

3This doesn't necessarily imply thaickle is inherently secure. See section 3.14.6 for a more detailed discussipickdé®  module
security. Besides, it's possible thaitkle  will eventually support serializing code objects.

58 Chapter 3. Python Runtime Services



By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicsptkle 's
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a true value fbirthegument to the
Pickler  constructor or thelump() anddumps() functions.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picttlerip() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpickda) method. Thepickle module
provides the following functions to make this process more convenient:

dump( object, fild, bin])
Write a pickled representation ahbjectto the open file objecfile. This is equivalent tdPickler( file,
bin).dump( objec) . If the optionalbin argument is true, the binary pickle format is used; otherwise the (less
efficient) text pickle format is used (for backwards compatibility, this is the default).

file must have avrite() = method that accepts a single string argument. It can thus be a file object opened for
writing, aStringlO  object, or any other custom object that meets this interface.

load ( file)
Read a string from the open file objdiie and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalentdapickler(  file).load()

file must have two methodsyead() method that takes an integer argument, arebaline() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO  object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps( objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle format is used (this is
the default).

loads ( string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object, such as a security violation. Note that
other exceptions may also be raised during unpickling, including (but not necessarily limitatirio-
teError  andimportError

Thepickle module also exports two callabfe®ickler andUnpickler

classPickler  (file[, bin])
This takes a file-like object to which it will write a pickle data stream. Optidmalif true, tells the pickler to

4In thepickle module these callables are classes, which you could subclass to customize the behavior. HowevePjdklthe modules
these callables are factory functions and so cannot be subclassed. One of the common reasons to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details on security concerns.

3.14. pickle — Python object serialization 59



use the more efficient binary pickle format, otherwiseAle!l format is used (this is the default).

file must have avrite() =~ method that accepts a single string argument. It can thus be an open file object, a
StringlO  object, or any other custom object that meets this interface.

Pickler  objects define one (or two) public methods:

dump( objec)
Write a pickled representation abjectto the open file object given in the constructor. Either the binary or
Ascll format will be used, depending on the value of tieflag passed to the constructor.

clear _memd)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: clear _memo() is only available on the picklers createddBickle . Inthepickle module, picklers
have an instance variable calle@mowhich is a Python dictionary. So to clear the memo fpickle module
pickler, you could do the following:

mypickler.memo.clear()

It is possible to make multiple calls to tlteimp() method of the sam®ickler  instance. These must then be
matched to the same number of calls toltheed() method of the correspondingnpickler  instance. If the same
object is pickled by multiplelump() calls, theload()  will all yield references to the same object

Unpickler  objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag d&dkigre factory.

file must have two methodsraad() method that takes an integer argument, arehbaline() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO  object, or any other custom object that meets this interface.

Unpickler  objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

noload ()
This is just likeload()  except that it doesn’t actually create any objects. This is useful primarily for finding
what'’s called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

Note: thenoload() method is currently only available dinpickler  objects created with thePickle
module.pickle moduleUnpickler s do not have thaoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None

SWarning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the samigkler instance, the object is not pickled again — a reference to it is pickled andrpikler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

60 Chapter 3. Python Runtime Services



e integers, long integers, floating point numbers, complex numbers
e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

¢ built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for details)

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will Se raised

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class a#ttibutés not restored in
the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects

that are being serialized. This protocol provides a standard way for you to define, customize, and control how your

objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment safer from untrusted pickle data streams; see section 3.14.6 for more
details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsnit __() method is normallynotinvoked. If it is desirable that
the __init __() method be called on unpickling, a class can define a methggktinitargs ——() , which
should return auple containing the arguments to be passed to the class constructor_(iigit __() ). The
__getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

6The exception raised will likely be dmportError  or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 61



Classes can further influence how their instances are pickled; if the class defines the megbtstate __() ,itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no__getstate __() method, the instance’s_dict __ is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled state If

there is na__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines bathgetstate __() and__setstate __() , the state object needn’t

be a dictionary and these methods can do what they®want

Pickling and unpickling extension types

When thePickler  encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementreduce __() method. If
provided, at pickling time__reduce __() will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned, it
must be of length two or three, with the following semantics:

¢ A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling  __ with a true value. Oth-
erwise, arnpicklingError will be raised in the unpickling environment. Note that as usual, the callable
itself is pickled by name.

e Atuple of arguments for the callable object,one.

e Optionally, the object’s state, which will be passed to the object’setstate __() method as described in
section 3.14.5. If the object has nosetstate __() method, then, as above, the value must be a dictionary
and it will be added to the object’s_dict

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of argu-
ments; it should return the unpickled object. If the second itemNease, then instead of calling the callable directly,
its __basicnew __() method is called without arguments. It should also return the unpickled object.

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable with
thecopy _reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface agsduee () method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fiiekle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
AsclI characters. The resolution of such names is not defined kyickke  module; it will delegate this resolution

to user defined functions on the pickler and unpickler

To define external persistent id resolution, you need to sepehsistent  _id attribute of the pickler object and
thepersistent  _load attribute of the unpickler object.

"These methods can also be used to implement copying class instances.

8This protocol is also used by the shallow and deep copying operations definedpthenodule.

9The actual mechanism for associating these user defined functions is slightly differ@ittkler andcPickle . The description given
here works the same for both implementations. Users opitide  module could also use subclassing to effect the same results, overriding the
persistent  _id() andpersistent _load() methods in the derived classes.

62 Chapter 3. Python Runtime Services



To pickle objects that have an external persistent id, the pickler must have a @estsistent  _id() method that

takes an object as an argument and returns eiMbeae or the persistent id for that object. Whislone is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent  _load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init_ (self, x):
self.x = x
def __str_ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def __str__ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, 'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpickler'persistent  _load attribute can also be set to a Python list, in which

3.14. pickle — Python object serialization 63



case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickf@. Settingpersistent  _load to a list is usually used in conjunction with tieload()

method on the Unpickler.

3.14.6 Security

Most of the security issues surrounding iiekle andcPickle module involve unpickling. There are no known
security vulnerabilities related to pickling because you (the programmer) control the objegisklieat will interact
with, and all it produces is a string.

However, for unpickling, it i;mevera good idea to unpickle an untrusted string whose origins are dubious, for example,
strings read from a socket. This is because unpickling can create unexpected objects and even potentially run methods
of those objects, such as their class constructor or destttictor

You can defend against this by customizing your unpickler so that you can control exactly what gets unpickled and
what gets called. Unfortunately, exactly how you do this is different depending on whether you'reickileg or
cPickle

One common feature that both modules implement is theafe _for _unpickling __ attribute. Before calling

a callable which is not a class, the unpickler will check to make sure that the callable has either been registered as
a safe callable via theopy _reg module, or that it has an attribute_safe _for _unpickling __ with a true

value. This prevents the unpickling environment from being tricked into doing evil things likesathlink()

with an arbitrary file name. See section 3.14.5 for more details.

For safely unpickling class instances, you need to control exactly which classes will get created. Be aware that a class’s
constructor could be called (if the pickler found agetinitargs __() method) and the the class’s destructor (i.e.

its __del __() method) might get called when the object is garbage collected. Depending on the class, it isn't very
heard to trick either method into doing bad things, such as removing a file. The way to control the classes that are safe
to instantiate differs ipickle andcPickle 2.

In thepickle module, you need to derive a subclass fidnpickler , overriding thdoad _global()  method.

load _global() should read two lines from the pickle data stream where the first line will the the name of the
module containing the class and the second line will be the name of the instance’s class. It then look up the class,
possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler’s stack.
Later on, this class will be assigned to theclass __ attribute of an empty class, as a way of magically creating

an instance without calling its class’s.init __() . You job (should you choose to accept it), would be to have

load _global()  push onto the unpickler’s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you're right. UTSL.

Things are alittle cleaner wittPickle , but not by much. To control what gets unpickled, you can set the unpickler’s

find _global attribute to a function oNone. If it is None then any attempts to unpickle instances will raise an
UnpicklingError . If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class, again performing any necessary imports, and it
may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

10we'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

LA special note of caution is worth raising about tAeokie module. By default, theCookie.Cookie  class is an alias for the
Cookie.SmartCookie class, which “helpfully” attempts to unpickle any cookie data string it is passed. This is a huge security hole because
cookie data typically comes from an untrusted source. You should either explicitly u€othee.SimpleCookie class — which doesn't
attempt to unpickle its string — or you should implement the defensive programming steps described later on in this section.

127 word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in pitthég  or cPickle

64 Chapter 3. Python Runtime Services



3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. The¢Reader class opens a text file, and
returns the line number and line contents each timee#slline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

class TextReader:
""Print and number lines in a text file.""
def __init_ (self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def _ getstate_ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict)  # update attributes
self.th = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thatickle  works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

3.14. pickle — Python object serialization 65



>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file.

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to theickle  module. There are several differences, the most important being performance
and subclassability.

First, cPickle  can be up to 1000 times faster thpickle because the former is implemented in C. Second, in

the cPickle  module the callableRickler() and Unpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pickle andcPickle are identical, so it is possible to upickle and
cPickle interchangeably with existing picklEs

There are additional minor differences in API betwe@ickle andpickle , however for most applications, they
are interchangable. More documentation is provided irptbkele  module documentation, which includes a list of
the documented differences.

3.16 copy _reg — Register pickle support functions

Thecopy _reg module provides support for theeckle  andcPickle  modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor  ( objec)
Declaresobjectto be a valid constructor. Bbjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functionﬁ, constructon])
Declares thatunctionshould be used as a “reduction” function for objects of tiype typeshould not a class
object.functionshould return either a string or a tuple containing two or three elements.

13gince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

66 Chapter 3. Python Runtime Services



The optionakonstructorparameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returnedfioyctionat pickling time. TypeError ~ will be raised if
objectis a class oconstructoris not callable.

See thepickle  module for more details on the interface expectefliottionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data  # store data at key (overwrites old data if
# using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
# such key)

del d[key] # delete data stored at key (raises KeyError
# if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (d&mor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. Wix file locking can be used to solve this, but this differs acrossXJversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.8):
Generic interface tdbm-style databases.

Moduledbhash (section 7.10):
BSD db database interface.

Module dbm (section 8.6):
Standard WX database interface.

3.17. shelve — Python object persistence 67



Moduledumbdbm(section 7.9):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondbeninterface.

Modulepickle (section 3.14):
Object serialization used tshelve .

ModulecPickle  (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ieferémcesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptssinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of moduybéckle for
information on these methods. Thepy module does not use tlepy _reg registration module.

68 Chapter 3. Python Runtime Services



In order for a class to define its own copy implementation, it can define special methadpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadleépeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doé$).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules pf/¢’ files. Therefore, the Python maintainers reserve the right

to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and de-
serializing Python objects, use thigkle module. There may also be unknown security problems mithshal 1°.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppddee; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int  type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C’dong int  type has only 32 bits, a Python long integer object is returned instead. While of a different type,

the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump( value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout  or returned byopen() or posix.popen() . It must be opened in binary mod&v’ or
‘w+b' ).
If the value has (or contains an object that has) an unsupported tyjadyeError  exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldaty)

load ( file)
Read one value from the open file and return it. If no valid value is read, E&)$eError , ValueError  or
TypeError . The file must be an open file object opened in binary maté ( or'r+b’ ).

Warning: If an object containing an unsupported type was marshalledduithp() , load()  will substitute
None for the unmarshallable type.

14The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

15As opposed to the known security issues inpiekle  module!

3.19. marshal — Internal Python object serialization 69



dumps( value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError  exception if value has (or contains an object that has) an unsupported type.

loads ( string)
Convert the string to a value. If no valid value is found, reéi&@FError , ValueError  or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manufar details).

Warning messages are normally writtersys.stderr  , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

The printing of warning messages is done by calshgwwarning() , which may be overidden; the default imple-
mentation of this function formats the message by callorghatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclegsepftion
UserWarning The default category fawvarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\i@ning class.

70 Chapter 3. Python Runtime Services



3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the foracfion messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

“error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default” print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messagés a compiled regular expression that the warning message must match (the match is case-insensitive)
e categoryis a class (a subclassWfarning ) of which the warning category must be a subclass in order to match
e moduleis a compiled regular expression that the module name must match

¢ linenois an integer that the line number where the warning occurred must mateto onatch all line numbers

Since theWarning class is derived from the built-iBxception  class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alMW options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagystetderr ).

3.20.3 Available Functions

warn ( messag[a categor)[, stackleve] ])
Issue a warning, or maybe ignore it or raise an exception.calegoryargument, if given, must be a warning
category class (see above); it defaultddserWarning . This function raises an exception if the particular
warning issued is changed into an error by the warnings filter see abovestadkdevebrgument can be used
by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, level=2)

This makes the warning refer teprecation() 's caller, rather than to the source @éprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit  ( message, category, filename, Iinénmodult{, registry]])
This is a low-level interface to the functionality afflarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pjth
stripped; if no registry is passed, the warning is never suppressed.

3.20. warnings — Warning control 71



showwarning ( message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation call®wwarning( message category filename
lineno) and writes the resulting string fde, which defaults tesys.stderr . You may replace this function
with an alternative implementation by assigninguiarnings.showwarning

formatwarning  ( message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings ( actior{, messag[e categor)[, module[, Iinenc{, appenc]]]]] )
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaaiipéndis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous caliteovarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbg  statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offfirx mode
typd , wheresuffixis a string to be appended to the module name to form the filename to searofofie,
is the mode string to pass to the built@pen() function to open the file (this can Be for text files or
rb’  for binary files), andypeis the file type, which has one of the value¥_SOURCEPY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN ), then a frozen moduléPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/( RESOURQCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a tripfidle, pathname descriptio) wherefile is an open file

object positioned at the beginningathnameds the pathname of the file found, adédscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnefile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError  is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (hames containing dots). In ordeRtMfinkat
is, submoduléM of packageP, usefind _module() andload _module() to find and load packadge and
then usdind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module ( name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding

72 Chapter 3. Python Runtime Services



compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Titeargument is an open file, affitenameis the corresponding

file name; these can done and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedyey _suffixes() , describing what kind of module

must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (mspattError )
is raised.

Important: the caller is responsible for closing tfile argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module ( namé
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
Return 1 if the import lock is currently held, else 0. On platforms without threads, always return 0.

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (e _frozen() ).

The following constant and functions are obsolete; their functionality is available thrindjh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin ~ (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise arimportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callestame None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python

3.21. imp — Access the import internals 73



interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin  (namé
Returnl if there is a built-in module calledamewhich can be initialized again. Returh if there is a built-in
module callechamewhich cannot be initialized again (sedt _builtin() ). Return0 if there is no built-in
module callechame

is _frozen (name¢
Returnl if there is a frozen module (sé@t _frozen() ) calledname or 0 if there is no such module.

load _compiled ( name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeaigain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tifmargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic ( name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeabain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEneargument is used to construct
the name of the initialization function: an external C function calieit * nam€) ' in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thie argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or *.pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (Thismplementationvouldn’t work in that version, sincéind _module() has been extended and
load _module() hasbeenaddedin1.4.)

74 Chapter 3. Python Runtime Services



import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
# Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

# If any of the following calls raises an exception,
# there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
# Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incltelead()  function can be
found in the standard modulaee (which is intended as an example only — don't rely on any part of it being a
standard interface).

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ( [Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optimeeb argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
" __name__' setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ( [Iocals[, filenamd ] )
Closely emulate the behavior of the interactive Python interpreter. This class buildseoactiveln-
terpreter and adds prompting using the familsys.ps1 andsys.ps2 , and input buffering.

interact  ( [bannel[, readfunc{, Iocal]]] )
Convenience function to run a read-eval-print loop. This creates a new instalterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witAnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, filenamé, symboﬂ ])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limcisin
always makes the same decision as the real interpreter main loop.

sourceis the source strindjlenameis the optional filename from which source was read, defaultirigite

3.22. code — Interpreter base classes 75



put>" ; andsymbolis the optional grammar start symbol, which should be eitsiagle’ (the default) or
‘eval’

Returns a code object (the samecampile( source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais€yntaxError  if the command is complete and contains a
syntax error, or raise®verflowError or ValueError if the command cotains an invalid literal.

3.22.1 Interactive Interpreter Objects

runsource (source[, filenamé, symboﬂ ])
Compile and run some source in the interpreter. Arguments are the samecasiftite _command() ; the
default forfilenameis '<input>" , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrectcompile _command() raised an exceptiorSfntaxError  or Overflow-
Error ). A syntax traceback will be printed by calling tlsowsyntaxerror() method. run-
source() returnsO.

eThe input is incomplete, and more input is requiredmpile _command() returnedNone. run-
source() returnsl.

eThe input is completegompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit ). runsource()
returnso.

The return value can be used to decide whether teays@sl orsys.ps2 to prompt the next line.

runcode ( code
Execute a code object. When an exception ocalrewtraceback() is called to display a traceback. All
exceptions are caught exceptstemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Ifflenameis given, it is stuffed into the exception instead of the default filename provided by Python's
parser, because it always usestring>’ when reading from a string. The output is written by wrée()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by theite()  method.

write ( data)
Write a string to the standard error streasyq.stderr ). Derived classes should override this to provide the
appropriate output handling as needed.

3.22.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact  ( [banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
—since it's so closel).

76 Chapter 3. Python Runtime Services



push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreterisource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valuelisf more input is required) if the line was dealt with in some way (this is the
same asunsource() ).

resetbuffer 0
Remove any unhandled source text from the input buffer.

raw _input ( [prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in funca@n_input() ;
a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use ttede module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print ‘or
‘ " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, fiIenam{, symbo]| ])
Tries to compilesource which should be a string of Python code and return a code objscuifceis valid
Python code. In that case, the filename attribute of the code object wilehame which defaults td<in-
put>" . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise@®yntaxError  is raised if there is invalid Python
syntax, andDverflowError or ValueError if there is an invalid literal.

The symbolargument determines whethsurceis compiled as a statemensifigle’ , the default) or as an
expression’éval’ ). Any other value will caus¥alueError  to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

classCompile ()
Instances of this class havecall __() methods indentical in signature to the built-in functemmpile()
but with the difference that if the instance compiles program text containingfature __ statement, the
instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have call __() methods identical in signature tompile _command() ; the
difference is that if the instance compiles program text containing fature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

3.23. codeop — Compile Python code 77



A note on version compatibility: th€ompile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_comamnd

and then calCommandCompiler every time you need a fresh compiler object.

3.24 pprint — Data pretty printer

Thepprint  module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint  module defines one class:

classPrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using teeeamkeyword; the only method used on the stream object is the file protocol’s
write()  method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscenat depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘ '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

78 Chapter 3. Python Runtime Services



>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[
'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (... ))N))

The PrettyPrinter class supports several derivative functions:

pformat ( objec)
Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, streanﬂ)
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteachdhts  statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,
"lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'fusr/local/lib/pythonl.5/tkinter’]

isreadable  ( objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

3.24. pprint — Data pretty printer 79



saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representeexifsion on  typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", ’'fusr/local/lib/pythonl.5’, '/usr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat ( objec)
Return the formatted representation afject This takes into Account the options passed to Fhet-
tyPrinter  constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable  ( objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelp+if) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr()  function described below. Changing the
attributes of this object will affect the size limits usedigpr()  and the Python debugger.

repr ( obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

80 Chapter 3. Python Runtime Services



3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defa@ilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulixdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner amxstring . The default i20.

repr ( obj)
The equivalent to the built-irepr()  that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should aaprl() to perform recursive formatting,
with level - 1 for the value oflevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type( obj). __name__, ' ) .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri( subobj level - 1) .

