Python Library Reference
Release 2.2.2

Guido van Rossum

Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in FUNCLiONS e e e e 3
2.2 BUIlt-INTYPES . . . o e e 12
2.3 BUIlt-in EXCEPLIONS e e e e 27

3 Python Runtime Services 33
3.1 sys — System-specific parameters and functions. oL oL 33
3.2 gc — Garbage Collectorinterface. e 38
3.3 weakref —Weakreferences. e 40
3.4 fpectl —Floating pointexceptioncontrol 43
3.5 atexit —Exithandlers. 45
3.6 types —Namesforallbuilt-intypes. 46
3.7 UserDict — Class wrapper for dictionaryobjects 47
3.8 UserList —Classwrapperforlistobjects 48
3.9 UserString — Class wrapper for stringobjects 48
3.10 operator — Standard operatorsasfunctions.. L oL 49
3.11 inspect —Inspectliveobjects. 53
3.12 traceback — Printorretrieve a stacktraceback. oo oL 57
3.13 linecache —Randomaccesstotextlines. 59
3.14 pickle — Python objectserialization 59
3.15 cPickle —Afasterpickle 68
3.16 copy _reg — Registempickle supportfunctions. 68
3.17 shelve — Python object persistence. 69
3.18 copy — Shallow and deep copy operations e 70
3.19 marshal — Internal Python object serialization. 71
3.20 warnings —Warningcontrol. e e e 72
3.21 imp — Accessthémport internals. 74
3.22 code — Interpreterbase classes e 77
3.23 codeop — Compile Pythoncode e 78
3.24 pprint —Dataprettyprinter e e e e e e e e 80
3.25 repr — Alternaterepr() implementation. 82
3.26 new — Creation of runtime internal objects. oo 83
3.27 site — Site-specific configurationhook L 84
3.28 user — User-specific configurationhook o Lo 85
3.29 __builtin __—Built-infunctions. 85
3.30 __main __ — Top-level scriptenvironment. e 85

4 String Services 87

4.1 string —Commonstringoperations e e e e 87
4.2 re —Regular expression operations e 90
4.3 struct — Interpretstrings as packed binarydata L 100
4.4 difflib — Helpers forcomputingdeltas 102
4.5 fpformat — Floating pointconversions. i e 108
4.6 Stringl0 — Read and write stringsasfiles., 109
4.7 cStringlO — Faster version oBtringlO 109
4.8 codecs — Codecregistryandbaseclasses.o 110
4.9 unicodedata —Unicode Database. 114
Miscellaneous Services 117
5.1 pydoc — Documentation generator and online help system. 117
5.2 doctest — Testdocstringsrepresentreality 0 0. 118
5.3 unittest —Unittestingframework. e 124
5.4 math — Mathematical functions. 133
5.5 cmath — Mathematical functions for complexnumbers 135
5.6 random — Generate pseudo-randomnumbers. 136
5.7 whrandom — Pseudo-random numbergenerator. oo 139
5.8 bisect — Array bisection algorithm 140
5.9 array — Efficientarraysofnumericvalues., 140
5.10 ConfigParser = — Configurationfileparser. 143
5.11 fileinput — Iterate over lines from multiple input streams 145
5.12 xreadlines — Efficientiterationoverafile. oo oo Lo 147
5.13 calendar — General calendar-related functions. 147
5.14 cmd— Support for line-oriented command interpretets. oL 148
5.15 shlex — Simple lexicalanalysis e 150
Generic Operating System Services 153
6.1 o0s — Miscellaneous operating systeminterfaces., 153
6.2 os.path — Common pathname manipulations. 166
6.3 dircache —Cacheddirectorylistings. 168
6.4 stat — Interpretingstat() results. 169
6.5 statcache — Anoptimization ofos.stat() 171
6.6 statvfs — Constants used withs.statvfs() 171
6.7 fileemp — File and Directory Comparisons v v i e e 172
6.8 popen2 — Subprocesses with accessible l/Ostreams. 173
6.9 time —Timeaccessand ConversSionS o i i it 175
6.10 sched — Eventscheduler. L 179
6.11 mutex — Mutual exclusion support. e e e e e 180
6.12 getpass — Portable passwordinput. 181
6.13 curses — Terminal handling for character-cell displays. 181
6.14 curses.textpad — Text input widget for curses programs 196
6.15 curses.wrapper — Terminal handler for cursesprograms 197
6.16 curses.ascii — Utilities for ASCll characters 197
6.17 curses.panel — A panelstack extensionforcurses.., 200
6.18 getopt — Parser forcommand lineoptions. o 201
6.19 tempfile — Generate temporaryfilenames. L. 202
6.20 errno — Standard errnosystemsymbols. o L 203
6.21 glob — UNIx style pathname patternexpansion. 209
6.22 fnmatch — UNiIx filename patternmatching 209
6.23 shutii — High-levelfile operations 210
6.24 locale — Internationalizationservices e 211
6.25 gettext — Multilingual internationalization services. 216

7

10

11

Optional Operating System Services 225
7.1 signal — Sethandlersforasynchronousevents. 225
7.2 socket — Low-level networkinginterface. L 227
7.3 select — Waiting for I/O completion. 235
7.4 thread — Multiple threadsofcontrol. 236
7.5 threading — Higher-level threadinginterface. 237
7.6 Queue —Asynchronizedqueueclass. e 244
7.7 mmap— Memory-mapped file support 245
7.8 anydbm — Generic access to DBM-styledatabases oL 247
7.9 dumbdbm— Portable DBM implementation L 248
7.10 dbhash — DBM-style interface to the BSD database libraty. 248
7.11 whichdb — Guess which DBM module created adatabase. 249
7.12 bsddb — Interface to Berkeley DB library 249
7.13 zlib — Compression compatible withzip 251
7.14 gzip — Support forgzipfiles L 253
7.15 zipfile — Work with ZIP archives. e 254
7.16 readline —GNUreadlineinterface. e 257
7.17 rlcompleter ~ — Completion function for GNU readline. 258
Unix Specific Services 261
8.1 posix — The most common POSIXsystemcalls. 261
8.2 pwd—Thepassworddatabase. 262
8.3 grp —Thegroupdatabase e 263
8.4 crypt —Functiontocheck MiX passwords. oo 263
8.5 dl —CallCfunctionsinsharedobjects, 264
8.6 dbm— Simple “database” interface. 265
8.7 gdbm— GNU'sreinterpretationofdbm.o 266
8.8 termios —POSIXstylettycontrol. 267
8.9 TERMIOS— Constants used with thermios module 268
8.10 tty — Terminal controlfunctions. e 268
8.11 pty — Pseudo-terminal utilities e 269
8.12 fentl — Thefentl() andioctl() systemcalls. 269
8.13 pipes — Interface to shell pipelines 271
8.14 posixfile — File-like objects with locking support L. 272
8.15 resource — Resource usage information. oL oo 274
8.16 nis — Interfaceto Sun’s NIS (YellowPages), 276
8.17 syslog — UNix sysloglibraryroutines 276
8.18 commands— Utilities for runningcommands L 277
The Python Debugger 279
9.1 DebuggerCommands e e e 280
9.2 How ItWOrks o e 282
The Python Profiler 285
10.1 Introductiontothe profiler 285
10.2 How Is This Profiler Different From The Old Profiler?. 285
10.3 InstantUsers Manual. e e 286
10.4 What Is Deterministic Profiling?. e 287
10.5 Reference Manual 288
10.6 Limitations. . . . o o o v e e e e 291
10.7 Calibration. e e 291
10.8 Extensions — Deriving Better Profilers. oo 292
Internet Protocols and Support 293
11.1 webbrowser — Convenient Web-browser controller. 293