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

3.25. repr — Alternate repr() implementation 81



import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in ['<stdin>’, '<stdout>’, '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.26 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod ( function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable, andnstancemust be an instance objectbne.

function  (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsaifieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takeedasoo _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code ( argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab
This function is an interface to tHeyCode _New() C function.

module ( namg
This function returns a new module object with nanane namemust be a string.

classobj ( name, baseclasses, dict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

82 Chapter 3. Python Runtime Services



It starts by constructing up to four directories from a head and a tail part. For the head partsifaupesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first lib/python2.2/site-packages’ and then lib/site-python’ (on UNIx). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgs@ath , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added tgys.path . Non-existing items are never addedslys.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesiygpath  more than once. Blank lines and lines
beginning with# are skipped. Lines starting witmport are executed.

For example, supposgys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.2 library is then
installed in Yusr/local/lib/python2.2’ (where only the first three characters sfs.version are used to form the
installation path name). Suppose this has a subdirectast/lbcal/lib/python2.2/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

# foo package configuration

foo
bar
bletch

and ar.pth’ contains:

# bar package configuration

bar

Then the following directories are addedslys.path , in this order:

Jusr/local/lib/python1.5/site-packages/bar
/usr/local/lib/python1.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rateedstomize  , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

3.28. user — User-specific configuration hook 83



import user

Theuser module looks for a file.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using

execfile() ) in its own (the moduleiser 's) global namespace. Errors during this phase are not caught; that's up
to the program that imports theser module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabter.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.27):
Site-wide customization mechanism.

3.29 _ Dbuiltin ___ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.chuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.1, “Built-in Functions.”

3.30 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "__main__"
main()

84 Chapter 3. Python Runtime Services



CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.

fpformat General floating point formatting functions.

StringlO Read and write strings as if they were files.

cStringlO Faster version aBtringlO , but not subclassable.

codecs Encode and decode data and streams.

unicodedata Access the Unicode Database.

Information on the methods of string objects can be found in section 2.2.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii _letters
The concatenation of thascii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase

The lowercase lettefrabcdefghijkimnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii _uppercase
The uppercase lettetABCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will not

change.
digits
The string'0123456789'’
hexdigits
The string'0123456789abcdefABCDEF’

letters
The concatenation of the strinisvercase anduppercase described below. The specific value is locale-
dependent, and will be updated whenale.setlocale() is called.

lowercase

85



A string containing all the characters that are considered lowercase letters. On most systems this is the string

"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routings
per() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.
octdigits
The string'01234567"
punctuation

String of Asclii characters which are considered punctuation characters iCthozale.

printable
String of characters which are considered printable. This is a combinatdigitd , letters , punctua-
tion , andwhitespace

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string

'ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifmser()
and swapcase() is undefined. The specific value is locale-dependent, and will be updated lathen
cale.setlocale() is called.

whitespace

A string containing all characters that are considered whitespace. On most systems this includes the characters

space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String

Methods” (section 2.2.6) for more information on those. The functions defined in this module are:
atof (s
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘- ). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C

library. The specific set of strings accepted which cause these values to be returned depends entirely on the C

library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint()  built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{* or ‘- ). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘0OX’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint()  when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol ( s[, basd)
Deprecated since release 2.Q@se thelong()  built-in function.

Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asatoi() . Atrailing ‘I "or ‘L’

is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the

86 Chapter 4. String Services



capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs ( s[, tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained ir§[ start end .
Return-1 on failure. Defaults fostart andendand interpretation of negative values is the same as for slices.

rfind (s, suk{, starl{, end]])
Like find()  but find the highest index.

index (s, suki, starl{, end]])
Like find()  but raisevValueError  when the substring is not found.

rindex (s, suli, starl{, end] ])
Like rfind() but raiseValueError  when the substring is not found.

count (s, suk{, start[, end]])
Return the number of (non-overlapping) occurrences of substtib string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy 0§, but with upper case letters converted to lower case.

maketrans ( from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irffrominto the character at the same positionanfrom andto must have the same length.

Warning: Don't use strings derived frohowercase anduppercase as arguments;in some locales, these
don’t have the same length. For case conversions, alwayswse() andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and ndtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahexestit-1

elements).

splitfields ( s[, se;{, maxsplit] ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split( S, sep, sep’equalss.

joinfields ( Words{, sep])
This function behaves identical foin() . (In the pastjoin()  was only used with one argument, while
joinfields() was only used with two arguments.)

Istrip (9
Return a copy o$ but without leading whitespace characters.

rstrip (9
Return a copy of but without trailing whitespace characters.

strip (9

4.1. string — Common string operations 87



Return a copy o without leading or trailing whitespace.

swapcase ()
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usibtp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9
Return a copy o8, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leaswidth characters wide, created by padding the stamgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace ( str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firsmaxsplitoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usingitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Thhedule is always available.

Regular expressions use the backslash charaé&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with*. So r'\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: There module has two distinct implementationsre is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available gethaodule.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O'Reilly. The Python material in this book dates
from before thee module, but it covers writing good regular expression patterns in great detail.

88 Chapter 4. String Services



4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidagidiB are both regular expressions,
thenAB s also a regular expression. If a stripgnatches A and another strimgmatches B, the stringq will match

AB if A andB do no specify boundary conditions that are no longer satisfiedgoyThus, complex expressions

can easily be constructed from simpler primitive expressions like the ones described here. For details of the theory
and implementation of regular expressions, consult the Friedl book referenced below, or almost any textbook about
compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘07, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast . (In the rest of this section, we’'ll write RE’s itthis special style b

usually without quotes, and strings to be matcliedsingle quotes’ )

Some characters, lik¢ *or * (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘. (Dot.) In the default mode, this matches any character except a newline. BE@FALLflag has been
specified, this matches any character including a newline.

>

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

&

Matches the end of the string or just before the newline at the end of the string, RRdlimILINE mode
also matches before a newlinfmo ; matches both 'foo’ and *foobar’, while the regular expression$ |

matches only 'foo’. More interestingly, searching flmo$ | in 'fool\nfoo2\n’ matches 'foo2’ normally,
but 'fool’ in MULTILINE mode.

‘*' Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ;will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedingtREwill match 'a’ followed
by any non-zero number of ’b’s; it will not match just’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedindaBE.will match either 'a’ or
‘ab’.

*?,4?,?? The *’, '+’ and ‘2’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched againsgH1>title</H1>' , it will match the
entire string, and not juskH1>" . Adding *?’ after the qualifier makes it perform the matchnon-
greedyor minimal fashion; affew characters as possible will be matched. Usiig | in the previous
expression will match ongH1>" .

{m} Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For exampl&@{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For exampé3,5} | will match from 3 to 5 &’ characters. Omitting
n specifies an infinite upper bound; you can’t omit As an examplela{4,}b ; will match aaaab, a
thousanda’ characters followed by &, but notaaab. The comma may not be omitted or the modifier
would be confused with the previously described form.

4.2. re — Regular expression operations 89



{m, n}?

(.)

(2..)

(?iLmsux)

(?:...)

Causes the resulting RE to match froamto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefsJike'; and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampl§akm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ;will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subth as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘- ' inside a

set, precede it with a backslash, or place it as the first character. The dgkterwill match'] , for
example.

You can match the characters not within a rangedaypplementinghe set. This is indicated by including
a ' as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] will match any character exce"

A|B, where A and B can be arbitrary RES, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by fhén' this way. This can be used inside groups (see
below) as well. REs separated Ry are tried from left to right, and the first one that allows the complete
pattern to match is considered the accepted branch. This meansAlaaithesB will never be tested,

even if it would produce a longer overall match. In other words, tHeoperator is never greedy. To
match a literal [ ’, use\| ;, or enclose it inside a character class, af{jin ..

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litefats*) ’, use\( ; or

\) , or enclose them inside a character cldgk:[)]

This is an extension notation (2’ *following a ‘(’ is not meaningful otherwise). The first character after

the ?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group(?P< name-...) ,is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sat’; ‘L’, ‘m, ‘s’, ‘u’, ‘x’.) The group matches the empty string;
the letters set the corresponding flagsI( ,re.L ,re.M ,re.S ,re.U ,re.X ) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile()  function.

Note that the(?x) | flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the grarmmotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...)  Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group namename Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if

90

Chapter 4. String Services



the group were not named. So the group named ’'id’ in the example above can also be referenced as the
numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z  _]\Ww*) |, the group can be referenced by its name
in arguments to methods of match objects, suchmagoup(’id’) or m.end(’id") , and also by
name in pattern text (for examplé€?P=id) ) and replacement text (such\assid> ).

(?P=namg Matches whatever text was matched by the earlier group nasred

(?#..)

(?=..)

(?..)
(2<=..)
(?<.)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn't consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) ;will match’lsaac '  only if it's followed by 'AsimoVv’

Matches if’... | doesn't match next. This is a negative lookahead assertion. For exatsphg
(?!Asimov) jwill match’lsaac '  only if it's notfollowed by’Asimov’

Matches if the current position in the string is preceded by a match.for that ends at the current
position. This is called a positive lookbehind asserti@P<=abc)def ;will match ‘abcdef ’, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning iat, or 'a|b ; are allowed, bula* jisn't.

Matches if the current position in the string is not preceded by a matdh.for. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarfplenatches the characte’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

example/(.+) \1 ;matchesthe the’ or’55 55 | butnotthe end”  (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber (There is a group 0, which is the entire matched pattern, but it can’t
be referenced with0 j; instead, uség<0> ,.) Inside the [’ and ‘]’ of a character class, all numeric
escapes are treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang&h | represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when itist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the e8] ..

Matches any non-digit character; this is equivalent to th€e8] .

Matches any whitespace character; this is equivalent to the s&t\r\fiv] 5
Matches any non-whitespace character; this is equivalent to ti{e $8n\r\fiv] 5

When theLOCALEand UNICODEflags are not specified, matches any alphanumeric character; this is
equivalent to the sefa-zA-Z0-9 _] ;. With LOCALE it will match the set[0-9 _], plus whatever
characters are defined as letters for the current localdNICODEs set, this will match the characters
T0-9 _],plus whatever is classified as alphanumeric in the Unicode character properties database.

4.2. re — Regular expression operations 91



\W When theLOCALEandUNICODHETlags are not specified, matches any non-alphanumeric character; this
is equivalent to the s€fa-zA-Z0-9  _] . With LOCALE it will match any character not in the set
T0-9 _],, and not defined as a letter for the current localdJNICODEis set, this will match anything
other than[0-9 _]and characters marked at alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl's semantics, the search operation is what you're looking for. Sese#ineh()  function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning Wwith ° matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmstional
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search(\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile ( patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile()  is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions ikezZ] ; will match lowercase letters, too. This is not
affected by the current locale.

92 Chapter 4. String Services



LOCALE
Make \w , "W, \b ;, and\B, dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern charadematches at the end of the string and at
the end of each line (immediately preceding each newline). By defauthatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the : ’ special character match any character at all, including a newline; without this flagijlt match
anythingexcepia newline.

U

UNICODE
Make \w, \W, \b |, and\B ; dependent on the Unicode character properties database. New in version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line g8ntaitiea

in a character class or preceded by an unescaped backslash, all characters from the leftm#sthsocigh

the end of the line are ignored.

search ( pattern, string{, flags])
Scan througlstring looking for a location where the regular expresspatternproduces a match, and return a
corresponding/iatchObject  instance. Returhlone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match ( pattern, string{, flags])
If zero or more characters at the beginningtring match the regular expressipattern return a corresponding
MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

split  ( pattern, string{, maxsplit = 0])
Splitstring by the occurrences giattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.’)
[Words', 'words’, 'words’, "]

>>> re.split((\W+)", 'Words, words, words.")
[Words', ’, *, 'words’, ’, ’, 'words’, ", "]
>>> re.split(\W+’, 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theef$ub.split() andregsub.splitx()

findall  ( pattern, string
Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub ( pattern, repl, strin@, count])
Return the string obtained by replacing the leftmost non-overlapping occurrenpastainin string by the

4.2. re — Regular expression operations 93



replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That iss‘converted to a single newline character,
‘\r " is converted to a linefeed, and so forth. Unknown escapes sucdih asre left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\)’,
r'static PyObject®\npy_\1(void)\n{’,

'def myfunc():")

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrenceaitern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == '-": return '’
else: return -’
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; for exampli(“(?i)b+", "x", "bbbb BBBB") '
returnsx x’

The optional argumerdountis the maximum number of pattern occurrences to be replamritmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matchsslo('x*’, ’-’, 'abc’) 'returns’-a-b-c-’

In addition to character escapes and backreferences as described &pavame> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ' is therefore equivalent to\2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0”. The backreferencag<0> ' substitutes in the entire substring matched by the RE.

subn ( pattern, repl, strin&, count])
Perform the same operationsush() , but return a tuplé new_string, number of_subs madg .

escape ( string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos[, endpog ])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomaeh() method.

match (string[, pos{, endpo§ ])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding

94 Chapter 4. String Services



MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheregtring, usesearch() instead.

The optional second paramef@sgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametamdpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters flomsto endposwill be searched for a match.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall  ('string)
Identical to thefindall() function, using the compiled pattern.

sub ( repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildétiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(By< id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand ( templatg
Return the string obtained by doing backslash substitution on the templatetstriptate as done by theub()
method. Escapes such as ° are converted to the appropriate characters, and numeric backreferéices (*

‘\2 ') and named backreference$g&l> ', ‘\g<name> ') are replaced by the contents of the corresponding
group.

group ([groupl, ])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguyraums,
defaults to zero (the whole match is returned). graupNargument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError  exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result ione. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tfeP< name>...) ;syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pabtetex&ror
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

4.2. re — Regular expression operations 95



After performing this matchm.group(1) is’'3’ , asism.group(’int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMtsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict  ( [default])
Return a dictionary containing all teamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defaultsrte.

start ( [group])

end ( [group])
Return the indices of the start and end of the substring matchegtoloy, group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a groum that did contribute to the match, the substring matched by ggqeguivalent tan.group( @) )
is

m.string[m.start(g):m.end(g)]

Note thatm.start( group) will equalm.end( group) if groupmatched a null string. For example, aftar=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andh.start(2) raises arindexError  exception.

span ( [group])
ForMatchObject m, return the 2-tuplé m.start(  group, m.end( group)) . Note that ifgroupdid not

contribute to the match, this {s1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to tteearch() or match() function. This is the index into the
string beyond which the RE engine will not go.

lastgroup
The name of the last matched capturing groupNone if the group didn’t have a name, or if no group was
matched at all.

lastindex
The integer index of the last matched capturing groupName if no group was matched at all.

re
The regular expression object whosatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

4.2.6 Examples

Simulating scanf()

Python does not currently have an equivalergédanf() . Regular expressions are generally more powerful, though
also more verbose, thatanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf()  format tokens and regular expressions.

96 Chapter 4. String Services



scanf() Token | Regular Expression
%cC ’V.J

%5c (.{5} ]

%d T-+N\d+

%e %E %f, %g
%i

[-+]0d+(\\d*)?\dM\ . \d+)([eEN\d+)?
[-+](O[xX][\dA-Fa-f]+|0[0-7]*|\d+)

%0 0[0-7] |

%s \S+ |

%u Rd"‘j

%x %X OxX|NdA-Fa-f] |

To extract the filename and numbers from a string like

lusr/shin/sendmail - 0 errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

("\s]+) - (\d+) errors, (\d+) warnings

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringnitises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, vl,v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack ( fmt, string
Unpack the string (presumably packed fgck( fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en( string) must equatalcsize(  fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

4.3. struct — Interpret strings as packed binary data 97



Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
g int integer
1 unsigned int long
‘1 long integer
‘L unsigned long long
‘q long long long Q)
‘Q unsigned long long long (1)
“fr float float
d’ double float
‘s’ charf] string
‘P’ char[] string
‘P void * integer

Notes:

(1) The ‘g’ and ‘Q conversion codes are available in native mode only if the platform C compiler supptotgC
long , or, on Windows,__int64 . They are always available in standard modes. New in version 2.2.

A format character may be preceded by an integral repeat count. For example, the formadistrinmeans exactly
the same athhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other format
characters; for exampl&,0s’ means a single 10-byte string, whiltDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&8e, means a single, empty string (whilgc’ means

0 characters).

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thaidpack() , the ‘p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthe1’,'L’, 'q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typeNWAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

98 Chapter 4. String Services



Character | Byte order | Size and alignment

‘@ native native

= native standard
‘< little-endian standard
> big-endian standard

e network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C comp#iménf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesint andlong are 4 bytestong long (__int64 on Windows) is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betwee@ and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or withhlyee' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, scRHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. For example, the forihal’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.9):
Packed binary storage of homogeneous data.

Modulexdrlib  (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

4.4. difflib — Helpers for computing deltas 99



classSequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980's by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn't
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of aDiffer  delta begins with a two-letter code:

Code | Meaning
line unique to sequence 1

+ line unique to sequence 2
! line common to both sequences
7 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

get _close _matches (word, possibilitieE, n[, cutoff]])
Return a list of the best “good enough” matchegord is a sequence for which close matches are desired
(typically a string), andpossibilitiesis a list of sequences against which to mavebrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6 ) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
['apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

ndiff  (a, b[ Iinejunk[, charjunk]])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that should accept a single string argument, and return true if the string is junk (or false
if it is not). The default is module-level functioi® _LINE _JUNK() , which filters out lines without visible
characters, except for at most one pound charactér ('

100 Chapter 4. String Services



charjunk A function that should accept a string of length 1. The default is module-level function
IS _CHARACTERIUNK() , which filters out whitespace characters (a blank or tab; note: bad idea to include
newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1)))
>>> print ”.join(diff),
- one

?
+ ore
s A

two

three
tree
emu

+ + 0

restore ( sequence, whigh
Return one of the two sequences that generated a delta.

Given asequenc@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ".join(restore(diff, 1)),

one

two

three

>>> print ”.join(restore(diff, 2)),

ore

tree

emu

IS _LINE _JUNKline)
Return true for ignorable lines. The litiee is ignorable ifline is blank or contains a singlét®, otherwise it is
not ignorable. Used as a default for paramétezjunkin ndiff()

IS _CHARACTERIUNK ch)
Return true for ignorable characters. The charachds ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publisHed inobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ( [isjunk[, a[ b] ]] )
Optional argumenisjunkmust beNone (the default) or a one-argument function that takes a sequence element

4.4. difflib — Helpers for computing deltas 101



and returns true if and only if the element is “junk” and should be ignored. PaNsing for b is equivalent to
passindambda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don't want to synch up on blanks or hard tabs.
The optional argumen@andb are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequencesetiseseg2() to set the commonly used sequence once and call
set _seql() repeatedly, once for each of the other sequences.

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seg2(h)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[ blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchthaf]i: i+k] is equal to
b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i", j, k') meeting
those conditions, the additional conditidks>= k', i <= i',and ifi == i’,j <= | are also met. In other

words, of all maximal matching blocks, return one that starts earliesstamd of all those maximal matching
blocks that start earliest & return the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That ptesbots  from matching
the’ abcd’ atthe tail end of the second sequence directly. Instead onlglied’ can match, and matches
the leftmostabcd’  in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of the formy n) , and means that
ali:i+n] == Db[j: j+n] . The triples are monotonically increasingiiandj.

The last triple is a dummy, and has the vaflen( a), len( b), 0) . Itisthe only triple withn ==

102 Chapter 4. String Services



>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> g.get_matching_blocks()
[0, 0, 2), (3, 2, 2), (5, 4, 0)]

get _opcodes ()

ratio

Return list of 5-tuples describing how to tuarinto b. Each tuple is of the fornitag, i1, i2, j1, j2). The
first tuple hadl == j1 == 0, and remaining tuples hav& equal to tha2 from the preceeding tuple, and,
likewise,j1 equal to the previougR.

Thetagvalues are strings, with these meanings:

Value | Meaning
'replace’ a[ i1: i2] should be replaced by j1: j2] .
‘delete’ al il:i2] should be deleted. Note thdt == j2 in this case.
'insert’ b[ j1: j2] should be inserted &f i1: i1] . Note thatil == i2 in this case.
‘equal’ alil:i2] == Db[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "gabxcd"

>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, a[il:i2], j1, j2, b[j1:j2])
delete a[0:1] (q) b[0:0] ()

equal a[l:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

0

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T.
Note that this isl.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to compute get _matching _blocks()  or get _opcodes() hasn't already been
called, in which case you may want to tguick _ratio() or real _quick _ratio() first to get an
upper bound.

quick _ratio ()

real

Return an upper bound aatio() relatively quickly.
This isn’t defined beyond that it is an upper boundatio()  , and is faster to compute.

_quick _ratio ()
Return an upper bound aatio()  very quickly.

This isn’t defined beyond that it is an upper boundatio()  , and is faster to compute than eitmatio()
or quick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougbuick _ratio() andreal _quick _ratio() are always at least as largeratio()

4.4. difflib — Helpers for computing deltas 103



>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> g.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuiafip@  value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():
print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements
a[8] and b[17] match for 6 elements
a[14] and b[23] match for 15 elements
a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() is always a dummylen( a), len( b), 0) ,
and this is the only case in which the last tuple element (hnumber of elements matdbed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building ®&-
guenceMatcher can be used to do useful work.

104 Chapter 4. String Services



4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim to mé@imal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer  class has this constructor:

classDiffer  ( [Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that should accept a single string argument, and return true if the string is junk. The default
is module-level functionS _LINE _JUNK() , which filters out lines without visible characters, except for at
most one pound characte#{).

charjunk A function that should accept a string of length 1. The default is module-level function
IS _CHARACTERIUNK() , which filters out whitespace characters (a blank or tab; note: bad idea to include
newline in this!).

Differ  objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained
from thereadlines() method of file-like objects. The delta generated also consists of newline-terminated
strings, ready to be printed as-is via thdtelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = " 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. ".splitlines(1)

>>> |en(textl)

4

>>> textl[0][-1]

\n'

>>> text2 = ™ 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

. ".splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating@iffer ~ object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

4.4. difflib — Helpers for computing deltas 105



Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is alist of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[ 1. Beautiful is better than ugly.\n’,

2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,

3. Simple is better than complex.\n’,
? ++ \n’
Complex is better than complicated.\n’,

- - " \n,

'+ 4. Complicated is better than complex.\n’,
? ++++ 7 ~\n,
'+ 5. Flat is better than nested.\n’]

Ll
»

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

3. Simple is better than complex.
++

4. Complex is better than complicated.

D o+ !

4. Complicated is better than complex.
+++4+ 7 -

5. Flat is better than nested.

+ 0+

4.5 fpformat — Floating point conversions

The fpformat  module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat  module defines the following functions and an exception:
fix (x,dig9

Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.diljs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (x, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifs <= 0,
one digit is kept and the point is suppressed.

106 Chapter 4. String Services



x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.
exceptionNotANumber
Exception raised when a string passefix) orsci() asthexparameter does not look like a number. This

is a subclass dfalueError  when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnory
fileg. See the description of file objects for operations (section 2.2.8).

classStringlO ([buffer])
When aStringlO  object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, tH&tringlO  will start empty.

TheStringlO  object can accept either Unicode or 8-bit strings, but mixing the two may take some care. If both
are used, 8-bit strings that cannot be interpreted asAshit! (that use the 8th bit) will causeldnicodeError
to be raised whegetvalue() is called.

The following methods o8tringlO  objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShiénglO  object’sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer.

4.7 cStringlO  — Faster version of StringlO

The modulecStringlO  provides an interface similar to that of tlringlO  module. Heavy use dbtrin-
glO.StringlO objects can be made more efficient by using the funcitsmglO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiB&inglO  module in that case.

Unlike the memory files implemented by tB&inglO  module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as piaiail strings.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO  with a string parameter.

OutputType
The type object of the objects returned by callBiginglO  with no parameters.

4.6. StringlO — Read and write strings as files 107



There is a C API to the module as well; refer to the module source for more information.

4.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register ( search._function
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functioesmcoder decoder stream.reader, stream. writer)
taking the following arguments:

encoderand decoder These must be functions or methods which have the same interface @&n-the
code() /decode() methods of Codec instances (see Codec Interface). The functions/methods are expected
to work in a stateless mode.

stream_readerandstream writer: These have to be factory functions providing the following interface:
factory(  stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Stasaps/\riter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors atsrict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, sué)aad 'ignore’ (ignore malformed data
and continue without further notice).

In case a search function cannot find a given encoding, it should ristue.
lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, @okupError s raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simply access to the various codecs, the module provides these additional functions whichkuigg  for the
codec lookup:

getencoder ( encoding
Lookup up the codec for the given encoding and return its encoder function.
Raises d ookupError in case the encoding cannot be found.
getdecoder ( encoding
Lookup up the codec for the given encoding and return its decoder function.
Raises d.ookupError in case the encoding cannot be found.
getreader ( encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.
Raises d.ookupError in case the encoding cannot be found.
getwriter  ( encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.
Raises d.ookupError in case the encoding cannot be found.

To simplify working with encoded files or stream, the module also defines these utility functions:

open ( filename, mo<{e encodini, errors[, buffering]]] )
Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding.

108 Chapter 4. String Services



Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the the file.

errors may be given to define the error handling. It defaultstagct’ which causes ¥alueError  to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builbpen() function. It defaults to line buffered.

EncodedFile ( file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gt encoding and then written to
the original file as strings using tlmitputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput

errors may be given to define the error handling. It defaultsstact’ , Which cause¥alueError  to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOMBE

BOMLE

BOM32BE

BOM32LE

BOM64 BE

BOM64 LE
These constants define the byte order marks (BOM) used in data streams to indicate the byte order used in the
stream or fileBOMs eitherBOM BE or BOM LE depending on the platform’s native byte order, while the others
represent big endian_(BE suffix) and little endian (_LE’ suffix) byte order using 32-bit and 64-bit encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

4.8.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #necode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value | Meaning

'strict’ RaiseValueError  (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT CHAR

4.8. codecs — Codec registry and base classes 109



Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:
encode ( input[, errors])

Encodes the objedput and returns a tuple (output object, length consumed).

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode ( input[, errors])
Decodes the objedtputand returns a tuple (output object, length consumed).

input must be an object which provides thé _getreadbuf  buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter  andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Semdings.utf _8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter  class is a subclass Gfodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

classStreamWriter  ( strean{, errors])
Constructor for é&streamWriter  instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter  may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

eo’strict’ RaiseValueError  (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character

write ( objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€)  method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

110 Chapter 4. String Services



In addition to the above methods, tBéreamWriter  must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strean{, errors])
Constructor for &streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

e’strict’ RaiseValueError  (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.
read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.qg. if optional encoding endings or state markers are available on
the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Unlike the readlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method — there is currently no support for line breaking using the codec decoder due
to lack of line buffering. Sublcasses should however, if possible, try to implement this method using their own
knowledge of line breaking.

size if given, is passed as size argument to the streagaidline() method.

readlines  ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.
sizehint if given, is passed asizeargument to the stream’sad() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

4.8. codecs — Codec registry and base classes 111



StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned lopkup()  function to construct the instance.

classStreamReaderWriter  ( stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tisdreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfacesStifeamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkup()  function to construct the instance.

classStreamRecoder ( stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite() ) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encodedecodemust adhere to th€odec interface,Reader Writer must be factory functions or classes pro-
viding objects of the th&treamReader andStreamWriter  interface respectively.

encodeanddecodeare needed for the frontend translati®&eaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStoéamReader andStreamWriter — classes. They
inherit all other methods and attribute from the underlying stream.

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based otttieteData.txt’ file version 3.0.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (nam§
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name( unichr[, default])
Returns the name assigned to the Unicode charantehr as a string. If no name is definedefaultis returned,
or, if not given,ValueError  is raised.

112 Chapter 4. String Services



decimal ( unichi], default])
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giverialueError s raised.

digit (unich, default])
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definetfault
is returned, or, if not giveriyalueError  is raised.

numeric ( unichr[, default])
Returns the numeric value assigned to the Unicode chanawighr as float. If no such value is definedkfault
is returned, or, if not giveralueError s raised.

category (unichr)
Returns the general category assigned to the Unicode chavadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chatetdir as string. If no such value is defined,
an empty string is returned.

combining ( unichr)
Returns the canonical combining class assigned to the Unicode charaidier as integer. Return8 if no
combining class is defined.

mirrored (' unichr)
Returns the mirrored property of assigned to the Unicode chanawighr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition  (‘unichr)
Returns the character decomposition mapping assigned to the Unicode chanéaiteras string. An empty
string is returned in case no such mapping is defined.

4.9. unicodedata — Unicode Database 113



114



CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

math Mathematical functionss{n()  etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar Functions for working with calendars, including some emulation of thexUtal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp()  invokes the online help system in the interactive interpreter, which pgdsc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by runningydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by
the UNIX man command. The argument fiydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argumgshdddooks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabid refers to an
existing Python source file, then documentation is produced for that file.

Specifying a-w flag before the argument will cause HTML documentation to be written out to a file in the current

115



directory, instead of displaying text on the console.

Specifying ak flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to thexdman command. The synopsis line of a module is the first line
of its documentation string.

You can also us@ydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers.pydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost: 1234/ in your preferred Web browsepydoc -gwill start the server and additionally
bring up a smallrkinter  -based graphical interface to help you search for documentation pages.

Whenpydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter and
typed import spam ’

5.2 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

116 Chapter 5. Miscellaneous Services



This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test docstrings represent reality 117



import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if n+1 == n: # e.g., 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
try:
result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if _name__ == "_ main__"
_test()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That's normal, and it means all the examples worked.-P&sshe script, and doctest prints a
detailed log of what it's trying, and prints a summary at the end:

$ python example.py -v

Running example.__doc__

Trying: factorial(5)

Expecting: 120

ok

0 of 1 examples failed in example.__doc__
Running example.factorial.__doc___

Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

118 Chapter 5. Miscellaneous Services



Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:
1 tests in example
8 tests in example.factorial
9 tests in 2 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive use of doctest! Jump in. The docstrings in doctest.py contain
detailed information about all aspects of doctest, and we’ll just cover the more important points here.

5.2.1 Normal Usage

In normal use, end each modWNewith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M)  # ditto

if _name__ == "_ main__"
_test()

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outpuTest failed.’

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printedttibut , along with assorted summaries at the end.

You can force verbose mode by passimgbose=1 to testmod, or prohibit it by passingrbose=0 . In either of
those casesys.argv  is not examined by testmod.

In any case, testmod returns a 2-tuple of {fits t) , wheref is the number of docstring examples that failed aisd
the total number of docstring examples attempted.

5.2. doctest — Test docstrings represent reality 119



5.2.2 Which Docstrings Are Examined?

See Hocstring.py’ for all the details. They're unsurprising: the module docstring, and all function, class and method
docstrings are searched, with the exception of docstrings attached to objects with private names. Objects imported into
the module are not searched.

In addition, ifM. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings foundMramtest __ are searched even if

the name is private, and strings are searched directly as if they were docstrings. In outpuk, ia kky _test

appears with name

<name of M>,__ test .K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.
While private names reached fravs globals are skipped, all names reached fidm _test __ are searched.

5.2.3 What's the Execution Context?

By default, each time testmod finds a docstring to test, it usepgnof Ms globals, so that running tests on a module
doesn’t change the module’s real globals, and so that one tb&tam't leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top{gaidmames defined
earlier in the docstring being run.

You can force use of your own dict as the execution context by pagkibg=your _dict totestmod() instead.
Presumably this would be a copy i __dict __ merged with the globals from other imported modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The various
“File” lines in between can be left out (unless they add significantly to the documentation value of the example).

5.2.5 Advanced Usage
testmod() actually creates a local instance of cldgster , runs appropriate methods of that class, and merges
the results into globalester instancemaster .

You can create your own instancesTdster , and so build your own policies, or even run methodsnafster
directly. SeeTester. __doc __ for details.

120 Chapter 5. Miscellaneous Services



5.2.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine — just make sure the leading whitespace
is rigidly consistent (you can mix tabs and spaces if you're too lazy to do it right, but doctest is not in the business of
guessing what you think a tab means).

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> jf x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NoO!I!"

no

NO

NO!!m

>>>

Any expected output must immediately follow the finab> * or’... ’ line containing the code, and the ex-
pected output (if any) extends to the neéxt> ' or all-whitespace line.

The fine print;
e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output.
e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

¢ If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
need to double the backslash in the docstring version. This is simply because you're in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> jf "yes" == \\
VAR S\
"es™
print 'yes’
yes

e The starting column doesn’'t matter:

>>> assert "Easy!"
>>> jmport math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
>>> ' |ine that triggered it.

5.2. doctest — Test docstrings represent reality 121



5.2.7 Warnings

1. doctest s serious about requiring exact matches in expected output. If even a single character doesn’t match,
the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn't
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs
will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
1
>>>

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d

[(Harry’, ’broomstick’), ('Hermione’, 'hippogryph’)]

There are others, but you get the idea.
Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to
the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the forn/2.**J are safe across all platforms, and | often contrive doctest examples to produce
numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

122 Chapter 5. Miscellaneous Services



2. Be careful if you have code that must only execute once.
If you have module-level code that must only execute once, a more foolproof definitidasif)  is

def _test():
import doctest, sys
doctest.testmod(sys.modules["__main__"])

5.2.8 Soapbox

The first word in doctest is "doc”, and that’s why the author wrote doctest: to keep documentation up to date. It so
happens that doctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned — it may not be natural at
first. Examples should add genuine value to the documentation. A good example can often be worth many words. If
possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example of each
kind of exception that can be raised. You're probably testing for endcases and subtle cases anyway in an interactive
shell: doctest wants to make it as easy as possible to capture those sessions, and will verify they continue to work as
designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect them
many times over as the years go by and "things change”. I'm still amazed at how often one of my doctest examples
stops working after a "harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, deftesta __ dict instead. That's
what it's for.

5.3 unittest — Unit testing framework

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’'s Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework.umtigest module provides classes that make it
easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

test case
A test cases the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base clasBestCase , which may be used to create new test cases.

test suite
A test suitds a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

5.3. unittest  — Unit testing framework 123



The test case and test fixture concepts are supported througresh€ase andFunctionTestCase classes;

the former should be used when creating new tests, and the later can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usifgstCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture . RbfitttionTestCase  , existing

functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;

if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of th&estCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by thestSuite  class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single metha) , which accepts destCase or TestSuite  object

as a parameter, and returns a result object. The GlasdResult is provided for use as the result object. PyUnit
provide theTextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shareditbgst

5.3.1 Organizing test code

The basic building blocks of unit testing aesst cases— single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instancesést@ase class in theunittest module. To make
your own test cases you must write subclassékestCase , or useFunctionTestCase

An instance of alestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of @estCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridetimdest()  method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest. TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofagsert*() or fail*() methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case asfailure. Other exceptions that do not arise from checks made througistert*()

andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

124 Chapter 5. Miscellaneous Services



testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method adtélp() , which the testing framework
will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
‘incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thenTest()  method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thanTest()  method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thiearDown() method will be run regardless of whether or nahTest()  succeeded.
Such a working environment for the testing code is callédtare

Often, many small test cases will use the same fixture. In this case, we would end up subSangieyVid-
getTestCase into many small one-method classes suctDasaultWidgetSizeTestCase . This is time-
consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

5.3. unittest  — Unit testing framework 125



import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

Here we have not provided minTest() = method, but have instead provided two different test methods. Class
instances will now each run one of thest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite , represented by the claggstSuite in theunittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__(self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

126 Chapter 5. Miscellaneous Services



(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creatdastCase subclass with many similarly named test functions, there is
a convenience function calledakeSuite()  provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,'test’)

Note that when using thenakeSuite()  function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names usiogi@ built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite  instances can be added tdfestSuite  just asTestCase instances can be added to a
TestSuite

suitel modulel.TheTestSuite()
suite2 module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (e.g.

‘widget.py’), but there are several advantages to placing the test code in a separate module, sisigetssts. py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code. it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

e If the testing strategy changes, there is no need to change the source code.

5.3.2 Re-using old test code
Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to @estCase subclass.

For this reason, PyUnit providesmainctionTestCase  class. This subclass @kstCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
# ..

one can create an equivalent test case instance as follows:

5.3. unittest =~ — Unit testing framework 127



testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use dfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatssertionError differently.

5.3.3 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

classFunctionTestCase  ( testFunt{, setu;{, tearDowr{, description] ] ] )
This class implements the portion of thiestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated intmdatest  -based test framework.

classTestSuite  ( [testﬁ)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregedisis diven,
it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrappedtin a
Suite . It can load all tests within a given module destCase class. When loading from a module, it
considers allTestCase -derived classes. For each such class, it creates an instance for each method with a
name beginning with the stringe'st

defaultTestLoader
Instance of th& estLoader class which can be shared. If no customization offthstLoader is needed,
this instance can always be used instead of creating new instances.

classTextTestRunner ( [strean{, descriptiong, verbositﬂ ] ] )
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ( [module[, defauItTes[t, argv[, testRunne[r, testRunne}] ] ] ] )
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

1 ’

if __name__ == "'__main__"
unittest.main()

128 Chapter 5. Miscellaneous Services



5.3.4 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if theetUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ( [result])
Run the test, collecting the result into the test result object passesbals If resultis omitted orNone, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert _(expf, msg])
failunless  ( expf, msg])
Signal a test failure i€xpris false; the explanation for the error will pesgif given, otherwise it will beNone.

assertEqual  (first, seconﬂ, msg|)

failUnlessEqual (first, secongl, msg])
Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as the
first parameter tdailUnless() . the default value fomsgcan be computed to include representations of
bothfirst andsecond

assertNotEqual  (first, seconﬂ, msg])

faillfEqual (first, secongl, msg|)
Test thaffirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations of
bothfirst andsecond

assertRaises  ( exception, callable, )..

failUnlessRaises ( exception, callable, )..
Test that an exception is raised wheallableis called with any positional or keyword arguments that are also
passed t@assertRaises() . The test passes éxceptioris raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed &xception

faillf  (expt], msq)

5.3. unittest  — Unit testing framework 129



The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris true,
with msgor None for the error message.

fail  ([msg])
Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytdst()  method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object.eéBtCase instances, this will always be,
but this method is also implemented by thestSuite  class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription 0
Returns a one-line description of the testName if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if availabNnre.

5.3.5 TestSuite Objects

TestSuite  objects behave much likEestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests toTestSuite  instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (testy
Add all the tests from a sequenceTdstCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

run ( resuli
Run the tests associated with this suite, collecting the result into the test result object passatl &ote that
unlike TestCase.run()  , TestSuite.run() requires the result object to be passed in.

In the typical usage of @&estSuite  object, therun() method is invoked by destRunner rather than by the
end-user test harness.

5.3.6 TestResult Objects

A TestResult  object stores the results of a set of tests. TlestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top afnittest may want access to thieestResult  object generated by running
a set of tests for reporting purposesfestResult  instance is returned by thieestRunner.run() method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those
test runs. The collections contain tupleg déstcase exceptioninfd, whereexceptioninfds a tuple as returned by

130 Chapter 5. Miscellaneous Services



sys.exc _info()

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs offestCase instances and thgys.exc _info()  results for tests which raised an
exception but did not signal a test failure.

failures
A list containing pairs offestCase instances and th&ys.exc _info()  results for tests which signalled a
failure in the code under test.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of th@estResult  class are used to maintain the internal data structures, and mmay be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest  (tes)
Called when the test casestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, er)
Called when the test casgestraises an exception without signalling a test failuegr is a tuple of the form
returned bysys.exc _info() : (type value traceback.

addFailure (test, er)
Called when the test cagestsignals a failure.err is a tuple of the form returned bgys.exc _info()
(type value traceback.

addSuccess (tes)
This method is called for a test that does not figktis the test case object.