12

13

11.2 cgi — Common Gateway Interface support.. e 295

11.3 cgitb — Traceback managerfor CGlscripts. 302
11.4 urlib — Openarbitrary resourcesby URL o o 302
11.5 urllib2 — extensible library foropeningURLS 306
11.6 httplib —HTTP protocolclient. e 312
11.7 ftplib —FTPprotocolclient. e 315
11.8 gopherlib — Gopher protocolclient 318
11.9 poplib —POP3protocolclient. 319
11.10imaplib — IMAP4 protocol client e 320
11.12nntplib —NNTP protocolclient. 324
11.12smtplib — SMTP protocolclient. e 327
11.13telnetlib — Telnetclient e 330
11.14urlparse — Parse URLsintocomponents. o o i i i i i i 333
11.15SocketServer — A framework for network servers. oL oL 334
11.16BaseHTTPServer —BasicHTTP server i et 336
11.17SimpleHTTPServer — Simple HTTP requesthandler 338
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler 339
11.19Cookie — HTTP state management. o i i i e e e 340
11.20xmlrpclib — XML-RPCclientaccess i i 343
11.21SimpleXMLRPCServer —Basic XML-RPCserver. 346
11.22asyncore — Asynchronous sockethandler. 347
Internet Data Handling 351
12.1 formatter = — Generic output formatting Lo 351
12.2 email — Anemailand MIME handlingpackage 355
12.3 mailcap — Mailcap file handling.. e 381
12.4 mailbox — Read various mailbox formats o oo 382
12.5 mhlib — Accessto MH mailboxes 384
12.6 mimetools — Tools for parsing MIME messages 386
12.7 mimetypes — Map filenamesto MIME types. 387
12.8 MimeWriter — Generic MIME filewriter 389
12.9 mimify — MIME processing of mailmessages. e 390
12.10multifile — Support for files containing distinctparts. o oL 391
12.11rfc822 —Parse RFC 2822 mailheaders. 393
12.12base64 — Encode and decode MIME base64 data. 396
12.13binascii — Convert between binaryamdsCil 397
12.14binhex — Encode and decode binhex4files o oo 399
12.15quopri — Encode and decode MIME quoted-printabledata 399
12.16uu — Encode and decode uuencodefiles 400
12.17xdrlib —Encode and decode XDRdata. o e 401
12.18netrc —netrcfile processing. L e e 403
12.19robotparser ~— Parserforrobots.txt 404
Structured Markup Processing Tools 407
13.1 HTMLParser — Simple HTML and XHTML parser. v i v v v v 407
13.2 sgmllib — Simple SGML parser. o 0 i e e e 409
13.3 htmllib — AparserforHTMLdocuments it 411
13.4 htmlentitydefs — Definitions of HTML general entities 412
13.5 xml.parsers.expat — Fast XML parsingusingExpat 413
13.6 xml.dom — The Document Object Model APL. 419
13.7 xml.dom.minidom — Lightweight DOM implementation. 429
13.8 xml.dom.pulldom — Support for building partial DOMtrees 433
13.9 xml.sax — Supportfor SAX2 parsers. o o 433
13.10xml.sax.handler — BaseclassesforSAXhandlers L. 435

14

15

16

17

18

19

13.11xml.sax.saxutils — SAXUtilities e 439

13.12xml.sax.xmlreader — Interface for XML parsers.o 440
13.13xmllib — A parserfor XML documents. 444
Multimedia Services 449
14.1 audioop — Manipulateraw audiodata 449
14.2 imageop — Manipulaterawimagedata.o 452
14.3 aifc — Read and write AIFFand AIFCfiles. oo 453
14.4 sunau — Read and write Sun AUfiles 455
145 wave — Read and write WAV files. e 457
14.6 chunk —Read IFFchunkeddata. 459
14.7 colorsys — Conversions between colorsystems 460
14.8 rghimg — Read and write “SGIRGB"files 461
14.9 imghdr — Determinethetypeofanimage, 462
14.10sndhdr — Determinetype of soundfile o 462
Cryptographic Services 465
15.1 hmac — Keyed-Hashing for Message Authentication. 465
15.2 md5— MD5 message digestalgorithm. L 466
15.3 sha — SHA message digestalgorithm. 467
15.4 mpz— GNU arbitrary magnitude integers 467
15.5 rotor — Enigma-like encryption anddecryption o oo 469
Graphical User Interfaces with Tk 471
16.1 Tkinter — Pythoninterfaceto Tcl/TK. o 471
16.2 Tix —Extensionwidgetsfor TK. 481
16.3 ScrolledText — Scrolled TextWidget. e 486
16.4 turtle —TurtlegraphicsforTK e 486
16.5 Idle e 488
16.6 Other Graphical User Interface Packages i 492
Restricted Execution 495
17.1 rexec — Restricted execution framework L 496
17.2 Bastion — Restrictingaccesstoobjects o L 499
Python Language Services 501
18.1 parser — Access Pythonparsetrees. e 501
18.2 symbol — Constants used with Python parsetrees 510
18.3 token — Constants used with Python parsetrees 510
18.4 keyword — Testing for Pythonkeywords, 510
18.5 tokenize — Tokenizer for Pythonsource. e 511
18.6 tabnanny — Detection of ambiguousindentation 511
18.7 pyclbr — Python class browser support L L 512
18.8 py_compile — Compile Pythonsourcefiles. 513
18.9 compileall — Byte-compile Python libraries, 513
18.10dis — Disassembler for Pythonbytecode., 513
18.11 distutils — Building and installing Python modules. 521
Python compiler package 523
19.1 Thebasicinterface 523
19.2 LimitationS. . . . o o o e 524
19.3 Python Abstract Syntax. e 524
19.4 Using Visitors to Walk ASTS o 529
19.5 Bytecode Generation. e e e e e 529

20 SGI IRIX Specific Services 531

20.1 al —Audiofunctionsonthe SGI 531
20.2 AL —Constants used withthed module 533
20.3 cd — CD-ROM access on SGISYStems i ittt e e e 533
20.4 fl — FORMS library for graphical userinterfaces. 536
20.5 FL — Constantsused withtife module 541
20.6 flp — Functions for loading stored FORMS designs. 542
20.7 fm — Font Managefinterface. e 542
20.8 gl — Graphics Libraryinterface 543
20.9 DEVICE— Constantsused withttgd module 545
20.10GL— Constants used withtlg module, 545
20.11limgfile — Support for SGlimglibfiles 545
20.12jpeg — Read andwrite JPEGfiles. 545
21 SunOS Specific Services 547
21.1 sunaudiodev — AccesstoSunaudiohardware. 547
21.2 SUNAUDIODEW- Constants used witbunaudiodev 548
22 MS Windows Specific Services 549
22.1 msvert — Useful routines from the MS VC++runtime 549
22.2 _winreg —WIiNdOWS regiStry 8CCESS+« v v v i i i e e e e e 550
22.3 winsound — Sound-playing interface for Windows. oL 555
A Undocumented Modules 557
Al Frameworks e e 557
A.2 Miscellaneous useful utilities. e 557
A.3 Platform specificmodules e 557
A4 Multimedia. e 558
A5 Obsolete 558
A.6 SGl-specific Extension modules. 559
B Reporting Bugs 561
C History and License 563
C.1 Historyofthesoftware e 563
C.2 Terms and conditions for accessing or otherwise using Python 563
Module Index 567
Index 571

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import __(name[, globals{, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghe statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_owmport __()
function.

For example, the statemenimport spam ' results in the following call: __import __('spam’,

globals(), locals(), []) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’) ' Note that even though
locals() and['eggs’] are passed in as arguments, thamport __() function does not set the local
variable nameaggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses @fobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-empigomlistargument is given, the
module named bpameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngni spam.ham import eggs ’, the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugstattr() to
extract the desired components. For example, you could define the following helper:

import string

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

def my_import(name):
mod = __import__(name)
components = string.split(name, .")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, arg{, keyword§)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence. Tinectionis called withargs as the argument list; the number
of arguments is the length of the tuple. If the optiokeywordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the the argument list. Calling
apply() is different from just callingunctior(args) , since in that case there is always exactly one argument.
The use ofipply() is equivalent tdunction* args ** keyword¥. Use ofapply() is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdb@gctargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer. For examplechr(97) returns the string

'a’ . Thisis the inverse aobrd() . The argument must be in the range [0..255], inclusiedueError will
be raised ifi is outside that range.

cmp(x,y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kin[i ﬂage[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed Bxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable
value if it wasn't read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can bexec’ if string consists of a sequence of statemetggal’ if it consists
of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else Mame will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character 'fn’), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ | use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. flagfsargument is given and
dont_inherit is not (or is zero) then the future statements specified bfldgeargument are used in addition to

4 Chapter 2. Built-in Functions, Types, and Exceptions

those that would be used anywaydiint_inherit is a non-zero integer then tiflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmapiler _flag attribute on the_Feature
instance in the__future __ module.

complex (real[, imag])
Create a complex number with the valal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat()

delattr (object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar) is equivalenttalel x. foobar.

dict ([mapping-or-sequende)
Return a new dictionary initialized from the optional argument. If an argument is not specified, return a new
empty dictionary. If the argument is a mapping object, return a dictionary mapping the same keys to the same
values as does the mapping object. Else the argument must be a sequence, a container that supports iteration,
or an iterator object. The elements of the argument must each also be of one of those kinds, and each must in
turn contain exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s
value. If a given key is seen more than once, the last value associated with it is retained in the new dictionary.
For example, these all return a dictionary equdllto 2, 2: 3}

edict({l: 2, 2: 3}

edict({1: 2, 2: 3}.items())
edict({1: 2, 2. 3l.iteritems())
edict(zip((1, 2), (2, 3))
edict([[2, 3], [1, 2]])
edict([(i-1, i) for i in (2, 3)])

New in version 2.2.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the objectfict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, *__doc__’, '__name__’, ’'struct]

>>> dir(struct)

[__doc_', '__name__’, ’calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausalir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

2.1. Built-in Functions 5

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same(as/ b, a % b). For floating point numbers the result(ig, a %
b) , whereq is usuallymath.floor(a / b) butmaybe 1lessthanthat. Inanycas¢ b + a % bis
very close ta, if a % bis non-zero it has the same signtagand0 <= abs(a % b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex humbers is deprecated.

eval (expressio[1, gIobaIs[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usinglthtealsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagdit®()). In this
case pass a code object instead of a string. The code object must have been compiledgva$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whestecfile() is called. The return value ISone.

Warning: The defaultocalsact as described for functidacals() below: modifications to the defauticals
dictionary should not be attempted. Pass an expbcitls dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamg, modd, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 'sfopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arild’ opens it for appending (which @aomeUnix
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error is raised.

If modeis omitted, it defaults t&r . When opening a binary file, you should appélnd to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A

2|t is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-in Functions, Types, and Exceptions

negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is ued.

Thefile() constructor is new in Python 2.2. The previous spelloggn() , is retained for compatibility,
and is an alias fofile()

filter (function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratorlidf is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementisbthat
are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensittal goatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, namE, default])
Return the value of the named attributedadject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examplattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal. For example, on a 32-bit mache;1) yields Oxffffffff’
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®amrflowError exception.

id (objec)

3Specifying a buffer size currently has no effect on systems that don'tsetveuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have thé&gpme
value. (Implementation note: this is the address of the object.)

input ([prompt])

Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects

a valid Python expression as input; if the input is not syntactically val8yrsaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw _input() function for general input from users.

int (x[, radix])

intern

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer

in the range [2, 36], or zero. Hadix is zero, the proper radix is guessed based on the contents of string; the
interpretation is the same as for integer literalsatfix is specified andt is not a stringTypeError is raised.
Otherwise, the argument may be a plain or long integer or a floating point number. Conversion of floating point
numbers to integers truncates (towards zero).

('string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(never get garbage collected).

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlelassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or a object of the given type, the function always returns falsgad$infois neither a class object

nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedkldtsinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (classl, classp

Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

iter (o[, sentineﬂ)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumenitust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with

integer arguments starting @). If it does not support either of those protocolgjpeError is raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequenc}a)
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objeetqufncés already a list, a copy is made
8 Chapter 2. Built-in Functions, Types, and Exceptions

and returned, similar teequende] . Forinstanceljst(’abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAligning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long ([, radix])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace; this behaves identistinmg.atol(X) . Theradix
argument is interpreted in the same way asifitf) , and may only be given whexis a string. Otherwise,
the argument may be a plain or long integer or a floating point number, and a long integer with the same value
is returned. Conversion of floating point numbers to integers truncates (towards zero).