One additional method is available fbestResult  objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner  class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.7 TestLoader Objects

TheTestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; thenittest module provides an instance that can be shared atetfla@ltTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase  (testCaseCla3s
Return a suite of all tests cases contained inTibstCase -derived classestCaseClass

loadTestsFromModule  ( modulg
Return a suite of all tests cases contained in the given module. This method seanclusfor classes derived

5.3. unittest — Unit testing framework 131



from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy oTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName  ( name[, modulei)
Return a suite of all tests cases given a string specifier.

The specifiemameis a “dotted name” that may resolve either to a module, a test case class, a test method
within a test case class, or a callable object which returff®estCase or TestSuite  instance. For
example, if you have a modul8ampleTests containing aTestCase -derived classSampleTest-

Case with three test methoddgst _one() , test _two() , andtest _three() ), the specifiefSam-
pleTests.SampleTestCase’ would cause this method to return a suite which will run all three test meth-
ods. Using the specifieBampleTests.SampleTestCase.test _two’ would cause it to return a test

suite which will run only theest _two() test method. The specifier can refer to modules and packages which
have not been imported; they will be imported as a side-effect.

The method optionally resolvemmerelative to a given module.

loadTestsFromNames  ( nameﬁ, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wigbiCaseClass

The following attributes of &estLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
‘test’

sortTestMethodsUsing
Function to be used to compare method names when sorting thgatTiestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite  class.

5.4 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name droatlthenodule

if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions provided by this module:

acos (x)

Return the arc cosine af
asin (x)

Return the arc sine of

132 Chapter 5. Miscellaneous Services



atan (x)
Return the arc tangent &f

atan2 (v, X

Returnatan( y / X).
ceil (x)

Return the ceiling ok as a float.
cos ( X)

Return the cosine of.

cosh ( x)
Return the hyperbolic cosine &f

exp ( X)
Returne** x.

fabs (x)
Return the absolute value of the floating point number

floor (X)
Return the floor ok as a float.

fmod ( x, y)
Returnfmod( %, V), as defined by the platform C library. Note that the Python expressiéfiy may not
return the same result.

frexp (X)
Return the mantissa and exponenkais the pai{ m, €). mis a float anckis an integer such that == m *
2** e If xis zero, returng0.0, 0) , otherwised.5 <= abs( m) < 1.

hypot (X, )
Return the Euclidean distancgrt( x*x + y*vy).

ldexp (X, i)
Returnx * (2** i) .
log (X)
Return the natural logarithm af
log10 (X)
Return the base-10 logarithm xf
modf ( X)
Return the fractional and integer partsxofBoth results carry the sign of The integer part is returned as a
float.
pow( X, y)
Returnx** y.
sin (X)
Return the sine of.
sinh (x)
Return the hyperbolic sine af
sqrt (X)
Return the square root a&f
tan (X)
Return the tangent of
tanh (x)

5.4. math — Mathematical functions 133



Return the hyperbolic tangent rf

Note thatfrexp() = andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi

The mathematical constapi.
e

The mathematical constaat
See Also:

Modulecmath (section 5.5):
Complex number versions of many of these functions.

5.5 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos ( X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axist@entinuous from above.

acosh (x)
Return the hyperbolic arc cosine xf There is one branch cut, extending left from 1 along the real axisto -
continuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

asinh (x)
Return the hyperbolic arc sine af There are two branch cuts, extending left framj to +-ocj, both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release. The
correct branch cuts should extend along the imaginary axis, onefjonp toooj and continuous from the
right, and one from%j down to ooj and continuous from the left.

atan ( x)
Return the arc tangent af There are two branch cuts: One extends fljmalong the imaginary axis teoj ,
continuous from the left. The other extends frohj -along the imaginary axis toej , continuous from the
left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)
Return the hyperbolic arc tangentxf There are two branch cuts: One extends from 1 along the real axis to
oo, continuous from above. The other extends from -1 along the real axis toentinuous from above. (This
should probably be changed so the right cut becomes continuous from the other side.)

cos (X)
Return the cosine of.

cosh ( X)
Return the hyperbolic cosine &f

exp ( x)
Return the exponential valeg™* x.

log ()

134 Chapter 5. Miscellaneous Services



Return the natural logarithm &f There is one branch cut, from 0 along the negative real axisst@entinuous

from above.
logl0 (x)

Return the base-10 logarithm xf This has the same branch cutiag()
sin (X)

Return the sine of.
sinh (x)

Return the hyperbolic sine af
sqrt (X)

Return the square root &f This has the same branch cutiag()
tan (X

Return the tangent of.
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapi, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in madhalés . The reason for having two
modules is that some users aren't interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In Iserles, A., and
Powell, M. (eds.)The state of the art in numerical analys{Slarendon Press (1987) pp165-211.

5.6 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions. For integers, uniform selection
from a range. For sequences, uniform selection of a random element, and a function to generate a random permutation
of a list in-place. On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative
exponential, gamma, and beta distributions. For generating distribution of angles, the circular uniform and von Mises
distributions are available.

Almost all module functions depend on the basic functiandom() , which generates a random float uniformly

in the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill generator, combining three pure multi-
plicative congruential generators of modulus 30269, 30307 and 30323. Its period (how many numbers it generates
before repeating the sequence exactly) is 6,953,607,871,644. While of much higher quality tiaadhe function

supplied by most C libraries, the theoretical properties are much the same as for a single linear congruential generator
of large modulus. It is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

5.6. random — Generate pseudo-random numbers 135



The functions in this module are not threadsafe: if you want to call these functions from multiple threads, you should
explicitly serialize the calls. Else, because no critical sections are implemented internally, calls from different threads
may see the same return values.

The functions supplied by this module are actually bound methods of a hidden instanceaoftitven. Random class.

You can instantiate your own instancesRdndomto get generators that don't share state. This is especially useful
for multi-threaded programs, creating a different instandRaridomfor each thread, and using thempahead()
method to ensure that the generated sequences seen by each thread don’t overlap (see example below).

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that case,
override theandom() , seed() , getstate() , setstate() andjumpahead() methods.

Here’s one way to create threadsafe distinct and non-overlapping generators:

def create_generators(num, delta, firstseed=None):
""Return list of num distinct generators.
Each generator has its own unique segment of delta elements
from Random.random()’s full period.
Seed the first generator with optional arg firstseed (default
is None, to seed from current time).

from random import Random

g = Random(firstseed)

result = [g]

for i in range(num - 1):
laststate = g.getstate()
g = Random()
g.setstate(laststate)
g.jumpahead(delta)
result.append(g)

return result

gens = create_generators(10, 1000000)

That creates 10 distinct generators, which can be passed out to 10 distinct threads. The generators don’t share state so
can be called safely in parallel. So long as no thread callg.itsxdom() more than a million times (the second
argument tocreate _generators() , the sequences seen by each thread will not overlap. The period of the
underlying Wichmann-Hill generator limits how far this technique can be pushed.

Just for fun, note that since we know the peripmppahead() can also be used to “move backward in time:”

>>> g = Random(42) # arbitrary

>>> g.random()

0.25420336316883324

>>> g.jumpahead(6953607871644L - 1) # move *back* one
>>> g.random()

0.25420336316883324

Bookkeeping functions:

seed ( [x])
Initialize the basic random number generator. Optional argumeat be any hashable object.xlfs omitted
or None, current system time is used; current system time is also used to initialize the generator when the
module is first imported. Ik is notNone or an int or long,hash( x) is used instead. Ik is an int or long,
x is used directly. Distinct values between 0 and 27814431486575L inclusive are guaranteed to yield distinct

136 Chapter 5. Miscellaneous Services



internal states (this guarantee is specific to the default Wichmann-Hill generator, and may not apply to subclasses
supplying their own basic generator).

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1s8e@ for details.
whseed does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more
than about 2**24 distinct internal states in all.

getstate ()
Return an object capturing the current internal state of the generator. This object can be peeststatéeg)
to restore the state. New in version 2.1.

setstate ( stat@
stateshould have been obtained from a previous cafjdtstate() , andsetstate() restores the internal
state of the generator to what it was at the tgeéstate() was called. New in version 2.1.

jumpahead ( n)
Change the internal state to what it would beaihdom() were calledh times, but do so quicklyn is a non-
negative integer. This is most useful in multi-threaded programs, in conjuction with multiple instances of the
Random class: setstate() orseed() can be used to force all instances into the same internal state, and
thenjumpahead() can be used to force the instances’ states as far apart as you like (up to the period of the
generator). New in version 2.1.

Functions for integers:

randrange ( [start,] sto;{, step])
Return a randomly selected element fromange( start, stop step. This is equivalent to
choice(range(  start, stop step) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b
Deprecated since release 2.Qserandrange()  instead.

Return a random integdt such that <= N <= b.
Functions for sequences:

choice (seq
Return a random element from the non-empty sequsage

shuffle (x[, random])
Shuffle the sequencein place. The optional argumerandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functisandom() .

Note that for even rather smadéin( x) , the total number of permutations fs larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b
Return a random real numblrsuch thath <= N < b.

betavariate  (alpha, beta
Beta distribution. Conditions on the parameters @ha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, araic is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betwepn ®Ranhdned values

5.6. random — Generate pseudo-random numbers 137



range betweemean - arc/2 andmean + arc/2 .

expovariate  (lambg
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammd alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parameteraipka > -1 andbeta > 0.

gauss ( mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate  ( mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate  ( mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate  ( mu, kappa
muis the mean angle, expressed in radians between 0 qrida2idkappais the concentration parameter, which
must be greater than or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to g

paretovariate (alpha
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

See Also:

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.7 whrandom — Pseudo-random number generator

Deprecated since release 2.1serandom instead.

Note: This module was an implementation detail of tk@dom module in releases of Python prior to 2.1. Itis no
longer used. Please do not use this module directlyjarsgom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaaretbm .
Instances of thevhrandom class conform to the Random Number Generator interface described in s&2tibimey
also offer the following method, specific to the Wichmann-Hill algorithm:

seed ( [x, Y, z])
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time, \if andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the paramet@rshartenot all

three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the

corresponding result on the pseudo-random series produced by the generator.

choice (seq
Chooses a random element from the non-empty sequssgand returns it.

randint (a, b
Returns a random integ8f such thaa<=N<=b.

random ()

138 Chapter 5. Miscellaneous Services



Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X,Y, 2
Initializes the random number generator from the integegsandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numbersuch thab<=N<b.

When imported, thevhrandom module also creates an instance of Wteandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitkerwhrandom.random()  or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.6):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.8 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect _left (list, iten], o[, hi]])
Locate the proper insertion point fitemin list to maintain sorted order. The parameterandhi may be used
to specify a subset of the list which should be considered; by default the entire list is ustedn i already
present ifist, the insertion point will be before (to the left of) any existing entries. The return value is suitable

for use as the first parameterlist.insert() . This assumes théist is already sorted. New in version 2.1.
bisect _right (list, itenf, Io[, hi]])
Similar tobisect _left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.
bisect (..)

Alias for bisect _right()

insort _left (list, itenq, lo[, hi] ])
Insertitemin list in sorted order. This is equivalent ligt.insert(bisect.bisect _left( list, item
lo, hi), item). This assumes thést is already sorted. New in version 2.1.

insort  _right  (list, iten, Io[, hi]])
Similar toinsort  _left() , but insertingtemin list after any existing entries @em New in version 2.1.

insort (..)
Alias forinsort  _right()

5.8. bisect — Array bisection algorithm 139



5.8.1 Example

Thebisect()  function is generally useful for categorizing numeric data. This examplehisest()  to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[E, A, B, D, 'F, 'A]

5.9 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Minimum size in bytes
'c’ character 1
b’ signed int 1
B’ unsigned int 1
'h’ signed int 2
'H unsigned int 2
i) signed int 2
T unsigned int 2
T’ signed int 4
L unsigned int 4
'f float 4
o’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed througitehesize  attribute. The values stored far and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecodé, initializer])
Return a new array whose items are restrictedyimecode and initialized from the optionabhitializer value,
which must be a list or a string. The list or string is passed to the new afrawitist() orfromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returneatgy()

Array objects support the following data items and methods:

140 Chapter 5. Miscellaneous Services



typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append ( X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tuple( address length giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
ray.buffer _info()[1] * array.itemsize . This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such asagtttain  operations. The
returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C ot+C(the only way to effectively make use of

this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in the Python/C AP| Reference Manual

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of valuesRuntimeError s raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (Xx)
Return the number of occurencesxdh the array.

extend (a)
Append array items frora to the end of the array.

fromfile  (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witiead() method won't do.

fromlist  (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' except that if there is a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using thdromfile() method).

index (X)
Return the smallestsuch that is the index of the first occurence wfn the array.
insert (i, X)
Insert a new item with valurin the array before position
pop([i])
Removes the item with the indéxXrom the array and returns it. The optional argument defaultd tcso that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witiead() method won't do.

remove ( X)

5.9. array — Efficient arrays of numeric values 141



Remove the first occurence wfrom the array.

reverse ()
Reverse the order of the items in the array.

tofile  (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thifile() method.)

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representadag typecode initializer) . The

initializer is omitted if the array is empty, otherwise it is a string if typecodeis 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes‘( ), so long as tharray()  function has been imported usifiggm array import array

Examples:

array('l')

array(’c’, ’hello world’)
array(l', [1, 2, 3, 4, 5)])
array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct  (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib  (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML/numdoc.html)
The Numeric Python extension (NumPy) defines another array typehtgeénumpy.sourceforge.net/ for
further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf.

5.10 ConfigParser = — Configuration file parser

This module defines the cla@onfigParser . TheConfigParser  class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead bysaction] ' header and followed byfame: value ’en-

tries, with continuations in the style of RFC 82Pame=value ' is also accepted. Note that leading whitespace is
removed from values. The optional values can contain format strings which refer to other values in the same section,
or values in a speciddEFAULTsection. Additional defaults can be provided upon initialization and retrieval. Lines
beginning with #’ or *; * are ignored and may be used to provide comments.

For example:

142 Chapter 5. Miscellaneous Services



foodir: %(dir)s/whatever
dir=frob

would resolve the%(dir)s ' to the value of dir ' (‘frob ’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them intocQbefigParser  constructor as a dictionary. Additional
defaults may be passed into thet() method which will override all others.

classConfigParser ([defaults])
Return a new instance of tli@onfigParser  class. Whemlefaultsis given, it is initialized into the dictionary
of intrinsic defaults. The keys must be strings, and the values must be appropriate fa(¥eé tring inter-
polation. Note that _name__ is an intrinsic default; its value is the section name, and will override any value
provided indefaults

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised when multiple sections with the same name are foundyad ifsection() is called with
the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

exceptioninterpolationError
Exception raised when problems occur performing string interpolation.

exceptioninterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAXINTERPOLATION_DEPTH

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAXINTERPOLATION_DEPTH
The maximum depth for recursive interpolation ®t() when theraw parameter is false. Setting this does
not change the allowed recursion depth.

See Also:

Moduleshlex (section 5.15):
Support for a creating Nix shell-like minilanguages which can be used as an alternate format for application
configuration files.

5.10.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections availablEFAULTis not included in the list.

add _section ( section

5.10. ConfigParser = — Configuration file parser 143



Add a section nameskectionto the instance. If a section by the given name already eXisiglicateSec-
tionError is raised.

has _section ( section
Indicates whether the named section is present in the configuratiodHRAUL Tsection is not acknowledged.

options ( sectior)
Returns a list of options available in the specifsettion

has _option ( section, optioh
If the given section exists, and contains the given option. return 1; otherwise return 0. New in version 1.6.

read ( filename}
Read and parse a list of filenamesfilénamess a string or Unicode string, it is treated as a single filename. If
a file named irfilenamescannot be opened, that file will be ignored. This is designed so that you can specify
a list of potential configuration file locations (for example, the current directory, the user’s home directory, and
some system-wide directory), and all existing configuration files in the list will be read. If none of the named
files exist, theConfigParser  instance will contain an empty dataset. An application which requires initial
values to be loaded from a file should load the required file or files usiadfp()  before callingread()
for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open('defaults.cfg’))
config.read(['site.cfg’, os.path.expanduser(~/.myapp.cfg’)])

readfp ( fp[, filenamd)
Read and parse configuration data from the file or file-like objefgt only thereadline() method is used).
If filenameis omitted andp has aname attribute, that is used fdilename the default is <???>".

get ( section, optiofl, raw[, vars]])
Get anoptionvalue for the providedection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the oposgrovided, unless theaw argument is true.

getint  ( section, optioh
A convenience method which coerces tpionin the specifiedectionto an integer.

getfloat  ( section, optioh
A convenience method which coerces tptionin the specifiegectionto a floating point number.

getboolean ( section, optioh
A convenience method which coerces thtion in the specifiedsectionto a Boolean value. Note that the
accepted values for the option d@keyes, true , andon, which cause this method to return true, @hdo,
false , andoff , which cause it to return false. These values are checked in a case-insensitive manner. Any
other value will cause it to raiséalueError

set ( section, option, valye
If the given section exists, set the given option to the specified value; otherwisdloggetionError . New
in version 1.6.

write (fileobjec)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
futureread() call. New inversion 1.6.

remove _option ( section, optioh
Remove the specifieabtionfrom the specifiedection If the section does not exist, rais®SectionError
If the option existed to be removed, return 1; otherwise return 0. New in version 1.6.

remove _section ( sectior)

144 Chapter 5. Miscellaneous Services



Remove the specifiesectionfrom the configuration. If the section in fact existed, return 1. Otherwise return 0.

optionxform  (option)
Transforms the option nanogptionas found in an input file or as passed in by client code to the form that should
be used in the internal structures. The default implementation returns a lower-case veogitorpsubclasses
may override this or client code can set an attribute of this name on instances to affect this behavior. Setting this
tostr() , for example, would make option hames case sensitive.

5.11 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listed sys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-’ , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. usByg.stdin.seek(0) ).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input  ( [files[, inplace[, backud]] )
Create an instance of thélelnput  class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to the
constructor of thé-ilelnput  class.

The following functions use the global state createdrput() ; if there is no active stateRuntimeError  is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Kginms

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read frays.stdin  , otherwise returns false.

5.11. fileinput — Iterate over lines from multiple input streams 145



nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

classFilelnput  ( [files[, inplace[, backud]] )
ClassFilelnput is the implementation; its methoddename() , lineno() , fileline() , is-
firstline() , isstdin() , hextfile() and close()  correspond to the functions of the same
name in the module. In addition it hasreadline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access agaldline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tinput()  or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file (if a file of the same name as
the backup file already exists, it will be replaced silently). This makes it possible to write a filter that rewrites its input
file in place. If the keyword argumebtickup’.<some extension>’ is also given, it specifies the extension for

the backup file, and the backup file remains around; by default, the extensibakis and it is deleted when the
output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.12 xreadlines — Efficient iteration over a file

New in version 2.1.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines object is
a sequence type which implements simple in-order indexing beginnifg @&t required byor statement or the
filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8*1024)
if not lines: break
for line in lines:
pass

except the clarity of théor statement is retained in the former case.

xreadlines  ( fileobj)
Return a new xreadlines object which will iterate over the conterftieobj. fileobjmust have aeadlines()
method that supports tisizehintparameter.

146 Chapter 5. Miscellaneous Services



An xreadlines objecs$ supports the following sequence operation:

Operation | Result
9] | ithline of s

If successive values ofare not sequential starting frody this code will raiseRuntimeError

After the last line of the file is read, this code will raiseladexError

5.13 calendar — General calendar-related functions

This module allows you to output calendars like th&ild cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Usetfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers.

setfirstweekday (weekday
Sets the weekday(is Monday,6 is Sunday) to start each week. The valMENDAYTUESDAYWEDNESDAY
THURSDAYFRIDAY, SATURDAYand SUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar. SUNDAY)

firstweekday ()
Returns the current setting for the weekday to start each week.

isleap (yean
Returnsl if yearis a leap year, otherwigg

leapdays (y1,y?
Returns the number of leap years in the range.[.y2), whereyl andy2 are years.

weekday ( year, month, day
Returns the day of the weeR (s Monday) foryear(1970—...),month(1-12), day(1-31).

monthrange ( year, month
Returns weekday of first day of the month and number of days in month, for the spgeifielhdmonth

monthcalendar ( year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbrgtweekday()

prmonth ( theyear, themon{h W[, I]])
Prints a month’s calendar as returnedrbgnth() .

month ( theyear, themon{h w[, [ ] ] )
Returns a month’s calendar in a multi-line string.wls provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the first
weekday as set bgetfirstweekday()

prcal (yeal{, W[, I[c]]] )

Prints the calendar for an entire year as returneddbgndar()

calendar ( yeal{, vv[ I[C] ]] )

Returns a 3-column calendar for an entire year as a multi-line string. Optional paramgeteamdc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends on

5.13. calendar — General calendar-related functions 147



the first weekday as set Isgtfirstweekday() . The earliest year for which a calendar can be generated is
platform-dependent.

timegm ( tuple

An unrelated but handy function that takes a time tuple such as returned lgyntirae()  function in the
time module, and returns the correspondingiik timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In factime.gmtime() andtimegm() are each others’ inverse.

See Also:

Moduletime (section 6.9):

Low-level time related functions.

5.14 cmd— Support for line-oriented command interpreters

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

classCmd [completeke]/)

A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit
Cmds methods and encapsulate action methods.

The optional argument is theadline  name of a completion key; it defaults T@b. If completekeys not
None andreadline is available, command completion is done automatically.

5.14.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ( [intro])

Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrida® the
class member).

If the readline  module is loaded, input will automatically inheritash-like history-list editing (e.g.
Control-P  scrolls back to the last comman@pntrol-N  forward to the next oneControl-F  moves
the cursor to the right non-destructivefpntrol-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the stiEQF’ .

An interpreter instance will recognize a command nafaoe * if and only if it has a methodlo _foo() . As
a special case, a line beginning with the charac?éris dispatched to the methadb _help() . As another
special case, a line beginning with the charactér is dispatched to the methodo _shell() (if such a
method is defined).

If completion is enabled, completing commands will be done automatically, and completing of commands args
is done by callingcomplete _foo() with argumentdext line, begidx andendidx textis the string prefix

we are attempting to match: all returned matches must begin witihétis the current input line with leading
whitespace removethegidxandendidxare the beginning and ending indexes of the prefix text, which could be
used to provide different completion depending upon which position the argument is in.

All subclasses o€mdinherit a predefinedo _help() . This method, called with an argumébar’ , invokes
the corresponding methdeelp _bar() . With no argumentdo _help() lists all available help topics (that
is, all commands with correspondihglp _*() methods), and also lists any undocumented commands.

onecmd( str)

Interpret the argument as though it had been typed in in response to the prompt.

Chapter 5. Miscellaneous Services



emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

completedefault (text, line, begidx, endigx
Method called to complete an input line when no command-spexifitplete _*() method is available. By
default, it returns an empty list.

precmd ()
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued. This method is a stub@md it exists to be overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a Gl inexists to be
overridden by subclasses.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @©md it exists to be overrid-
den by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubdmd it exists to be
overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.
identchars
The string of characters accepted for the command prefix.
lastcmd
The last nonempty command prefix seen.
intro
A string to issue as an intro or banner. May be overridden by givingitiniloop() method an argument.
doc _header

The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, thehe arg)
methods without correspondimtp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, theré(@re
methods without correspondimglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ='.

use _rawinput
A flag, defaulting to true. If truegmdloop() usesraw _input() to display a prompt and read the next
command; if falsesys.stdout.write() and sys.stdin.readline() are used. (This means that
by importingreadline , on systems that support it, the interpreter will automatically support Emacs-like line
editing and command-history keystrokes.)

5.14. cmd— Support for line-oriented command interpreters 149



5.15 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that ofithestell. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

classshlex ( [strean{, file]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like objectwilf) andreadline()
methods. If no argument is given, input will be taken fregs.stdin . The second optional argument is a
filename string, which sets the initial value of tinéile member. If the stream argument is omitted or equal
tosys.stdin , this second argument defaults to “stdin”.

See Also:

Module ConfigParser  (section 5.10):
Parser for configuration files similar to the Windowisi* files.

5.15.1 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked ugirgh _token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push _token ( str)
Push the argument onto the token stack.

read _token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook ( filename
Whenshlex detects a source request (seeirce below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there
was no previous source request in effect, or the previous source was a streasygssiglin ), the result is

left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h" ).

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will clalbéiie
method of the sourced input stream when it retuiros.

For more explicit control of source stacking, use plush _source() andpop _source() methods.

push _source ( strean[, filenamd)
Push an input source stream onto the input stack. If the filename argument is specified it will later be available
for use in error messages. This is the same method used internally bpuheehook method. New in
version 2.1.

pop _source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the lexer

150 Chapter 5. Miscellaneous Services



reache€oOFon a stacked input stream. New in version 2.1.

error _leader ( [file[, Iine]])
This method generates an error message leader in the format mfxa@compiler error label; the format is
"%s", line %d: ' , Where the %s is replaced with the name of the current source file and #d
with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encouratex users to generate error messages in the standard, parseable
format understood by Emacs and othevil tools.

Instances oBhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includegsalblphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

guotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inglsidessingle and
double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

instream
The input stream from which thighlex instance is reading characters.

source
This member idNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to theource ’ keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream Bo# at which point theclose()  method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric antl or more, ashlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bareawstdsand ‘ain#t ' would
be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.15. shlex — Simple lexical analysis 151



152



CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modeled aftextbe ©interfaces, but
they are available on most other systems as well. Here’s an overview:

0s

0s.path
dircache

stat
statcache
statvfs
filecmp
popen2
time

sched
mutex
getpass
curses
curses.textpad
curses.wrapper
curses.ascii
curses.panel
getopt
tempfile
errno

glob
fnmatch
shutil

locale
gettext

Miscellaneous operating system interfaces.
Common pathname manipulations.

Return directory listing, with cache mechanism.
Utilities for interpreting the results afs.stat()
Stat files, and remember results.

Constants for interpreting the resultas.statvfs()
Compare files efficiently.

Subprocesses with accessible standard I/O streams.

Time access and conversions.

General purpose event scheduler.

Lock and queue for mutual exclusion.

Portable reading of passwords and retrieval of the userid.

An interface to the curses library, providing portable terminal handling.

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.

Constants and set-membership functionsafecii characters.

A panel stack extension that adds depth to curses windows.

Portable parser for command line options; support both short and long option names.
Generate temporary file names.

Standard errno system symbols.

UNIx shell style pathname pattern expansion.

UNIx shell style filename pattern matching.

High-level file operations, including copying.

Internationalization services.

Multilingual internationalization services.

, 0s.Istat() andos.fstat()

6.1 o0s — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than importing a oper-
ating system dependent built-in module lig@six ornt .

This module searches for an operating system dependent built-in modulediker posix and exports the same
functions and data as found there. The design of all Python’s built-in operating system dependent modules is such that
as long as the same functionality is available, it uses the same interface; for example, the fumstat  path)

returns stat information abopathin the same format (which happens to have originated with the POSIX interface).

153



Extensions peculiar to a particular operating system are also available through thedule, but using them is of
course a threat to portability!

Note that after the first times is imported, there ii0 performance penalty in using functions fram instead of
directly from the operating system dependent built-in module, so there shonlmrbason not to uses!

exceptionerror
This exception is raised when a function returns a system-related error (not for illegal argument types or other
incidental errors). This is also known as the built-in excep@BError . The accompanying value is a pair
containing the numeric error code framrno and the corresponding string, as would be printed by the C func-
tion perror() . See the modulerrno , which contains names for the error codes defined by the underlying
operating system.

When exceptions are classes, this exception carries two attrilartes, andstrerror . The first holds
the value of the Grrno variable, and the latter holds the corresponding error messagesfremor()

For exceptions that involve a file system path (suckladir()  orunlink() ), the exception instance will
contain a third attributdjlename , which is the file name passed to the function.

name
The name of the operating system dependent module imported. The following names have currently been

registered’posix’ ,’'nt ,’java’ ,’riscos’

,’dos’ ,’'mac’ ,’0s2’ ,’ce’
path
The corresponding operating system dependent standard module for pathname operationposixbedis
or macpath . Thus, given the proper importss.path.split( file) is equivalent to but more portable
thanposixpath.split( file) . Note that this is also an importable module: it may be imported directly as
os.path

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For exarapig;onHOME’] is the pathname of
your home directory (on some platforms), and is equivalegetenv("HOME") in C.

If the platform supports thputenv()  function, this mapping may be used to modify the environment as well
as query the environmentutenv()  will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir ( path)
getcwd ()
These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availabitityc. U
getegid ()
Return the current process’ effective group id. Availabilitysitd.
geteuid ()
Return the current process’ effective user id. Availabilityxii.
getgid ()

Return the current process’ group id. AvailabilityNLX .

getgroups ()
Return list of supplemental group ids associated with the current process. Availabiity: U

154 Chapter 6. Generic Operating System Services



getlogin ()
Return the actual login name for the current process, even if there are multiple login names which map to the
same user id. Availability: ix.

getpgrp ()

Return the current process group id. AvailabilityniX.
getpid ()

Return the current process id. Availability:Nuk, Windows.
getppid ()

Return the parent’s process id. AvailabilityNiX.
getuid ()

Return the current process’ user id. AvailabilitynLX.

getenv (varname{, value])
Return the value of the environment variakbnameif it exists, orvalueif it doesn't. valuedefaults toNone.
Availability: most flavors of Wix, Windows.

putenv (varname, valug
Set the environment variable namesinameto the stringvalue Such changes to the environment affect sub-
processes started withs.system() , popen() orfork() andexecv() . Availability: most flavors of
UNIX, Windows.

Whenputenv() is supported, assignments to itemsenviron  are automatically translated into cor-
responding calls tputenv() ; however, calls tqputenv()  don’t updateos.environ , so it is actually
preferable to assign to items o$.environ

setegid ( egid)
Set the current process’s effective group id. Availabilitysi.

seteuid (euid)
Set the current process’s effective user id. Availabilitya1.

setgid ( gid)
Set the current process’ group id. Availability NU .

setgroups ( group9
Set the list of supplemental group ids associated with the current proogsaifts groupsmust be a sequence,
and each element must be an integer identifying a group. This operation is typical available only to the superuser.
Availability: UNIX. New in version 2.2.

setpgrp ()
Calls the system cafletpgrp()  or setpgrp(0, 0) depending on which version is implemented (if any).

See the WX manual for the semantics. Availability: Nux .

setpgid ( pid, pgrp
Calls the system cafletpgid() . See the Wix manual for the semantics. Availability: Nux .

setreuid  (ruid, euid)
Set the current process’s real and effective user ids. AvailabilityxU
setregid  (rgid, egid
Set the current process’s real and effective group ids. AvailabilityrxU
setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. Availability: Nux.
setuid (uid)
Set the current process’ user id. AvailabilityNiX.

strerror  ( code
Return the error message corresponding to the error cattEdi| Availability: UNIX, Windows.

6.1. os — Miscellaneous operating system interfaces 155



umask( masR
Set the current numeric umask and returns the previous umask. Availabilityc, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysnamg nodenamg release version maching. Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostnaseekst.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of Wix.

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode[, bufsize]])
Return an open file object connected to the file descrifstoiThe modeandbufsizearguments have the same
meaning as the corresponding arguments to the buipien() function. Availability: Macintosh, Wix,
Windows.

popen ( comman@, mode[, bufsize] ] )
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetherodeis'r’  (default) orw’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builtepen() function. The exit status of the command (encoded in the
format specified fowait() ) is available as the return value of thlese()  method of the file object, except
that when the exit status is zero (termination without errddspe is returned. Availability: Wix, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This was
due to the use of thepopen() function from the libraries provided with Windows. Newer versions of Python
do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode+(). The file has no directory entries associated with it and
will be automatically deleted once there are no file descriptors for the file. Availabilityx [Mindows.

For each of thespopen() variants, ifbufsizeis specified, it specifies the buffer size for the 1/0 pipesode if
provided, should be the strify  or't’ ; on Windows this is needed to determine whether the file objects should be
opened in binary or text mode. The default valuerfardeis 't’

These methods do not make it possible to retrieve the return code from the child processes. The only way to control
the input and output streams and also retrieve the return codes is to URepthie3 andPopen4 classes from the
popen2 module; these are only available om1x.

popen2 ( cm({, mode[, bufsize]])
Executescmd as a sub-process. Returns the file objéatkild_stdin, child_stdou) . Availability: UNiIX,
Windows. New in version 2.0.

popen3 ( cm({, mode[, bufsize]])
Executexmdas a sub-process. Returns the file objéatkild_stdin, child_stdout child_stderr) . Avail-
ability: UNix, Windows. New in version 2.0.

popen4 ( cm({, mode[, bufsizd])
Execute€mdas a sub-process. Returns the file objéctsld_stdin  child_stdout_and_stderr) . Availability:
UNIX, Windows. New in version 2.0.

This functionality is also available in th@pen2 module using functions of the same names, but the return values of
those functions have a different order.

156 Chapter 6. Generic Operating System Services



6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpey
orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() orfdopen() |,
use itsclose() method.

dup ( fd)
Return a duplicate of file descripté. Availability: Macintosh, Wix, Windows.

dup?2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

fpathconf (fd, namé
Return system configuration information relevant to an open fil@mespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, WX 95, UNIX98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipaltieconf _names dictionary. For configuration
variables not included in that mapping, passing an integendareis also accepted. Availability: MiX.

If nameis a string and is not known/alueError s raised. If a specific value farameis not supported by
the host system, even if itis includedpathconf _names, anOSError is raised witherrno.EINVAL  for
the error number.

fstat (fd)
Return status for file descriptfd, like stat() . Availability: UNix, Windows.

fstatvfs  (fd)
Return information about the filesystem containing the file associated with file desédipike statvfs()
Availability: UNIX.

ftruncate  (fd, length
Truncate the file corresponding to file descrifthrso that it is at modengthbytes in size. Availability: Wix.

isatty  (fd)
Returnl if the file descriptoffd is open and connected to a tty(-like) device, élsdvailability: UNIX.

Iseek (fd, pos, hoy
Set the current position of file descriptiaf to positionpos modified byhow. 0 to set the position relative to
the beginning of the filel to set it relative to the current positio@; to set it relative to the end of the file.
Availability: Macintosh, WNix, Windows.

open ( file, fIags[, mode])
Open the filefile and set various flags accordingftagsand possibly its mode accordingtwode The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, Nix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constaDt&R@KENLY
andO_WRONL)yare defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in funopien() , which
returns a “file object” wittread() andwrite()  methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descrigtoraster slave for the pty and the tty,
respectively. For a (slightly) more portable approach, use@themodule. Availability: Some flavors of MIX.

pipe ()
Create a pipe. Return a pair of file descriptors w) usable for reading and writing, respectively. Availability:

6.1. os — Miscellaneous operating system interfaces 157



UNIX, Windows.

read ( fd, n)
Read at most bytes from file descriptoid. Return a string containing the bytes read. Availability: Macintosh,
UNIx, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe oy
orpipe() . Toread a “file object” returned by the built-in functiopen() or by popen() orfdopen() |,
orsys.stdin , useitsread() orreadline() methods.

tcgetpgrp  (fd)
Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open() ). Availability: UNIX.

tcsetpgrp  (fd, pg
Set the process group associated with the terminal givéd tgn open file descriptor as returneddyyen() )

to pg. Availability: UNIX.

ttyname ( fd)
Return a string which specifies the terminal device associated with file-desddptbfd is not associated with
a terminal device, an exception is raised. Availabilitysiitd.

write ( fd, str)
Write the stringstr to file descriptoifd. Return the number of bytes actually written. Availability: Macintosh,
UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returppe oy
orpipe() . To write a “file object” returned by the built-in functiampen() or by popen() orfdopen() |,
orsys.stdout  orsys.stderr , useitswrite()  method.

The following data items are available for use in constructinglégsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to theopen() function. These can be bit-wise OR'd together. Availability:
Macintosh, Wix, Windows.

O_BINARY
Option for theflag argument to thepen() function. This can be bit-wise OR'd together with those listed
above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access ( path, modg
Check read/write/execute permissions for this process or existencepdtlilenodeshould be=_OKto test the
existence opath or it can be the inclusive OR of one or moreRfOK W_OK andX_OKto test permissions.
Returnl if access is allowed) if not. See the Wlix man pageacces§) for more information. Availability:
UNIX, Windows.

158 Chapter 6. Generic Operating System Services



F_OK
Value to pass as thmodeparameter oficcess() to test the existence path

R_OK

Value to include in thenodeparameter oficcess() to test the readability gfath
W_OK

Value to include in thenodeparameter oiccess() to test the writability ofpath
X_OK

Value to include in thenodeparameter oficcess() to determine ifpathcan be executed.

chdir ( path
Change the current working directorypath Availability: Macintosh, WNix, Windows.

getcwd ()
Return a string representing the current working directory. Availability: Macintoshx [ JWindows.

chroot ( path
Change the root directory of the current procesgdth Availability: UNix. New in version 2.2.

chmod( path, modg
Change the mode gfathto the numerieanode Availability: UNix, Windows.

chown ( path, uid, gig
Change the owner and group idmdithto the numeriaiid andgid. Availability: UNIX.

link ( src, dsj
Create a hard link pointing terc nameddst Availability: UNIX.

listdir ( path)
Return a list containing the names of the entries in the directory. The listis in arbitrary order. It does not include
the special entries’ and’..’ even if they are present in the directory. Availability: MacintoshyiiJ,
Windows.