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additioniét arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Tl arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (X)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbicté;1) yields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it
may turn up as a large positive number or rais®©aerflowError exception.

open (filename{, mode{, bufsize]])
An alias for thefile() function above.

ord (¢
Return theascii value of a string of one character or a Unicode character. &@df’a’) returns the integer
97, ord(u’
u2020’) returns8224. This is the inverse ofhr() for strings and ofinichr() for Unicode characters.
pow(x, Y, z])

Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than

pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For examplE)**2 returns100, but 10**-2 returns0.01 . (This last feature

was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydnust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupmf) returned platform-dependent results
depending on floating-point rounding accidents.)

range ([start,] stor{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often fmedlaops.
The arguments must be plain integers. If Htepargument is omitted, it defaults th. If the start argument

2.1. Built-in Functions 9

is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2

* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largetrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6,7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &¥diresmread,
EOFError israised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])

Apply functionof two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emitiglizér is not given and
sequenceontains only one item, the first item is returned.

reload (modulg

Re-parse and re-initialize an already imponteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tmeoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atatement it can test

for the table’s presence and skip its initialization if desired.

10

Chapter 2. Built-in Functions, Types, and Exceptions

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor

__main __and__builtin __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.
If a module imports objects from another module usiram ... import ..., callingreload() for the

other module does not redefine the objects imported from it — one way around this is to re-exefumthe
statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for examqied(0.5) is1.0 and
round(-0.5) is-1.0).

setattr (object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stop{, step])
Return a slice object representing the set of indices specifiedrnye(start, stop step. Thestartand
steparguments default to None. Slice objects have read-only data attrittas , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For examplafstart:stop:step] "or ‘a[start:stop, i] ’

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple ([sequenc}a)
Return a tuple whose items are the same and in the same oslEEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objecedfuencés already a tuple, it is returned unchanged.
For instancetuple(abc’) returns returnga’, ’'b’, 'c) andtuple([1, 2, 3]) returns(l,
2, 3) .

type (objec)
Return the type of anbject The return value is a type object. The standard motiydes defines names for
all built-in types. For instance:

>>> jmport types
>>> if type(x) == types.StringType: print "It's a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgarexampleunichr(97)
returns the string'a’ . This is the inverse oérd() for Unicode strings. The argument must be in the range
[0..65535], inclusiveValueError s raised otherwise. New in version 2.0.

2.1. Built-in Functions 11

unicode (objec{, encodini, errors]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowbhgokupError s raised. Error handling is done accordingetoors;
this specifies the treatment of characters which are invalid in the input encodiegons is 'strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteEFFD to be used to replace
input characters which cannot be decoded. See alsmtiecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselglfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiict’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefifted.

xrange ([start,] stop{, step])
This function is very similar teange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth).

zip (seql,.)
This function returns a list of tuples, where thth tuple contains théth element from each of the argument
sequences. At least one sequence is required, otherWiggekrror is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same lengthip() is similar tomap() with an initial argument oNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

12 Chapter 2. Built-in Functions, Types, and Exceptions

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl&,OL, 0.0 , 0] .

e any empty sequence, for examgle,,) ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns the integer zerotmol valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex 1)

x and vy | if xis false, therx, elsey (1)

not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsned a == bis interpreted agot (a == b), and
a == not bisasyntax error.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both cases not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

5Additional information on these special methods may be found ithieon Reference Manual

2.2. Built-in Types 13

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity
is not negated object identity
Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose betwgeeand C! :-) != is the

preferred spellings> is obsolescent.

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class definesrtipe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

2.2.4 Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleditegers are implemented usingng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediasislg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a humeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the $ame rule.
The functiongnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

6As a consequence, the Ijgt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

14 Chapter 2. Built-in Functions, Types, and Exceptions

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y quotient ofx andy Q)
X %y remainderok / vy (4)
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pas, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, X %Y) 3)(4)
pow(X, Y) x to the powely
X ¥y x to the powery
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftdian(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, aidmnod()
Deprecated since release 2.3stead convert to float usirabs() if appropriate.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofl * has the same priority as the other unary numeric operatieiisiid ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwiseor of x andy
X"y bitwise exclusive oof x andy
X &Yy bitwiseandof x andy
X << n | xshifted left byn bits 1), (2)
x >> n | xshifted right byn bits 1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

2.2. Built-in Types 15

(2) A left shift by n bits is equivalent to multiplication bgow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.2.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#to fter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fivemattie
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used \dth the
andin statements. This method corresponds tottheiter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raissttipdteration exception.
This method corresponds to the _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoext() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quoteyzzy’ |, "frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceedingu’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commasija, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesbe.g., or() . A single item

tuple must have a trailing comma, e.@,)

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They support concatenation and repetition, but the result is a new string object rather than a new buffer
object.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the

16 Chapter 2. Built-in Functions, Types, and Exceptions

xrange() function. They don’t support slicing or concatenation, but do support repetition, andinsjimgt in ,
min() ormax() onthem is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thédnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
s * n, n * s | nshallow copies o§concatenated | (1)
9 i] i'th item of s, origin O (2)
g i:] slice ofsfromitoj 2), (3)
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.dsote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] * 3
>>> ists

M 0 m

>>> |ists[0].append(3)
>>> ists

(3], 3], [31

What has happened is tHestts is a list containing three copies of the [[§} (a one-element list containing
an empty list), but the contained list is shared by each copy. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> |ists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(3], 18], [71

(2) If i orjis negative, the index is relative to the end of the strieg(s) + iorlen(s) + |jis substituted. But
note thatO is still 0.

(3) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usé. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

"They must have since the parser can't tell the type of the operands.

2.2. Built-in Types 17

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl{, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

decode ([encodingi, errors]])
Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.
errors may be given to set a different error handling scheme. The defdstti’ , meaning that encoding
errors raisé/alueError . Other possible values atignore’ andreplace’ . New in version 2.2.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encarding may
be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that encoding
errors raise &alueError . Other possible values alignore’ and’replace’ . New inversion 2.0.

endswith (suffi>{, starl{, end]])
Return true if the string ends with the specifidfix otherwise return false. With optionsiart, test beginning
at that position. With optionand stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl{, end]])
Return the lowest index in the string where substgngis found, such thatubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retttnif subis not found.

index (sut{, starl{, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

istitle 0
Return true if the string is a titlecased string: uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqseqcéhe separator between elements is
the string providing this method.

18 Chapter 2. Built-in Functions, Types, and Exceptions

ljust (width)
Return the string left justified in a string of lengtfidth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ([chars])
Return a copy of the string with leading characters removethdfsis omitted ofNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on.

replace (old, nevs[, maxsplit])
Return a copy of the string with all occurrences of substoityreplaced bynew If the optional argument
maxsplitis given, only the firsmaxsplitoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsimgis found, such thatubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Retttnon failure.

rindex (sut{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width)
Return the string right justified in a string of lengtldth. Padding is done using spaces. The original string is
returned ifwidthis less tharden(s).

rstrip ([chars])
Return a copy of the string with trailing characters removedh#rsis omitted orNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on.

split ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit
splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend]s)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])
Return true if string starts with therefix otherwise return false. With optionstart, test string beginning at
that position. With optionaénd stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and haine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argutaletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()

2.2. Built-in Types 19

Return a copy of the string converted to uppercase.

zfill (width)
Return the numeric string left filled with zeros in a string of lengttth. The original string is returned ¥fidth
is less tharken().