Istat ( path
Like stat() , but do not follow symbolic links. Availability: ®iix.

mkfifo  ( path], modd])
Create a FIFO (a named pipe) namgath with numeric modenode The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability1XJ

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink() ). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notertkiifio()  doesn’t open the

FIFO — it just creates the rendezvous point.

mkdir ( path, mod¢])
Create a directory namgzhthwith numeric modenode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintesh, U
Windows.

makedirs ( patr{, modd)
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws &mror exception if the leaf directory already exists or cannot be created.
The defaulinodeis 0777 (octal). This function does not properly handle UNC paths (only relevant on Windows
systems). New in version 1.5.2.

pathconf ( path, namg
Return system configuration information relevant to a named fiEmnespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Wx 95, UNIX98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipatieconf _names dictionary. For configuration

6.1. os — Miscellaneous operating system interfaces 159



variables not included in that mapping, passing an integendareis also accepted. Availability: MiX.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedpathconf _names, anOSError is raised witherrno.EINVAL  for
the error number.

pathconf _names
Dictionary mapping names accepted fiigthconf() andfpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.
Availability: UNiX.

readlink  ( path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname( path), resulf) . Availability: UNIX.

remove ( path)
Remove the filgath If pathis a directory, OSError is raised; seemdir()  below to remove a directory.
This is identical to theunlink() ~ function documented below. On Windows, attempting to remove a file that
is in use causes an exception to be raised; amxJthe directory entry is removed but the storage allocated to
the file is not made available until the original file is no longer in use. Availability: Macintosinx |JVindows.

removedirs ( path
Recursive directory removal function. Works likedir()  except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not
empty). Throws arrror exception if the leaf directory could not be successfully removed. New in version
15.2.

rename ( src, ds})
Rename the file or directorcto dst If dstis a directoryOSError will be raised. On Wix, if dstexists and
is a file, it will be removed silently if the user has permission. The operation may fail on someflavors if
srcanddstare on different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX
requirement). On Windows, dstalready existsOSError will be raised even if it is a file; there may be no
way to implement an atomic rename wlastnames an existing file. Availability: MacintoshNux, Windows.

renames ( old, new
Recursive directory or file renaming function. Works likeame() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old hame will be pruned away usmgvedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir ( path)
Remove the directorgath Availability: Macintosh, WNix, Windows.

stat ( path)
Performastat()  system call on the given path. The return value is an object whose attributes correspond to the
members of thetat structure, namelyst _mode (protection bits)st _ino (inode number)st _dev (de-
vice),st _nlink (number of hard linksst _uid (user ID of owner)st _gid (group ID of owner)st _size
(size of file, in bytes)st _atime (time of most recent access}, _mtime (time of most recent content mod-
ification),st _ctime (time of most recent content modification or metadata change).

On some Unix systems (such as Linux), the following attributes may also be ava#tihlblocks (number of
blocks allocated for file)st _blksize  (filesystem blocksizelt _rdev (type of device if an inode device).

On Mac OS systems, the following attributes may also be availablersize , st _creator ,st _type .

On RISCOS systems, the following attributes are also availableftype (file type),st _attrs  (attributes),
st _obtype (objecttype).

160 Chapter 6. Generic Operating System Services



For backward compatibility, the return value stht() is also accessible as a tuple of at least 10 integers
giving the most important (and portable) members ofdted  structure, in the ordest _mode, st _ino ,

st _dev, st _nlink , st _uid , st _gid , st _size , st _atime , st _mtime, st _ctime . More items

may be added at the end by some implementations. Note that on the Mac OS, the time values are floating point
values, like all time values on the Mac OS. The standard mostale defines functions and constants that

are useful for extracting information fromstat  structure. (On Windows, some items are filled with dummy
values.) Availability: Macintosh, dix, Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

statvfs  ( path
Perform astatvfs() system call on the given path. The return value is an object whose attributes describe the
filesystem on the given path, and correspond to the members sfdtwfs  structure, namelyf _frsize ,
f _blocks ,f _bfree ,f _bavail ,f_files ,f _ffree ,f_favail ,f_flag ,f _namemax Availabil-
ity: UNIX.
For backward compatibility, the return value is also accessible as a tuple whose values correspond to the at-
tributes, in the order given above. The standard mosliaierfs ~ defines constants that are useful for extract-
ing information from astatvfs  structure when accessing it as a sequence; this remains useful when writing
code that needs to work with versions of Python that don’t support accessing the fields as attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

symlink ( src, ds}
Create a symbolic link pointing terc nameddst Availability: UNiIX.

tempnam( [dir[, prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directdityor a common location for temporary filesdir is omitted
or None. If given and notNone, prefixis used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths returterdgnam() ; no auto-
matic cleanup is providedWarning: Use oftempnam() is vulnerable to symlink attacks; consider using
tmpfile() instead. Availability: WNix, Windows.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returndéhgnyam() ; no automatic cleanup is
provided.Warning: Use oftmpnam() is vulnerable to symlink attacks; consider ustngpfile() instead.
Availability: UNiIx, Windows.

TMP_MAX
The maximum number of unique names ttrapnam() will generate before reusing names.

unlink ( path
Remove the filgpath This is the same function asmove() ; theunlink() name is its traditional Nix
name. Availability: Macintosh, Nix, Windows.

utime ( path, time}
Set the access and modified times of the file specifiegdiir If timesis None, then the file's access and
modified times are set to the current time. Otherwiiseesmust be a 2-tuple of numbers, of the fofratime
mtime which is used to set the access and modified times, respectively. Changed in version 2.0: Added support
for None for times Availability: Macintosh, Wix, Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have

6.1. os — Miscellaneous operating system interfaces 161



typed on a command line. For the C programmer, this isthg[0] passed to a progranmeain() . For example,
‘os.execv('/bin/echo’, [foo’, 'bar’) " will only print * bar ’ on standard output;foo * will seem
to be ignored.

abort ()

Generate &IGABRT signal to the current process. OmLX, the default behavior is to produce a core dump;
on Windows, the process immediately returns an exit cod®. oBe aware that programs which usig-
nal.signal() to register a handler f@IGABRTwill behave differently. Availability: Wix, Windows.

execl (path, arg0, argl, .).
execle (path, arg0, argl, ..., env
execlp (file, arg0, argl, .).
execlpe (file, arg0, argl, ..., env
execv ( path, arg3

execve ( path, args, eny

execvp ( file, arg9

execvpe ( file, args, eny

These functions all execute a new program, replacing the current process; they do not returmxQihénew
executable is loaded into the current process, and will have the same process ID as the caller. Errors will be
reported a®©OSError exceptions.

The 1" and ‘v’ variants of theexec*()  functions differ in how command-line arguments are passed. [The ‘
variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters textel*()  functions. Thev’ variants are

good when the number of parameters is variable, with the arguments being passed in a list or tupdegss the
parameter. In either case, the arguments to the child process must start with the name of the command being
run.

The variants which include @' near the endéxeclp() , execlpe() ,execvp() ,andexecvpe() ) will

use the PATH environment variable to locate the progfiten When the environment is being replaced (using

one of theexec*e() variants, discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other varianesxecl() , execle() ,execv() , andexecve() , will not use the

PATH variable to locate the executabjeth must contain an appropriate absolute or relative path.

Forexecle() ,execlpe() ,execve() ,andexecvpe() (note thatthese all end ie”), the envparameter
must be a mapping which is used to define the environment variables for the new processedife |,
execlp() , execv() , andexecvp() all cause the new process to inherit the environment of the current
process. Availability: Wix, Windows.

_exit (n)

Exit to the system with status without calling cleanup handlers, flushing stdio buffers, etc. Availabilityi
Windows.

Note: the standard way to exitgys.exit( n). _exit()  should normally only be used in the child process
after afork()

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availabilitynis.

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a(paidl, of
fd) , wherepid is O in the child, the new child’s process id in the parent, &hid the file descriptor of the master
end of the pseudo-terminal. For a more portable approach, uggythenodule. Availability: Some flavors of
UNIX.

kil (pid, sig
Kill the processid with signalsig. Constants for the specific signals available on the host platform are defined
inthesignal module. Availability: UNIX.

nice (incremeny
Add incrementto the process’s “niceness”. Return the new niceness. AvailabilityxU

162 Chapter 6. Generic Operating System Services



plock (op)
Lock program segments into memory. The valuepf{defined in<sys/lock.h> ) determines which seg-
ments are locked. Availability: NiX.

popen(..)

popen2 ( ...

popen3 (...

popend ( ..)
Run child processes, returning opened pipes for communications. These functions are described in section 6.1.2.

spawnl ( mode, path, ).

spawnle ( mode, path, ..., ejv

spawnlp ( mode, file, .).

spawnlpe ( mode, file, ..., env

spawnv ( mode, path, args

spawnve ( mode, path, args, ehv

spawnvp ( mode, file, args

spawnvpe ( mode, file, args, efv
Execute the programpathin a new process. Inodeis P_NOWAIT this function returns the process ID of the
new process; imodeis P_WAIT, returns the process’s exit code if it exits normally; signal wheresignalis
the signal that killed the process.

The 1’ and ‘v’ variants of thespawn*() functions differ in how command-line arguments are passed. The

‘| * variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written;
the individual parameters simply become additional parameters gptwenl*()  functions. Thev’ variants

are good when the number of parameters is variable, with the arguments being passed in a list or tuple as the
args parameter. In either case, the arguments to the child process must start with the name of the command
being run.

The variants which include a secong’ ‘near the end gpawnlp() , spawnlpe() , spawnvp() , and
spawnvpe() ) will use the PATH environment variable to locate the progfdm When the environment

is being replaced (using one of tspawn*e() variants, discussed in the next paragraph), the new environ-
ment is used as the source of the PATH variable. The other vargpdasnl() , spawnle() , spawnv() ,
andspawnve() , will not use the PATH variable to locate the executalpiath must contain an appropriate
absolute or relative path.

For spawnle() , spawnlpe() , spawnve() , andspawnvpe() (note that these all end ire*), the env
parameter must be a mapping which is used to define the environment variables for the new process; the
spawnl() ,spawnlp() ,spawnv() , andspawnvp() all cause the new process to inherit the environment

of the current process.

As an example, the following calls &pawnlp() andspawnvpe() are equivalent;

import os
os.spawnlp(os.P_WAIT, ‘cp’, 'cp’, 'index.html’, '/dev/null’)

L = [cp’, 'index.html’, ’/dev/null’]
os.spawnvpe(os.P_WAIT, ’cp’, L, 0s.environ)

Availability: UNIX, Windows. spawnlp() , spawnlpe() , spawnvp() andspawnvpe() are not avail-
able on Windows. New in version 1.6.

P_NOWAIT

P_NOWAITO
Possible values for thmodeparameter to thepawn*() family of functions. If either of these values is given,
thespawn*() functions will return as soon as the new process has been created, with the process ID as the
return value. Availability: Wix, Windows. New in version 1.6.

P_WAIT

6.1. os — Miscellaneous operating system interfaces 163



Possible value for thenodeparameter to thepawn*() family of functions. If this is given asnode the
spawn*() functions will not return until the new process has run to completion and will return the exit code
of the process the run is successful; signalif a signal kills the process. Availability: Mix, Windows. New

in version 1.6.

P_DETACH

P_OVERLAY
Possible values for themodeparameter to thepawn*() family of functions. These are less portable than
those listed aboveP_DETACHS similar toP_NOWAIT but the new process is detached from the console of
the calling process. P_OVERLANSs used, the current process will be replaced;gpawn*() function will
not return. Availability: Windows. New in version 1.6.

startfile ( path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or giving
the file name as an argument to start command from the interactive command shell: the file is opened with
whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. patieparameter is relative to

the current directory. If you want to use an absolute path, make sure the first character is not d $tash ('
the underlying Win3Z5hellExecute() function doesn’t work if it is. Use thes.path.normpath()

function to ensure that the path is properly encoded for Win32. Availability: Windows. New in version 2.0.

system ( commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C feystion
tem() , and has the same limitations. Changepdsix.environ , sys.stdin , etc. are not reflected in
the environment of the executed command. The return value is the exit status of the process encoded in the
format specified fowait() , except on Windows 95 and 98, where it is alw@yNote that POSIX does not
specify the meaning of the return value of theydtem() function, so the return value of the Python function
is system-dependent. Availability: Nux , Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds. The
items are: user time, system time, children’s user time, children’s system time, and elapsed real time since a
fixed point in the past, in that order. See theik¥ manual pagémeg?2) or the corresponding Windows Platform
API documentation. Availability: ™1x, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability. U

waitpid  ( pid, option3
Wait for completion of a child process given by procesgidl and return a tuple containing its process id and
exit status indication (encoded as feait() ). The semantics of the call are affected by the value of the integer
options which should b&® for normal operation. Availability: ®1X.

If pid is greater tha@, waitpid() requests status information for that specific procegsidiis O, the request
is for the status of any child in the process group of the current procqsisl.if-1 , the request pertains to any
child of the current process. jpid is less thanrl , status is requested for any process in the process gnoidp
(the absolute value gfid).

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:

UNIX.

The following functions take a process status code as returnegdbgm() , wait() , orwaitpid() as a param-
eter. They may be used to determine the disposition of a process.

WIFSTOPPEDstatug

164 Chapter 6. Generic Operating System Services



Return true if the process has been stopped. AvailabilitytxJ

WIFSIGNALEL statug
Return true if the process exited due to a signal. AvailabilityixJ

WIFEXITED( statug
Return true if the process exited using thet(2) system call. Availability: Wix.

WEXITSTATUS statug
If WIFEXITED( statug is true, return the integer parameter to thét(2) system call. Otherwise, the return
value is meaningless. Availability: NIX.

WSTOPSIGstatug
Return the signal which caused the process to stop. AvailabilityxU

WTERMSIGstatug
Return the signal which caused the process to exit. AvailabilityixJ

6.1.6 Miscellaneous System Information

confstr (nam@
Return string-valued system configuration valueamespecifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
UNIX 95, UNIX 98, and others). Some platforms define additional names as well. The names known to the host
operating system are given in tbenfstr _names dictionary. For configuration variables not included in that
mapping, passing an integer foameis also accepted. Availability: NiX.

If the configuration value specified mameisn’t defined, the empty string is returned.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedéonfstr _names, anOSError is raised witherrno.EINVAL  for
the error number.

confstr _names
Dictionary mapping names accepteddmnfstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availabiity: U

sysconf (namg
Return integer-valued system configuration values. If the configuration value specifiearigysn’t defined,
-1 isreturned. The comments regarding tleeneparameter foconfstr() apply here as well; the dictionary
that provides information on the known names is giversysconf _names. Availability: UNIX.

sysconf _names
Dictionary mapping names accepteddysconf()  to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availabiity: U

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined imsheath  module.

curdir
The constant string used by the operating system to refer to the current directory. For exampler POSIX
or’ for the Macintosh.

pardir
The constant string used by the operating system to refer to the parent directory. For exampléor POSIX
or’:’  forthe Macintosh.

sep

The character used by the operating system to separate pathname components, for exXafoplROSIX or
‘1’ for the Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames —
useos.path.split() andos.path.join() — but it is occasionally useful.

6.1. os — Miscellaneous operating system interfaces 165



altsep
An alternative character used by the operating system to separate pathname compoimts,ibonly one
separator character exists. This is setftoon DOS and Windows systems whesep is a backslash.

pathsep
The character conventionally used by the operating system to separate search patch components (as in PATH),
such as:’ for POSIX or *; ' for DOS and Windows.

defpath
The default search path used éyec*p*() andspawn*p*() if the environment doesn’t have’BATH’
key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
such as\n’ for POSIX or’'\r'  for Mac OS, or multiple characters, for examphe\n’ for DOS and
Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathnasmgunc() and
ismount()  do handle them correctly.

abspath ( path
Return a normalized absolutized version of the pathnpatle On most platforms, this is equivalenttorm-
path(join(os.getcwd(), path) . New in version 1.5.2.

basename ( path)
Return the base name of pathnapa¢h This is the second half of the pair returneddpjit(  path) . Note that
the result of this function is different from theNux basenameprogram; wherdasenameor '/foo/bar/’
returnsbar’ , thebasename() function returns an empty string ().

commonprefix ( list)
Return the longest path prefix (taken character-by-character) that is a prefix of all pishsifrlist is empty,
return the empty string’( ). Note that this may return invalid paths because it works a character at a time.

dirname ( path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(  path) .

exists ( path
Return true ifpathrefers to an existing path.

expanduser ( path)
Return the argument with an initial component of br ‘'~ user replaced by thatisers home directory. An
initial ‘7" is replaced by the environment variable HOME; an initialiser is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always rgtathsinchanged.

expandvars ( path)
Return the argument with environment variables expanded. Substrings of thefioamé or ‘ ${ namé ' are
replaced by the value of environment variabeme Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always repathsinchanged.

getatime ( path)
Return the time of last access filename The return value is integer giving the number of seconds since the
epoch (see theme module). Rais®s.error  if the file does not exist or is inaccessible. New in version
1.5.2.

166 Chapter 6. Generic Operating System Services



getmtime ( path)
Return the time of last modification ifename The return value is integer giving the number of seconds since
the epoch (see thtene module). Rais@s.error if the file does not exist or is inaccessible. New in version
15.2.

getsize ( path
Return the size, in bytes, dfename Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs ( path)
Return true ifpathis an absolute pathname (begins with a slash).

isfile  (‘path
Return true ifpathis an existing regular file. This follows symbolic links, so bathnk() andisfile()
can be true for the same path.

isdir ( path)
Return true ifpathis an existing directory. This follows symbolic links, so baghnk() andisdir() can
be true for the same path.

islink  ( path)
Return true ifpathrefers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount ( path
Return true if pathnampathis amount point a point in a file system where a different file system has been
mounted. The function checks whethmaths parent, path'..’, is on a different device thapath, or whether
‘path..” and pathpoint to the same i-node on the same device — this should detect mount points forall U
and POSIX variants.

join (pathl[, pach[, ]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenatiathdf and optionallypath2
etc., with exactly one slasfi’( ) inserted between components, unleathis empty.

normcase ( path)
Normalize the case of a pathname. ORI, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath ( path)
Normalize a pathname. This collapses redundant separators and up-level refereno®4Be,g?/./B  and
Alfool../B all becomeA/B. It does not normalize the case (usermcase() for that). On Windows, it
converts forward slashes to backward slashes.

realpath ( path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.
Availability: UNIX. New in version 2.2.

samefile ( pathl, path?
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception iba.stat() call on either pathname fails. Availability: Macintosh,
UNIX.

sameopenfile  (fpl, fp2
Return true if the file objectipl andfp2 refer to the same file. The two file objects may represent different file
descriptors. Availability: Macintosh, NIX.

samestat ( statl, stat®
Return true if the stat tuplestatl and stat2 refer to the same file. These structures may have been returned
by fstat() ,Istat() ,orstat() . This function implements the underlying comparison useddye-
file() andsameopenfile() . Availability: Macintosh, Wix.

6.2. os.path — Common pathname manipulations 167



split  ( path)
Split the pathnamgath into a pair,( head tail) wheretail is the last pathname component ameld is
everything leading up to that. Thail part will never contain a slash; fathends in a slashail will be empty.
If there is no slash ipath headwill be empty. If pathis empty, bottheadandtail are empty. Trailing slashes
are stripped fronmeadunless it is the root (one or more slashes only). In nearly all cgsag, head tail)
equalspath (the only exception being when there were multiple slashes sepahatautirom tail).

splitdrive ( path)
Split the pathnampathinto a pair( drive, tail) wheredriveis either a drive specification or the empty string.
On systems which do not use drive specificatiairsje will always be the empty string. In all casebjve +
tail will be the same apath New in version 1.3.

splitext  ( path
Split the pathnamgathinto a pair( root, exf such thatroot + ext == path andextis empty or begins
with a period and contains at most one period.

walk ( path, visit, arg
Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumerdirnamespecifies the visited directory, the
argumennamedists the files in the directory (gotten froos.listdir( dirnamg ). Thevisit function may
modify namego influence the set of directories visited beldisname e.g., to avoid visiting certain parts of the
tree. (The object referred to mameanust be modified in place, usirmtel or slice assignment.)

6.3 dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir ( path)
Return a directory listing gbath as gotten fronos.listdir() . Note that unlespathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
atuple?)

opendir ( path
Same adistdir() . Defined for backwards compatibility.

annotate ( head, lis}
Assumdist is a list of paths relative thead and append, in place, &"to each path which points to a directory.