String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
string formatting or interpolation operator. Giverformat %values(whereformatis a string or Unicode object¥o
conversion specifications iformat are replaced with zero or more elementsvafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will be a Unicode object as well.

If formatrequires a single argumentaluesmay be a single non-tuple obje&. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The % character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for exaismeename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4.

Minimum field width (optional). If specified as ah’(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’‘ (dot) followed by the precision. If specified a&’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the sttiisthave a parenthesized
key into that dictionary inserted immediately after tB&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> language = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘# | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded.

‘-’ | The converted value is left adjusted (overridey.'

‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ | Asign character ¢ or ‘-) will precede the conversion (overrides a "space” flag).

8A tuple object in this case should be a singleton.

20 Chapter 2. Built-in Functions, Types, and Exceptions

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
i’ Signed integer decimal.
‘0’ Unsigned octal.
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase).
‘X Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same ase’ if exponent is greater than -4 or less than precisibnptherwise.
‘G Same asE'’ if exponent is greater than -4 or less than precisiéhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()).
‘s’ String (converts any python object usisty()).
‘0% No argument is converted, results in% tharacter in the result. (The complete specificatiovh)

(The%r conversion was added in Python 2.0.)
Since Python strings have an explicit lendg¥s conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésy andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing anietife function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.2. Built-in Types 21

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i: j] = []
s.append(x) same ag{len(s)ylen(9] = [X N}
s.extend(X) same agllen(s)len(9] = X (2)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such thaq i] == x 3)
sinsert(i, X) sameasi:i] = [x] ifi >= 0 4)
s.pop([i]) sameax = di]; del g i]; return X (5)
s.remove(X) same aslel ¢ sindex(X)] 3
s.reverse() reverses the items afin place (6)
s.sort([cmpfund) sort the items o§in place (6), (7)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesvalueError whenxis not found ins.

(4) When a negative index is passed as the first parameter ingbe() method, the new element is prepended
to the sequence.

(5) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(6) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

(7) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return a negative, zero or positive number depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process down
considerably; e.g. to sort a list in reverse order it is much faster to use calls to the mstint{jis and
reverse() than to use the built-in functiosort() with a comparison function that reverses the ordering of
the elements.

2.2.7 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thietionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (&.@nd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlzeaadb are mappingsk is a key, andr andx are arbitrary
objects):

22 Chapter 2. Built-in Functions, Types, and Exceptions

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = v seta[k] tov
del al K removea k] froma ()
a.clear() remove all items frona
a.copy() a (shallow) copy o&
a.has _key(k) 1 if ahas a ke, else0
kin a Equivalent toa.has key(K) (2)
k not in a Equivalent tonot a.has key(K) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update(b) for k in b.keys(): ak] = blK]
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[k] ifk in a, elsex (4)
a.setdefault(kI, x]) | a K] ifk in a,elsex (also setting it) (5)
a.popitem() remove and return an arbitrarggy, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values | (2), (3)

Notes:

(1) Raises &KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random ordeitdins() ,keys() ,values() ,iteritems() , iterkeys() .
anditervalues() are called with no intervening modifications to the dictionary, the lists will directly cor-
respond. This allows the creation pfialug key) pairs usingzip() : ‘pairs = zip(a.values(),
akeys()) . The same relationship holds for titerkeys() anditervalues() methods: pairs =
zip(a.itervalues(), a.iterkeys()) ' provides the same value fgrairs . Another way to create
the same listispairs = [(v, k) for (k, v) in a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missingx is both returned and inserted into the dictionary as
the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.2.8 File Objects

File objects are implemented using G&lio package and can be created with the built-in construfi()
described in section 2.1, “Built-in Function¥’They are also returned by some other built-in functions and methods,
such a®s.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an 1/0O-related reason, the excep@&nror is raised. This includes situations where
the operation is not defined for some reason, $i&ek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise &/alueError after the file has been closed. Callicigse() more than once is allowed.

1%ile() is new in Python 2.2. The older built-mpen() is an alias foffile()

2.2. Built-in Types 23

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else faléate: If a file-like object is not associated
with a real file, this method shoultbtbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fentl module oros.read() and friends.Note: File-like objects which do not have a real file descriptor
shouldnot provide this method!

read ([size])
Read at mossizebytes from the file (less if the read hi&®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urtibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after amoOFis hit.) Note that this method may call the underlying C funcfi@ad() = more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tr{bgt may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hit immediately. Note: Unlike stdio ’s fgets() , the returned string contains null characteY@’() if
they occurred in the input.

readlines ([sizehinr])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
Equivalent toxreadlines.xreadlines(file) . (See thexreadlines module for more information.)
New in version 2.1.

seek (offse{, Whencd)
Set the file’s current position, likstdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to the
file’s end). There is no return value. Note that if the file is opened for appending (l@oder 'a+’), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+’).

tell ()
Return the file’s current position, liketdio s ftell()

truncate ([size])
Truncate the file’s size. If the optionaizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all Biix versions support this operation).

write (' str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

11The advantage of leaving the newline on is that an empty string can be returned t@ araaithout being ambiguous. Another advantage is
that (in cases where it might matter, for example. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last
line of a file ended in a newline or not (yes this happens!).

24 Chapter 2. Built-in Functions, Types, and Exceptions

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to natatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redilé.ssadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attributeldbe() method
changes the value. It may not be available on all file-like objects.

mode
The 1/0 mode for the file. If the file was created using ¢pen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx...> . This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vadfidpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thggint statement, but to allow the
implementation oprint to keep track of its internal state.

2.2.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thampert statement is not, strictly
speaking, an operation on a module objaoiport foo does not require a module object nanfiedto exist, rather
it requires an (externatjefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet
attribute is not possible (you can write __dict __['a] = 1 , which definegn.a to bel, but you can’t write

m. __dict __ = {} .

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule ’'os’ from ’/usr/local/lib/python2.2/o0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

2.2. Built-in Types 25

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function'scode objecisee below)
andf.func _globals is the dictionary used as the function’s global namespace (this is the same aslict
wheremis the module in which the functidhwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach metadata to
functions. Regular attribute dot-notation is used to get and set such attribldesthat the current implementation

only supports function attributes on user-defined functions. Function attributes on built-in functions may be supported
in the future.

Functions have another special attribfite__dict __ (a.k.a.f.func _dict) which contains the namespace used
to support function attributes._dict __ andfunc _dict can be accessed directly or set to a dictionary object. A
function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance meathimas:self is the object on
which the method operates, antdim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

Class instance methods are eitheundor unbound referring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this sa#fe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSgpeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resul®y/pe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

c = C(
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the builtempile() function and can be extracted from function objects
through theifunc _code attribute.

26 Chapter 2. Built-in Functions, Types, and Exceptions

A code object can be executed or evaluated by passing it (instead of a source stringgtechstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhds defines names for all standard built-in types.

Types are written like thisstype ’int’>

The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédone (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (see”yteon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteitipsis (a built-in name).

It is written asEllipsis

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and slice
objects.

2.2.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

2.3 Built-in Exceptions

2.3. Built-in Exceptions 27

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the nesdefations . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace as well asaietions module.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofdkeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEiasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in the
Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’saargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc8pbplteration and SystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly sys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStermor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available osttbeor attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tfilename attribute. However, for backwards compatibility, the

28 Chapter 2. Built-in Functions, Types, and Exceptions

args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute iSNone when this exception is created with other than 3 argumentsefifne and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hiteoF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘pyconfig.h’ file.

exceptionlOError
Raised when an I/O operation (such gt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorBnvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefi@an ... import fails to
find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError s raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm&@iiyntrol-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipat() orraw _input()) is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@adloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived froRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

2.3. Built-in Exceptions 29

exceptionOSError
This class is derived frofenvironmentError and is used primarily as thes module’sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethleef .proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref .ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iteratorisext() method to signal that there are no further values. This is derived Exep-
tion rather tharStandardError , since this is not considered an error in its normal application. New in
version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriimpan statement, in amxec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

Instances of this class have atttribufilsname , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version ;itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by theys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthgyis).
Also, this exception derives directly froBixception and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handfirally clauses otry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfaok()).

exceptionTypeError

30 Chapter 2. Built-in Functions, Types, and Exceptions

Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladsairror . New in
version 2.0.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporatrte an

value. Theerrno andstrerror values are created from the return values of@sLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedimengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

2.3. Built-in Exceptions 31

32

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new

site

user
__builtin
__main __

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of timaport statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

33

The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.
dilhandle
Integer specifying the handle of the Python DLL. Availability: Windows.
displayhook (value
If valueis notNone, this function prints it tesys.stdout , and saves itin _builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosywstderr

When an exception is raised and uncaught, the interpreter oalexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook

__excepthook
These objects contain the original valuesdidplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgpe valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objed)ue gets the exception parameter (&ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don't need access to the traceback, the
best solution is to use something likgctype, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotwy with a

34 Chapter 3. Python Runtime Services

... finally statement) or to caltxc _info() in a function that does not itself handle an exceptiNote:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handi&d, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. th®c¢onfig.h’ header file) are installed in the di-
rectoryexec _prefix + ’/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdevelopeakik) programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed te®ys.stderr and results in an exit code of 1. In particulays.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tla¢exit module.Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or ween exit() s called.

getdefaultencoding 0

Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags 0

Return the current value of the flags that are usedlligoen() calls. The flag constants are defined in dhe
andDLFCNmodules. Availability: Wix. New in version 2.2.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgeitr&icount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ([depth])

3.1. sys — System-specific parameters and functions 35

Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use ismport pdb; pdb.pm() " to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is inserbedorethe entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e:.gunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

36 Chapter 3. Python Runtime Services

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the direqtosfix +
"llib/python version while the platform independent header files (all exceptonfig.h’) are stored in
prefix + ’'/linclude/python versiori , whereversionis equal toversion[:3]

psi

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case a®&> ' and'... . If a non-string object is
assigned to either variable, gfr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuez= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (nameg
Set the current default string encoding used by the Unicode implementatialamiédoes not match any
available encodind,.ookupError is raised. This function is only intended to be used bydie module
implementation and, where needed ditecustomize . Once used by theite module, itis removed from
thesys module’s namespace. New in version 2.0.

setdlopenflags (n)
Set the flags used by the interpreter filopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag modules
can be either found in the! module, or in thdDLFCNmodule. IfDLFCNis not available, it can be generated
from ‘/usr/include/dIfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (seettrace()), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simplixogtern

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered asitigice() for each thread being debugged.

stdin
stdout
stderr
File objects corresponding to the interpreter’'s standard input, output and error stretims. is used for

3.1. sys — System-specific parameters and functions 37

all interpreter input except for scripts but including calldriput() andraw _input() . stdout is used

for the output ofprint and expression statements and for the prompiemit() andraw _input()

The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr

needn’t be built-in file objects: any object is acceptable as long as it hadtex) method that takes a

string argument. (Changing these objects doesn’t affect the standard 1/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal@08. When set td or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the formersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version _info
A tuple containing the five components of the version numisegjor, minor, micro, releaselevelandserial. All
values excepteleaseleveare integers; the release levelatpha’ |, ’beta’ ,’candidate’ , or'final’
Theversion _info value corresponding to the Python version 2.is 0, 0, ‘final’, 0) . New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Referwathégs
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactekgeddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program cagjt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

38 Chapter 3. Python Runtime Services

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(ﬁ, thresholdi, thresholdﬂ])
Set the garbage collection thresholds (the collection frequency). S#ttagholdto zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found. New in version 2.2.

The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with_del __() methods: Objects that have _del __() methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, itisn’t possible for Python to guess a safe order in which to runttlel __() methods. If you know
a safe order, you can force the issue by examininggdrbagelist, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of beinggartiegelist, so
they should be removed frogarbagetoo. For example, after breaking cycles,all gc.garbagel[:] to
empty the list. It's generally better to avoid the issue by not creating cycles containing objects déh __()
methods, angarbagecan be examined in that case to verify that no such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wstit _debug() :
DEBUGSTATS

IPrior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

3.2. gc — Garbage Collector interface 39

Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to tiegbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLBrDEBUGUNCOLLECTABLIS set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendgdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.

Theweakref module allows the Python programmer to creaak reference® objects.

In the discussion which follows, the temaferentmeans the object which is referred to by a weak reference.
XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions written in Python
(but not in C), and methods (both bound and unbound). Extension types can easily be made to support weak references;
see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, callback])
Return a weak reference tbject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will close to be
returned. Ifcallbackis provided, it will be called when the object is about to be finalized; the weak reference
object will be passed as the only parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjectd __() method.

Weak references are hashable if digectis hashable. They will maintain their hash value even afteotiject
was deleted. Ihash() is called the first time only after thabjectwas deleted, the call will raiseypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oélivack. If either referent has been deleted,
the references are equal only if the reference objects are the same object.

proxy (objec{, callback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts instead

40 Chapter 3. Python Runtime Services

of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on wheth@hbjectis callable. Proxy objects are

not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keglbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refsyject

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfect

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standardReferenceError ~ exception.