>>> jmport dircache

>>> a=dircache.listdir(’/")

>>> g=a[:] # Copy the return value so we can change 'a’

>>> a

['bin’, ’boot’, 'cdrom’, 'dev’, ’etc’, 'floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, 'mnt’, 'proc’, 'root’, 'sbin’, 'tmp’, 'usr’, 'var, 'vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

['bin/, ’boot/, 'cdrom/’, 'dev/’, ’etc/’, ‘floppy/, 'home/’, ’initrd/, 'lib/
', 'lost+found/’, 'mnt/’, 'proc/’, ‘root/’, 'sbin/’, 'tmp/’, 'usr/’, 'var/’, 'vm
linuz’]

168 Chapter 6. Generic Operating System Services



6.4 stat — Interpreting stat()  results

Thestat module defines constants and functions for interpreting the resutis.stat() , 0s.fstat() and
os.Istat() (if they exist). For complete details about thiat() , fstat() andlstat() calls, consult the
documentation for your system.

Thestat module defines the following functions to test for specific file types:

S_ISDIR ( modg
Return non-zero if the mode is from a directory.

S_ISCHR( modg
Return non-zero if the mode is from a character special device file.

S_ISBLK ( mod¢
Return non-zero if the mode is from a block special device file.

S_ISREG( modg
Return non-zero if the mode is from a regular file.

S_ISFIFO ( modg
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK( modg
Return non-zero if the mode is from a symbolic link.

S_ISSOCK( modg
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODK modg
Return the portion of the file’'s mode that can be sebbychmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT( mod§
Return the portion of the file's mode that describes the file type (used (& ##8() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overheadstdti)e system call for each
test. These are also useful when checking for information about a file that isn’t handbedoyh | like the tests

for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returneaststat() , 0s.fstat() or
os.Istat()

ST_MODE
Inode protection mode.

ST_INO
Inode number.

ST_DEV
Device inode resides on.

ST_NLINK
Number of links to the inode.

ST_UID
User id of the owner.

ST_GID
Group id of the owner.

6.4. stat — Interpreting stat()  results 169



ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME
Time of last status change (see manual pages for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors ofix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call ¢s.stat() , 0s.fstat() , or os.lIstat() ; this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

Example:

import o0s, sys
from stat import *

def walktree(dir, callback):
"'recursively descend the directory rooted at dir,
calling the callback function for each regular file™

for f in os.listdir(dir):

pathname = '%s/%s’ % (dir, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):
# It's a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
# It's a file, call the callback function
callback(pathname)

else:
# Unknown file type, print a message
print 'Skipping %s’ % pathname

def visitfile(file):
print ‘visiting’, file

if _name__ == "'_ main__"
walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

Deprecated since release 2.2Iseos .stat() directly instead of using the cache; the cache introduces a very high
level of fragility in applications using it and complicates application code with the addition of cache management
support.

Thestatcache  module provides a simple optimizationas.stat() : remembering the values of previous invo-
cations.

Thestatcache  module defines the following functions:

170 Chapter 6. Generic Operating System Services



stat ( path
This is the main module entry-point. Identical fos.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previatat() calls.

forget (path
Forget the result odtat( path) , if any.

forget _prefix (prefiy
Forget all results oftat( path) for pathstarting withprefix

forget _dir ( prefiX
Forget all results oftat( path) for patha file in the directonprefix includingstat( prefiX .

forget _except _prefix ( prefiy
Similar toforget _prefix() , but for all pathvaluesnot starting withprefix

Example:

>>> import os, statcache

>>> statcache.stat(’.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs  module defines constants so interpreting the resob gtatvfs() , Which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this moduledettef the entry in
the tuple returned bgs.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

6.6. statvfs = — Constants used with os.statvfs() 171



F_FLAG
Flags. System dependent: statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs.

Thefilecmp module defines the following functions:

cmp( f1, f2[, Sha||0V\[, us&statcachd ])
Compare the files naméil andf2, returningl if they seem equal otherwise.
Unlessshallowis given and is false, files with identicalk.stat() signatures are taken to be equal. If
use_statcaches given and is truestatcache.stat() will be called rather theos.stat() ; the default
is to useos.stat()
Files that were compared using this function will not be compared again unlesosteint() signature
changes. Note that usingge_statcachdrue will cause the cache invalidation mechanism to fail — the stale stat
value will be used fronstatcache s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles  (dirl, dir2, commoﬁ, shaIIOV\[, use_statcacha])
Returns three lists of file namesatch mismatch errors. matchcontains the list of files match in both di-
rectories,mismatchincludes the names of those that don’t, @mdos lists the names of files which could not
be compared. Files may be listederrors because the user may lack permission to read them or many other
reasons, but always that the comparison could not be done for some reason.

The shallow and use_statcache parameters have the same meanings and default values as for
filecmp.cmp()

Example:

>>> import filecmp

>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1

>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)

0

6.7.1 The dircmp class

dircmp instances are built using this constructor:

classdircmp (a, b[ ignore[, hide]])
Construct a new directory comparison object, to compare the direc@es b. ignoreis a list of names
to ignore, and defaults tpRCS’, 'CVS’, 'tags’] . hide is a list of names to hide, and defaults to
[os.curdir, os.pardir]

Thedircmp class provides the following methods:

report ()
Print (tosys.stdout ) a comparison betweemnandb.

172 Chapter 6. Generic Operating System Services



report _partial _closure ()
Print a comparison betweerandb and common immediate subdirctories.

report _full _closure ()
Print a comparison betweerandb and common subdirctories (recursively).

Thedircmp offers a number of interesting attributes that may be used to get various bits of information about the
directory trees being compared.

Note that via__getattr __() hooks, all attributes are computed lazilly, so there is no speed penalty if only those
attributes which are lightweight to compute are used.

left _list
Files and subdirectories m filtered byhideandignore

right _list
Files and subdirectories In filtered byhideandignore

common
Files and subdirectories in bo#handb.

left _only
Files and subdirectories only &

right _only
Files and subdirectories only

common_dirs
Subdirectories in both andb.

common._files
Files in botha andb

common_funny
Names in botha andb, such that the type differs between the directories, or names for vasicat()
reports an error.

same_files
Files which are identical in bothandb.
diff _files

Files which are in botla andb, whose contents differ.

funny _files
Files which are in botla andb, but could not be compared.

subdirs
A dictionary mapping nhames itcommon_dirs todircmp objects.

6.8 popen2 — Subprocesses with accessible 1/0 streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return codes
under WNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions fromshmodule which have the
same names as the factory functions here, but the order of the return values is more intuitizesimtheule variants.

The primary interface offered by this module is a trio of factory functions. For each of théndsifeis specified,
it specifies the buffer size for the 1/0 pipewnode if provided, should be the stririg’ or’t’ ; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default vahdeifor
Yti

6.8. popen2 — Subprocesses with accessible 1/0 streams 173



The only way to retrieve the return codes for the child processes is by usipgitle orwait() methods on the
Popen3 andPopen4 classes; these are only available ori¥. This information is not available when using the
popen2() ,popen3() ,andpopend() functions, orthe equivalent functions in the module.

popen2 (cmc{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin) .

popen3 ( cmz{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin, child_stderr) .

popen4 ( cmc{, bufsiz{, modd])
Executexxmdas a sub-process. Returns the file objéatkild_stdout and_stderr, child_stdin) . New in
version 2.0.

On UNIX, a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

classPopen3 ( cmc{, capturestdelf, bufsize] ])
This class represents a child process. Normdligpen3 instances are created using thepen2() and
popen3() factory functions described above.

If not using one off the helper functions to cre&epen3 objects, the parametemdis the shell command to
execute in a sub-process. Teapturestderiflag, if true, specifies that the object should capture standard error

output of the child process. The default is false. If usizeparameter is specified, it specifies the size of the
I/O buffers to/from the child process.

classPopen4 ( cmc{, bufsizd)
Similar toPopen3, but always captures standard error into the same file object as standard output. These are
typically created usingopen4() . New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of th®open3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return code of the
process and information about whether it exited usingettig)  system call or died due to a signal. Functions
to help interpret the status code are defined irthenodule; see section 6.1.5 for tiié() family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. Popen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goesjsurestderiwas true for the constructor, done.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.9 time — Time access and conversions

174 Chapter 6. Generic Operating System Services



This module provides various time-related functions. It is always available, but not all functions are available on all
platforms.

An explanation of some terminology and conventions is in order.

e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafmatime(0)

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonLX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initializedltanless the environment
variable PYTHONY2K is set to a hon-empty string, in which case it is initialize@.toThus, you can set
PYTHONY 2K to a non-empty string in the environment to require 4-digit years for all year input. When 2-digit
years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are mapped
to 1969-1999, and values 0-68 are mapped to 2000-2068. Values 100-1899 are always illegal. Note that this
is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2al, would add 1900 to year values
below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on mostix systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

e On the other hand, the precisiontihe() andsleep() is better than their Nix equivalents: times are
expressed as floating point numbetimje()  returns the most accurate time available (usingJget-
timeofday() = where available), angleep()  will accept a time with a nonzero fraction x select()
is used to implement this, where available).

e The time tuple as returned Igyntime() , localtime() , andstrptime() , and accepted bgsctime()
mktime() andstrftime() , Is a tuple of 9 integers:
Index | Field Values
year (for example, 1993)
1 | month range [1,12]
2 | day range [1,31]
3 | hour range [0,23]
4 | minute range [0,59]
5 | second range [0,61]; seé€l) in strftime() description
6 | weekday range [0,6], Monday is 0
7 | Julian day range [1,366]
8 | daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled as
described under “Year 2000 (Y2K) issues” abovelAargument as daylight savings flag, passeuditime()
will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting a time tuple, or having elements of the
wrong type, alypeError is raised.

6.9. time — Time access and conversions 175



The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use tlaglight  is nonzero.

asctime ( [tuple])
Convert a tuple representing a time as returnedriyime() orlocaltime() to a 24-character string of the

following form: 'Sun Jun 20 23:21:05 1993 . If tupleis not provided, the current time as returned by
localtime() is used.Note: Unlike the C function of the same name, there is no trailing newline. Changed
in version 2.1: Allowedupleto be omitted.

clock ()

On UNIX, return the current processor time as a floating point number expressed in seconds. The precision, and
in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same
name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating
point number, based on the Win32 functiQueryPerformanceCounter() . The resolution is typically
better than one microsecond.

ctime ([secs])
Convert a time expressed in seconds since the epoch to a string representing local tinsecs iff
not provided, the current time as returned time() is used. ctime( sec3 is equivalent toasc-
time(localtime( secd) . Changed in version 2.1: Alloweskcsto be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime ( [secs])
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
If secsis not provided, the current time as returnedilpye() is used. Fractions of a second are ignored. See
above for a description of the tuple lay-out. Changed in version 2.1: Allegedo be omitted.

localtime  ( [secs])
Like gmtime() but converts to local time. The dst flag is setltavhen DST applies to the given time.
Changed in version 2.1: Alloweskcsto be omitted.

mktime (tuple
This is the inverse function dbcaltime() . Its argument is the full 9-tuple (since the dst flag is needed;
use-1 as the dst flag if it is unknown) which expresses the timeaal time, not UTC. It returns a floating
point number, for compatibility withime() . If the input value cannot be represented as a valid time, either
OverflowError or ValueError  will be raised (which depends on whether the invalid value is caught by
Python or the underlying C libraries). The earliest date for which it can generate a time is platform-dependent.

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate thesleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

stritime  ( format[, tuple])
Convert a tuple representing a time as returnedryime() orlocaltime() to a string as specified by the
formatargument. Itupleis not provided, the current time as returneddgaltime() is usedformatmust
be a string. Changed in version 2.1: Allowegbleto be omitted.

176 Chapter 6. Generic Operating System Services



The following directives can be embedded in thematstring. They are shown without the optional field width

and precision specification, and are replaced by the indicated charactersirfttire() result:
Directive | Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%cC Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%l Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of |the
week) as a decimal number [00,53]. All days in a new ygar
preceding the first Sunday are considered to be in week|O.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All days in a new ypar
preceding the first Sunday are considered to be in week|O.

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (or by no characters if no time zone exists).

%% A literal ‘% character.

Notes:
(1)The range really i® to 61; this accounts for leap seconds and the (very rare) double leap seconds.
Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email standard.

>>> from time import gmtime, strftime
>>> gtrftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
'Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the ¥itél *
a directive in the following order; this is also not portable. The field width is normally 2 exceptjfarhere it
is 3.

strptime  ( string[, format])
Parse a string representing a time according to a format. The return value is a tuple as retgmeidiey)
or localtime() . Theformatparameter uses the same directives as those usgtftiye() ; it defaults
to "%a %b %d %H:%M:%S %Which matches the formatting returned tyme() . The same platform
caveats apply; see the locaNx documentation for restrictions or additional supported directivestririg

1The use of6Zis now deprecated, but tlézescape that expands to the preferred hour/minute offset is not supported by all ANSI C libraries.
Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to 4-digit years long
before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

6.9. time — Time access and conversions 177



cannot be parsed accordingfarmat, ValueError is raised. Values which are not provided as part of the
input string are filled in with default values; the specific values are platform-dependent as the XPG standard
does not provide sufficient information to constrain the result.

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and some of
these libraries are buggy. There’s nothing to be done about this short of a new, portable implementation of
strptime()

Availability: Most modern Wix systems.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than 1
second. While this function normally returns non-decreasing values, it can return a lower value than a previous
call if the system clock has been set back between the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Modulelocale (section 6.24):
Internationalization services. The locale settings can affect the return values for some of the functions in the
time module.

6.10 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfunc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thaelayfuncfunction should be callable with one argument, compatible with the
output oftimefung and should delay that many time unitelayfuncwill also be called with the argumeft
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

178 Chapter 6. Generic Operating System Services



>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs ( time, priority, action, argumet
Schedule a new event. Thiene argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for the tiaewill be executed in the order of
their priority.
Executing the event means executaggion(* argumeny . argumenimust be a sequence holding the parameters
for action

Return value is an event which may be used for later cancellation of the eveot(sad() ).

enter ( delay, priority, action, argumeit
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as thosesfuaerabs()

cancel (evenj
Remove the event from the queue. elfentis not an event currently in the queue, this method will raise a
RuntimeError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using tledayfunc  function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raiseadtipn, the event will not be attempted in future calls
torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

6.11 mutex — Mutual exclusion support

6.11. mutex — Mutual exclusion support 179



Themutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not require
(or imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or n{dumction argumen} pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and ifsinction argumen} pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interfacéoftk() , where a function is called
once the lock is acquired.

6.11.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock ( function, argument
Executefunction argumeny , unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Sealock for explanation of wheffunction( argumeny is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.12 getpass — Portable password input

Thegetpass module provides two functions:

getpass ( [prompt])
Prompt the user for a password without echoing. The user is prompted using thestrimg, which defaults
to’Password: ' . Availability: Macintosh, WNix, Windows.

getuser ()
Return the “login name” of the user. Availability: Nux, Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and
returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which suppantvthenodule, otherwise, an exception is raised.

6.13 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for timirses library and converted to a package.

Thecurses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in thenlx environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted

180 Chapter 6. Generic Operating System Services



on Linux and the BSD variants of UX.
See Also:

Module curses.ascii (section 6.16):
Utilities for working with Ascii characters, regardless of your locale settings.

Modulecurses.panel (section 6.17):
A panel stack extension that adds depth to curses windows.

Modulecurses.textpad (section 6.14):
Editable text widget for curses supportiBgacslike bindings.

Modulecurses.wrapper  (section 6.15):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python

(http://www.python.org/doc/howto/curses/curses.html)
Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available on the
Python Web site.

The ‘Demol/curses/’ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

6.13.1 Functions

The modulecurses defines the following exception:

exceptionerror
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneveiattr is optional, it defaults té&\_NORMAL

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can _change _color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Callingafifdt then
cbreak() leaves the terminal in cbreak mode.

color _content ( color_numbej
Returns the intensity of the red, green, and blue (RGB) components in thecotdornumber which must be
betweerD andCOLORSA 3-tuple is returned, containing the R,G,B values for the given color, which will be
betweerD (no component) an@l000 (maximum amount of component).

color _pair (color_numbe)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUTA_REVERSEand the otheA_* attributes.pair _number() is the counterpart to this

6.13. curses — Terminal handling for character-cell displays 181



function.

curs _set (visibility)
Sets the cursor statevisibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def _prog _mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequentrealls to
set _prog _mode() will restore this mode.

def _shell _mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset _shell _mode() will restore this mode.

delay _output (m9g
Inserts aimsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next stadeuptate()  ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated byautrefresh() call after write operations such asldstr()

have been performed on a window. The normediesh() call is simplynoutrefresh() followed by
doupdate() ;if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuingnoutrefresh() calls on all windows, followed by a singloupdate()

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Undek Wperating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

filter ()
Thefilter() routine, if used, must be called befargtscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cudl, cuul, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling cgaracter-at-a-time line editing without touching the rest of the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal producelodap() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse ()
After getch() returnsKEY_MOUSHo signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-tfpte x, y, z bstatg. id is an ID value used to distinguish multiple
devices, and, y, zare the event'’s coordinatez.i§¢ currently unused.}stateis an integer value whose bits will
be set to indicate the type of event, and will be the bitwise OR of one or more of the following constants, where
n is the button number from 1 to 4ABUTTON_PRESSEDBUTTON_RELEASEDBUTTOM_CLICKED,
BUTTON_DOUBLECLICKED, BUTTONM_TRIPLE _CLICKED, BUTTONSHIFT, BUTTONCTRL BUT-

182 Chapter 6. Generic Operating System Services



TONLALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin (file)
Reads window related data stored in the file by an egolitwin()  call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has _colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has _ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

has _il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

has _key ( ch)
Takes a key valueh, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenth3
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking temthstenths of seconds, an exception is raised if nothing
has been typed. The valuetehthsmust be a number between 1 and 255. sebreak() to leave half-delay
mode.

init _color (color_number,r, g, b
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The vak@af numbemust be betweei andCOLORS
Each ofr, g, b, must be a value betweéhand1000. Wheninit _color()  is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only ifcan _change _color()  returnsl.

init _pair ( pair_number, fg, by
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The vapsrohumbermust be between
1 andCOLORPAIRS - 1 (theO color pair is wired to white on black and cannot be changed). The value of
fg andbg arguments must be betwe@rand COLORSIf the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns ®indowObject which represents the whole screen.

isendwin ()
Returns true iendwin()  has been called (that is, the curses library has been deinitialized).

keyname ( k)
Return the name of the key numbetedThe name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. UndenXJoperating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

6.13. curses — Terminal handling for character-cell displays 183



longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the dailldor()

meta ( ye9
If yesis 1, allow 8-bit characters to be input.yiésis 0, allow only 7-bit chars.

mouseinterval  ( interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask( mousemagk
Sets the mouse events to be reported, and returns a(tapllmask oldmask . availmaskindicates which
of the specified mouse events can be reported; on complete failure it retwldsn@skis the previous value of
the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

napms( mg
Sleep formsmilliseconds.

newpad ( nlines, ncol}
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is
returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing of input) do
not occur. Theefresh() andnoutrefresh() methods of a pad require 6 arguments to specify the part

of the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad
region to be displayed and the s arguments define a clipping box on the screen within which the pad region is to
be displayed.

newwin ( [nlines, ncols] begin_y, begin x)
Return a new window, whose left-upper corner is(dtegin_y, begin_.x), and whose height/width is
nlinegncols

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()

Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behawaodidoh(’\n’) , Which always

does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the nogqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want toraadiflush() in a signal handler if you want

output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

184 Chapter 6. Generic Operating System Services



pair _content ( pair_numbej
Returns a tupléfg,bg) containing the colors for the requested color pair. The valuga@f numbermust be
between 0 and COLORPAIRS-1.

pair _number ( attr)
Returns the number of the color-pair set by the attribute vattre color _pair() is the counterpart to this
function.

putp ( string)
Equivalent taputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qifiush  ( [flag])
If flagis false, the effect is the same as callmagiflush() . If flagis true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

reset _prog _mode()
Restores the terminal to “program” mode, as previously savetkby prog _mode() .

reset _shell _mode()
Restores the terminal to “shell” mode, as previously saveddfy shell _mode() .

setsyx (v, %)
Sets the virtual screen cursorytox. If y andx are both -1, then leaveok is set.

setupterm  ( [termstr, fd])
Initializes the terminaltermstris a string giving the terminal name; if omitted, the value of the TERM envi-
ronment variable will be usedd is the file descriptor to which any initialization sequences will be sent; if not
supplied, the file descriptor fays.stdout  will be used.

start _color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right aft@itscr()

start _color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in theurses module, COLOR&NdCOLORPAIRS, containing the maximum number

of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag ( capnamg
Returns the value of the Boolean capability corresponding to the terminfo capabilitycagmame The value
1 is returned itapnames not a Boolean capability, @rif it is canceled or absent from the terminal description.

tigethum ( capnamég
Returns the value of the numeric capability corresponding to the terminfo capabilityazgmame The value
-2 is returned ifcapnameis not a numeric capability, orl if it is canceled or absent from the terminal
description.

tigetstr  ( capnamég
Returns the value of the string capability corresponding to the terminfo capability capmame None is
returned ifcapnames not a string capability, or is canceled or absent from the terminal description.