See Also:

PEP 0205, YWWeak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
pass

>>> 0 = Object()
>>> r = weakref.ref(o)
>>> 02 = 1()

>>> 0 is 02

1

3.3. weakref — Weak references 41

If the referent no longer exists, calling the reference object reNome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresfgjois not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
0 =r()
if o is None:
referent has been garbage collected
print "Object has been allocated; can’t frobnicate."
else:

print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs

of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incl®y®©aject* field in the instance structure for
the use of the weak reference mechanism; it must be initializ&tioL by the object’s constructor. It must also set
thetp _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs to add

Py_TPFLAGS HAVE WEAKREF® the tp_flags slot. For example, the instance type is defined with the following
structure:

typedef struct {
PyObject_ HEAD
PyClassObject *in_class; /* The class object */

42 Chapter 3. Python Runtime Services

PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */
} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance”,

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, [* tp_richcompare */

offsetof(PylInstanceObject, in_weakreflist), /* tp_weaklistoffset */

I3
The type constructor is responsible for initializing the weak reference IdtitoL:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;
}

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
list is nonNULL

static void
instance_dealloc(PylnstanceObject *inst)
/* Allocate temporaries if needed, but do not begin
destruction just yet.

*

if (inst->in_weakreflist = NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

[* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

3.4. fpectl — Floating point exception control 43

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf” is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Tiygectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the genera®iF®E whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySI6G#®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpiegtté module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros

44 Chapter 3. Python Runtime Services

PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to supportfipectt module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtfodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bysygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsgstexitfunc . In partic-
ular, other core Python modules are free to asxit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsdagister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.16):
Useful example o&texit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count

_count = _count + n

def savecounter():

3.5. atexit — Exit handlers 45

open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freet types import * ' — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygred in *

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.3.0).

ComplexType
The type of complex numbers (e.4.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (euSpam’). This is not defined if Python was built without Unicode
support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType
The type of lists (e.g[0, 1, 2, 3]).
DictType
The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0}).
DictionaryType
An alternate name fdDictType

46 Chapter 3. Python Runtime Services

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sygs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
containdUnicodeType if it has been built in the running version of Python. For examgigistance(s,
types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

3.7. UserDict — Class wrapper for dictionary objects a7

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the dtiatit-itype.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines thElserDict class:

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. linitialdata is provided,data is initialized with its contents;
note that a reference toitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section2s2iD)jct instances provide
the following attribute:

data
A real dictionary used to store the contents of theerDict class.

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from thelsiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblelaia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancgssdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiodsefL &t instances
provide the following attribute:

data
A real Python list object used to store the contents oltberList class.

Subclassing requirements: Subclasses dflserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly

48 Chapter 3. Python Runtime Services

from the built-instr type instead of usintyserString (there is no built-in equivalent thlutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

classUserString ([sequenc}z)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via ttata attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

classMutableString ([sequenc})
This class is derived from thdserString above and redefines strings toin@table Mutable strings can't
be used as dictionary keys, because dictionaries reguireitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overrideashe__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.2.6, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content disleeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiarty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a b

le (a,b

eq(a, b

ne(a,b)

ge(a, b

gt (a, b

_It __(a,b

_le __(a,b

__eqg__(ab

_ne__(ab

__ge__(a/b

—gt__(ab
Perform “rich comparisons” betweenandb. Specifically,lt(a, b) is equivalenttea < b,le(a, b) is
equivalenttoa <= b, eq(a, b) isequivalenttea == b, ne(a, b) isequivalentta != b, gt(a, b)
is equivalent toa > b andge(a, b) is equivalenttca >= b. Note that unlike the built-itmp() , these

3.10. operator — Standard operators as functions. 49

functions can return any value, which may or may not be interpretable as a Boolean value. Bgthtine
Reference Manudbr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests and Boolean operations:

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation. The result is affected by tienzero __() and__len __() methods.)

truth (0)
Returnl if ois true, and 0 otherwise.

The mathematical and bitwise operations are the most numerous:

abs(0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and _(a, b
_—and__(a, b
Return the bitwise and & andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (&, b
__floordiv. __(a,b
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent to"o. The namesinvert() and
__invert __() were added in Python 2.0.

Ishift (&, b)
__Ishift __(a,b
Returna shifted left byb.

mod(a, b)
__mod__(a, b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for aandb numbers.

neg(o)
__neg__(0)
Returno negated.

or (a, b
_or__(aMb
Return the bitwise or o andb.

50 Chapter 3. Python Runtime Services

pos (o)
__pos__(0)
Returno positive.

rshift (a, b
__rshit __(a, b
Returna shifted right byb.

sub(a, b)
__sub__(a,b
Returna- b.

truediv (a, b
__truediv __(a,b)
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a, b
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

countOf (a,b)
Return the number of occurrenceshdh a.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b
Return the index of the first of occurrenceloih a.

repeat (a,b
__repeat __(a,b
Returna* b whereais a sequence artis an integer.

sequencelncludes (...
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a, b, 9

3.10. operator — Standard operators as functions. 51

__setitem __(a,b,qg
Set the value o at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objdots. Be careful not to misinterpret
the results of these functions; ongCallable() has any measure of reliability with instance objects. For example:

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
1

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodzte __() method.

isMappingType (0)
Returns true if the objeat supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objeat represents a number. This is true for all numeric types implemented in C, and for
all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeai supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objett&arning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals frOrto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

52 Chapter 3. Python Runtime Services

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq O0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b)
Bitwise And aé&hb and_(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion ! invert(a)
Bitwise Or al b or _(a b)
Indexed Assignment ofk] = v setitem(o, k, V)
Indexed Deletion del of K] delitem(o, K)
Indexing o K] getitem(o, K)
Left Shift a<<b Ishift(a, b)
Modulo a%b mod(a, b)
Multiplication a*b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshift(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqi:j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<b It(a, h)
Ordering a<=b le(a, b)
Equality a==>b eq(a, b)
Difference al=b ne(a, b)
Ordering a>=ob ge(a, b)
Ordering a>b gt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

3.11.1 Types and members

Thegetmembers() function retrieves the members of an object such as a class or module. The nine functions whose
names begin with “is” are mainly provided as convenient choices for the second argumgetthembers() . They
also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 53

Note:

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,Mone
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

(1) Changed in version 2.2m _class

getmembers (objec{, predicatd)

used to refer to the class that defined the method.