6.13. curses — Terminal handling for character-cell displays 185



tparm ( str[,...])
Instantiates the stringfr with the supplied parameters, wheteshould be a parameterized string obtained from
the terminfo database. E.gparm(tigetstr("cup"), 5, 3) could result if\033[6;4H’ , the exact
result depending on terminal type.

typeahead ( fd)
Specifies that the file descriptfit be used for typeahead checking fdfis -1 , then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl  (ch)
Returns a string which is a printable representation of the charelttaZontrol characters are displayed as a
caret followed by the character, for exampl€ @s Printing characters are left as they are.

ungetch (ch)
Pushch so the nexgetch()  will return it. Note: Only onech can be pushed befogetch() s called.

ungetmouse (id, X, y, z, bstate
Push &KEY_MOUSEevent onto the input queue, associating the given state data with it.

use _env ( flag)
If used, this function should be called befanéscr() or newterm are called. Whdlag is false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

6.13.2 Window Objects

Window objects, as returned lyitscr() andnewwin() above, have the following methods:

addch ( [y, x,] ch[, attr])
Note: A charactermeans a C character (arsclii code), rather then a Python character (a string of length 1).
(This note is true whenever the documentation mentions a character.) Thedmd()in is handy for conveying
strings to codes.

Paint charactechat(y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr ( [y, x,] str, n[, attr])
Paint at mosh characters of the stringtr at (y, X) with attributesattr, overwriting anything previously on
the display.

addstr ( [y, x,] str[, attr])
Paint the stringstr at(y, x) with attributesattr, overwriting anything previously on the display.

attroff ~ (attr)
Remove attributattr from the “background” set applied to all writes to the current window.

attron  ( attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset  (attr)
Set the “background” set of attributesatir. This set is initially O (no attributes).

bkgd ( ch[, attr])
Sets the background property of the window to the charattewith attributesattr. The change is then applied
to every character position in that window:

186 Chapter 6. Generic Operating System Services



eThe attribute of every character in the window is changed to the new background attribute.
eWherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border ( [Is[, rs[, s, b, [, e[, bi[, br] 1111111 )

Draw a border around the edges of the window. Each parameter specifies the character to use for a specific part
of the border; see the table below for more details. The characters can be specified as integers or as one-character
strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters canotbe used. The defaults are listed in this table:

Parameter | Description Default value

Is Left side ACS VLINE

rs Right side ACS_VLINE

ts Top ACS HLINE

bs Bottom ACS HLINE

tl Upper-left corner | ACS_ULCORNER
tr Upper-right corner | ACS_ URCORNER
bl Bottom-left corner | ACS BLCORNER
br Bottom-right corner| ACS_ BRCORNER

box ( [vertch, horcl])
Similar toborder() , but bothls andrs arevertchand bothts and bs ardnorch The default corner characters
are always used by this function.

clear ()

Like erase() , but also causes the whole window to be repainted upon next aatfresh()

clearok (yes

If yesis 1, the next call toefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()
Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch ([x, y])
Delete any character &y,

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

X) .

derwin ( [nlines, ncols] begin_y, begin.y)
An abbreviation for “derive window"derwin()  is the same as callingubwin() , except thabegin_y and
begin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar ( ch[, attr])

6.13. curses — Terminal handling for character-cell displays 187



Add charactechwith attributeattr, and immediately callefresh() on the window.

enclose (v, X
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase ()
Clear the window.

getbegyx ()
Return atuplé y, X) of co-ordinates of upper-left corner.

getch ( [x, y])
Get a character. Note that the integer returned doébave to be imscii range: function keys, keypad keys
and so on return numbers higher than 256. In no-delay mode, an exception is raised if there is no input.

getkey ([x,y])
Get a character, returning a string instead of an integegeth()  does. Function keys, keypad keys and so
on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.

getmaxyx ()
Return atupl€y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
X. Returns-1,-1 if this window has no parent.

getstr ( [x, y])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return atupldy, x) of current cursor position relative to the window’s upper-left corner.

hine ( [y, x,] ch,n
Display a horizontal line starting &y, x) with lengthn consisting of the characteh.

idcok ( flag)
If flagis false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flagis true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok (ye9
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok ( flag)
If flagis true, any change in the window image automatically causes the window to be refreshed; you no longer
have to calrefresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch ([x, y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch ( [y, x,] ch[, attr])
Paint charactechat(y, x) with attributesattr, moving the line from positiont right by one character.

insdelin ~ ( nlineg
Insertsnlineslines into the specified window above the current line. Tilieesbottom lines are lost. For
negativenlines deletenlineslines starting with the one under the cursor, and move the remaining lines up. The

188 Chapter 6. Generic Operating System Services



bottomnlineslines are cleared. The current cursor position remains the same.

insertin ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ( [y, x,] str,n [ attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. If is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the the rightmost characters on the line being lost. The cursor position does not change (after
moving toy, X, if specified).

insstr ( [y, x,] str [ attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the the rightmost characters on the line being lost. The
cursor position does not change (after moving, e, if specified).

instr - ( [y, x] [ n])
Returns a string of characters, extracted from the window starting at the current cursor positiop, if at
specified. Attributes are stripped from the characters.idfspecifiedjnstr() returns return a string at most
n characters long (exclusive of the trailing NUL).

is _linetouched (line)
Returns true if the specified line was modified since the last cadiftesh()  ; otherwise returns false. Raises
acurses.error exception ifline is not valid for the given window.

is _wintouched ()
Returns true if the specified window was modified since the last cadiftesh()  ; otherwise returns false.

keypad (ye9
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpcateddy. If
yesis 0, escape sequences will be left as is in the input stream.

leaveok (ye9g
If yesis 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move( hew_y, new x)
Move cursor tq new_y, new.x) .

mvderwin (Y, X
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin ( New_y, new x)
Move the window so its upper-left corner is(atew_y, new_x) .

nodelay (ye9
If yesis 1, getch()  will be non-blocking.

notimeout (ye9g
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen. To accomplish thatpgpdate()

overlay ( destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmahol
Overlay the window on top adlestwin The windows need not be the same size, only the overlapping region is

6.13. curses — Terminal handling for character-cell displays 189



copied. This copy is non-destructive, which means that the current background character does not overwrite the
old contents oflestwin

To get fine-grained control over the copied region, the second fororertay/() can be usedsminrowand
smincolare the upper-left coordinates of the source window, and the other variables mark a rectangle in the
destination window.

overwrite  ( destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dma>}¢ol
Overwrite the window on top oflestwin The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents destwin

To get fine-grained control over the copied region, the second forovexwrite() can be usedsminrow
andsmincolare the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin ( file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using thegetwin()  function.

redrawln ( beg, num
Indicates that theumscreen lines, starting at lifeeg are corrupted and should be completely redrawn on the
nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on theefezsh() call.

refresh  ( [pminrow, pmincol, sminrow, smincol, smaxrow, sma}):ol
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad createdewipiad() . The
additional parameters are needed to indicate what part of the pad and screen are ipvoimezivandpmincol

specify the upper left-hand corner of the rectangle to be displayed in thespaigkow sminco] smaxrow and
smaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow pmincol sminrow or smincolare treated as if they were zero.

scroll ([Iines = 1])
Scroll the screen or scrolling region upwardlimeslines.

scrollok  ( flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last flag.idlf
false, the cursor is left on the bottom line.fldg is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary timlt()

setscrreg  (top, bottonm
Set the scrolling region from linepto line bottom All scrolling actions will take place in this region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA_STANDOUT

subpad ( [nlines, ncols] begin_y, begin.y)
Return a sub-window, whose upper-left corner is(dtegin.y, beginx), and whose width/height is
ncolgnlines

subwin ( [nlines, ncols] begin_y, begin.y)
Return a sub-window, whose upper-left corner is(dtegin.y, beginx), and whose width/height is

190 Chapter 6. Generic Operating System Services



ncolgnlines
By default, the sub-window will extend from the specified position to the lower right corner of the window.
syncdown ()

Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh() , so it should almost never be necessary to call it manually.

syncok ( flag)
If called withflag set to true, thesyncup() is called automatically whenever there is a change in the window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the windovddfayis negative, blocking read is used, which
will wait indefinitely for input). If delayis zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. Ifdelayis positive, thergetch()  will block for delay milliseconds, and
return -1 if there is still no input at the end of that time.

touchline  ( start, counj
Pretendcountlines have been changed, starting with Igtert.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last caéftesh()

vline ( [y, x,] ch,n
Display a vertical line starting &ty, x) with lengthn consisting of the characteh.

6.13.3 Constants

Thecurses module defines the following data members:

ERR
Some curses routines that return an integer, sugeth() , returnERRupon failure.

OK
Some curses routines that return an integer, suctapsis() , returnOKupon success.

version
A string representing the current version of the module. Also availahle @srsion

Several constants are available to specify character cell attributes:

Attribute Meaning

A_ALTCHARSET] Alternate character set mode.
A_BLINK Blink mode.

A_BOLD Bold mode.

A_DIM Dim mode.

A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE | Underline mode.

Keys are referred to by integer constants with names starting WHY‘'. The exact keycaps available are system
dependent.

6.13. curses — Terminal handling for character-cell displays 191



Key constant Key

KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACEH Backspace (unreliable)
KEY_FO Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function keyn
KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)
KEY_PRINT Print

KEY_LL Home down or bottom (lower left)
KEY_Al Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad
KEY_BTAB Back tab

KEY_BEG Beg (beginning)
KEY_CANCEL Cancel

KEY_CLOSE Close

KEY_COMMAND | Cmd (command)

KEY_COPY Copy

KEY_CREATE Create

KEY_END End

KEY_EXIT Exit

KEY_FIND Find

KEY_HELP Help

KEY_MARK Mark

KEY_MESSAGE | Message

KEY_MOVE Move

KEY_NEXT Next

KEY_OPEN Open

KEY_OPTIONS Options

KEY_PREVIOUS | Prev (previous)

192 Chapter 6. Generic Operating System Services



Key constant

Key

KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO
KEY_MOUSE
KEY_RESIZE

KEY_-MAX

Redo

Ref (reference)
Refresh

Replace

Restart

Resume

Save

Shifted Beg (beginning)
Shifted Cancel
Shifted Command
Shifted Copy
Shifted Create
Shifted Delete char
Shifted Delete line
Select

Shifted End
Shifted Clear line
Shifted Dxit
Shifted Find
Shifted Help
Shifted Home
Shifted Input
Shifted Left arrow
Shifted Message
Shifted Move
Shifted Next
Shifted Options
Shifted Prev
Shifted Print
Shifted Redo
Shifted Replace
Shifted Right arrow
Shifted Resume
Shifted Save
Shifted Suspend
Shifted Undo
Suspend

Undo

Mouse event has occurred

Terminal resize event
Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY_F1,KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mappedeY_UP, KEY_DOWNKEY_LEFT

and KEY_RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow keys and
twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are
standard:

6.13. curses — Terminal handling for character-cell displays 193



Keycap Constant

Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END

Page Up KEY _NPAGE
Page Down | KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses falls

back on a crude printable ASCII approximatidfote: These are available only aftitscr()

has been called.

ACS code Meaning

ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block

ACS BOARD board of squares

ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee

ACS BTEE bottom tee

ACS BULLET bullet

ACS_CKBOARD | checker board (stipple)

ACS DARROW | arrow pointing down

ACS DEGREE | degree symbol

ACS_DIAMOND | diamond

ACS GEQUAL greater-than-or-equal-to

ACS HLINE horizontal line

ACS_LANTERN | lantern symbol

ACS LARROW | left arrow

ACS LEQUAL less-than-or-equal-to
ACS_LLCORNER lower left-hand corner

ACS LRCORNER lower right-hand corner

ACS LTEE left tee

ACS NEQUAL not-equal sign

ACS PI letter pi

ACS_PLMINUS | plus-or-minus sign

ACS PLUS big plus sign

ACS_RARROW | right arrow

ACS RTEE right tee

ACS S1 scan line 1

ACS_S3 scan line 3

ACS_S7 scan line 7

ACS S9 scan line 9

ACS SBBS alternate name for lower right corner
ACS SBSB alternate name for vertical line
ACS SBSS alternate name for right tee
ACS_SSBB alternate name for lower left corner
ACS SSBS alternate name for bottom tee

ACS SSSB alternate name for left tee

ACS SSSS alternate name for crossover or big plus
ACS_STERLING | pound sterling

ACS TTEE top tee

ACS_UARROW | up arrow

ACS_ULCORNER upper left corner

194

Chapter 6. Generic Operating System Services



ACS code | Meaning
ACS_URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLORBLACK Black
COLORBLUE Blue

COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red

COLORWHITE White

COLORYELLOW | Yellow

6.14 curses.textpad — Text input widget for curses programs

New in version 1.6.

Thecurses.textpad module provides @extbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x, FrameMaker,
and many other programs). The module also provides a rectangle-drawing function useful for framing text boxes or
for other purposes.

The modulecurses.textpad defines the following function:

rectangle  (‘win, uly, ulx, Iry, IrY
Draw arectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle To be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand
corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

6.14.1 Textbox objects

You can instantiate &extbox object as follows:

classTextbox (win)
Return a textbox widget object. Thén argument should be a cursééndowObject in which the textbox is
to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containin
window, with coordinate¢0, 0) . The instance’stripspaces  flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination keystrokes
is entered. Ifvalidator is supplied, it must be a function. It will be called for each keystroke entered with the
keystroke as a parameter; command dispatch is done on the result. This method returns the window contents as
a string; whether blanks in the window are included is affected bgtifigspaces =~ member.

6.14. curses.textpad — Text input widget for curses programs 195



do_command ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action

Control-A Go to left edge of window.

Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.

Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.

Control-H Delete character backward.

Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.

Control-N Cursor down; move down one line.

Control-O Insert a blank line at cursor location.

Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrapping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected by
thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the end
of that line instead, and trailing blanks are stripped when the window contents is gathered.

6.15 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one functionrapper() , which runs another function which should be the rest of your curses-
using application. If the application raises an exceptrapper()  will restore the terminal to a sane state before
passing it further up the stack and generating a traceback.

wrapper (func,..)
Wrapper function that initializes curses and calls another funchiow, restoring normal keyboard/screen be-
havior on error. The callable objeftincis then passed the main window 'stdscr’ as its first argument, followed
by any other arguments passedwapper()

Before calling the hook functionyrapper()  turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked
mode, turns on echo, and disables the terminal keypad.

196 Chapter 6. Generic Operating System Services



6.16 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants fCll characters and functions to test membership in
variousAscli character classes. The constants supplied are names for control characters as follows:

Name | Meaning
NUL
SOH | Start of heading, console interrupt
STX | Start of text

ETX | End of text

EOT | End of transmission

ENQ | Enquiry, goes withACKflow control
ACK | Acknowledgement

BEL Bell
BS Backspace
TAB | Tab

HT Alias for TAB: “Horizontal tab”
LF Line feed

NL Alias for LF: “New line”

VT Vertical tab

FF Form feed

CR Carriage return
SO Shift-out, begin alternate character set
Sl Shift-in, resume default character set

DLE | Data-link escape

DC1 XON, for flow control

DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control

DC4 Device control 4

NAK | Negative acknowledgement
SYN | Synchronous idle

ETB End transmission block
CAN | Cancel

EM End of medium

SUB | Substitute

ESC | Escape

FS File separator

GS Group separator

RS Record separator, block-mode terminator
us Unit separator

SP Space

DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)
Checks for amscii alphanumeric character; it is equivalentigalpha( c¢) or isdigit( (o)
isalpha (c)
Checks for amscii alphabetic character; it is equivalent teupper( ¢) or islower( c) .

6.16. curses.ascii — Utilities for ASCII characters 197



isascii  (c)
Checks for a character value that fits in the 7AsitII set.

isblank (c)
Checks for amascil whitespace character.

iscntrl  (c)
Checks for amscii control character (in the range 0x00 to 0x1f).
isdigit  (c)
Checks for amscii decimal digit, 0’ through ‘9'. This is equivalent to¢ in string.digits .
isgraph (c)
Checks forascii any printable character except space.
islower (c)
Checks for amscli lower-case character.
isprint  (c)
Checks for anyascii printable character including space.
ispunct (c)
Checks for any printablescii character which is not a space or an alphanumeric character.
isspace (c)
Checks forascil white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.
isupper (c)

Checks for amascil uppercase letter.
isxdigit ~ (¢)

Checks for amascil hexadecimal digit. This is equivalent to ‘in  string.hexdigits
isctrl (¢

Checks for amscii control character (ordinal values 0 to 31).

ismeta (c)
Checks for a nomscii character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
functionord()

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) seetheg module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.
ascii (¢
Return the ASCII value corresponding to the low 7 bitg.of
ctrl (c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

alt (¢
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl  (c¢)

198 Chapter 6. Generic Operating System Services



Return a string representation of thecii charactec. If ¢ is printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a catefdllowed by the corresponding
uppercase letter. If the character isa&ciI delete (0x7f) the string i§?" . If the character has its meta bit
(0Ox80) set, the meta bit is stripped, the preceding rules applied} amiepended to the result.

controlnames
A 33-element string array that contains th&cii mnemonics for the thirty-twascii control characters from 0
(NUL) to Ox1f (US), in order, plus the mnemoni8P for the space character.

6.17 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the visible
portions of each window will be displayed. Panels can be added, moved up or down in the stack, and removed.

6.17.1 Functions

The modulecurses.panel defines the following functions:

bottom _panel ()
Returns the bottom panel in the panel stack.

new_panel (win)
Returns a panel object, associating it with the given windomw

top _panel ()
Returns the top panel in the panel stack.

update _panels ()
Updates the virtual screen after changes in the panel stack. This does noireal.doupdate() , SO
you’'ll have to do this yourself.

6.17.2 Panel Objects

Panel objects, as returned bgw_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s depth
in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below ()
Returns the panel below the current panel.

bottom ()
Push the panel to the bottom of the stack.

hidden ()
Returns true if the panel is hidden (not visible), false otherwise.

hide ()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move( y, X
Move the panel to the screen coordinatgs X) .

6.17. curses.panel  — A panel stack extension for curses. 199



replace (win)
Change the window associated with the panel to the window

set _userptr (obj)
Set the panel’s user pointer obj. This is used to associate an arbitrary piece of data with the panel, and can be
any Python object.

show()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.18 getopt — Parser for command line options

This module helps scripts to parse the command line argumestsiargv . It supports the same conventions as

the UNIx getopt()  function (including the special meanings of arguments of the fermand ‘-- ). Long options

similar to those supported by GNU software may be used as well via an optional