54

Chapter 3. Python Runtime Services

Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opt&diehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path)
Return a tuple of values that describe how Python will interpret the file identifiqgehthyif it is a module, or
None if it would not be identified as a module. The return tupl¢ iame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packafiixis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’(or
rb’), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in timp module; see the documentation for that module for more information on
module types.

getmodulename (path)
Return the name of the module named by thegdéh, without including the names of enclosing packages. This
uses the same algortihm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

3.11. inspect — Inspect live objects 55

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError if
the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Eror is raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is retuangsl: varargs
varkw, defaultg . argsis a list of the argument names (it may contain nested ligegargsandvarkware the
names of th¢ and** arguments oNone. defaultsis a tuple of default argument values; if this tuple mas
elements, they correspond to the lagiements listed imrgs

getargvalues (framég
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, localg). argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of thfeand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}pnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valuefoﬂmat
Format a pretty argument spec from the four values returnegktargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list. The optionebntextargument specifies the number of lines of context to return, which
are centered around the current line.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of

56 Chapter 3. Python Runtime Services

all objects which can be accessed from the objects which form the cycle can become much longer even if Python's
optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly broken
to avoid the delayed destruction of objects and increased memory consumption which occurs.

getframeinfo (frame[, contexﬂ)
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record. The optional second argument specifies the number of lines of context to return, which are
centered around the current line.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([context])
Return a list of frame records for the stack above the caller’s frame.

trace ([contexﬂ)
Return a list of frame records for the stack below the current exception.

Stackframes stored directly or indirectly in local variables can easily cause reference cycles. Though the cycle detector
will catch these, destruction of the frames (and local variables) can be made deterministic by removing the cycle in
a finally clause. This is also important if the cycle detector was disabled when Python was compiled or using
gc.disable() . For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:
do something with the frame
finally:
del frame
3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayatdas _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, fiIe]])
Print up tolimit stack trace entries fromaceback If limit is omitted orNone, all entries are printed. ffile
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up timit stack trace entries fronracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): "> (2) it prints the exceptiotypeandvalueafter the stack trace; (3) t{/peis Syn-
taxError andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret
indicating the approximate position of the error.

3.12. traceback — Print or retrieve a stack traceback 57

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way instead of using the deprecated variables.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiofialit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback tajeeback
It is useful for alternate formatting of stack traces.litfiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy) representing the
information that is usually printed for a stack trace. Thetis a string with leading and trailing whitespace
stripped; if the source is not available ithne.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formagxas for
tract _tb() . The optionaf andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned Iextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.ast _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8ntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, t[), Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit]

A shorthand foformat _list(extract _tb(tb, limit)) .
format _stack ([f[, Iimit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

58 Chapter 3. Python Runtime Services

3.12.1 Traceback Example
This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print ’-"*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelineno from file namedfilename This function will never throw an exception — it will retuth on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search pays.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyesiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

Thepickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and

3.13. linecache — Random access to text lines 59

unpickling) is alternatively known as “serialization”, “marshallirfggr “flattening”, however the preferred term used
here is “pickling” and “unpickling” to avoid confusing.

This documentation describes both thiekle module and thePickle module.

3.14.1 Relationship to other Python modules

Thepickle module has an optimized cousin called tiéckle module. As its name impliesPickle is written

in C, so it can be up to 1000 times faster thackle . However it does not support subclassing of Btiekler()
andUnpickler() classes, because @Rickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performanaePidkle . Other than that, the interfaces of

the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively descriiektbe and

cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caltedrshal , but in generabickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serializaidkle stores such objects only once, and ensures

that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instpitdds. can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support ‘pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arisepithke serialization format is guaranteed to be
backwards compatible across Python releases.

e Thepickle module doesn’'t handle code objects, whichrtershal module does. This avoids the possibility
of smuggling Trojan horses into a program throughgiokle modulé.

Note that serialization is a more primitive notion than persistence; althpiaggle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform

the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

2Don't confuse this with thenarshal module
3This doesn’'t necessarily imply thaickle s inherently secure. See section 3.14.6 for a more detailed discussipickdea module
security. Besides, it's possible thaitkle will eventually support serializing code objects.

60 Chapter 3. Python Runtime Services

3.14.2 Data stream format

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printableil (and of some other characteristicsptkle 's
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a true value fbirthegument to the
Pickler constructor or thelump() anddumps() functions.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picitlerip() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpicldex) method. Thepickle module
provides the following functions to make this process more convenient:

dump(object, fild, bin])
Write a pickled representation ahbjectto the open file objecfile. This is equivalent tdPickler(file,
bin).dump(objec) . If the optionalbin argument is true, the binary pickle format is used; otherwise the (less
efficient) text pickle format is used (for backwards compatibility, this is the default).

file must have avrite() method that accepts a single string argument. It can thus be a file object opened for
writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdite and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalentdapickler(file).load()

file must have two methodsraead() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the ogtional
argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle format is used (this is
the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherit&fcoaption

exceptionPicklingError
This exception is raised when an unpicklable object is passed tiuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object, such as a security violation. Note that
other exceptions may also be raised during unpickling, including (but not necessarily limit&tirtioj-
teError andimportError

3.14. pickle — Python object serialization 61

Thepickle module also exports two callabfe®ickler andUnpickler

classPickler (file[, bin])
This takes a file-like object to which it will write a pickle data stream. Optidnalif true, tells the pickler to
use the more efficient binary pickle format, otherwiseAle!l format is used (this is the default).

file must have avrite() =~ method that accepts a single string argument. It can thus be an open file object, a
StringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(objec)
Write a pickled representation abjectto the open file object given in the constructor. Either the binary or
Ascli format will be used, depending on the value of tieflag passed to the constructor.

clear _memd)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: clear _memo() is only available on the picklers createddBickle . Inthepickle module, picklers
have an instance variable calle@mowhich is a Python dictionary. So to clear the memo fpickle module
pickler, you could do the following:

mypickler.memo.clear()

It is possible to make multiple calls to tllump() method of the samPickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same
object is pickled by multiplelump() calls, theload() will all yield references to the same object

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag &idkldre factory.

file must have two methodsraead() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. fildgan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for finding
what'’s called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

Note: thenoload() method is currently only available dgnpickler objects created with thePickle
module.pickle moduleUnpickler s do not have theoload() method.

4In thepickle module these callables are classes, which you could subclass to customize the behavior. HowevePj¢klehe modules
these callables are factory functions and so cannot be subclassed. One of the common reasons to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details on security concerns.

SWarning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the safiekler instance, the object is not pickled again — a reference to it is pickled andrpikler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

62 Chapter 3. Python Runtime Services

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None

e integers, long integers, floating point numbers, complex humbers
e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

¢ built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whaosedict __ or __setstate __() is picklable (see section 3.14.5 for details)

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will 5e raised

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class a#ttibutés not restored in
the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)
These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects
that are being serialized. This protocol provides a standard way for you to define, customize, and control how your
objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment safer from untrusted pickle data streams; see section 3.14.6 for more
details.

6The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 63

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsnit __() method is normallynotinvoked. If it is desirable that

the __init __() method be called on unpickling, a class can define a methaggktinitargs _() , which
should return auple containing the arguments to be passed to the class constructor_(ii@it __()). The
__getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled; if the class defines the megbistiate __() , itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no__getstate __() method, the instance’s_dict __ is pickled.

Upon unpickling, if the class also defines the methagetstate __() , it is called with the unpickled state If

there is na__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines bathgetstate __() and__setstate __() , the state object needn’t

be a dictionary and these methods can do what they3want

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementaduce __() method. If
provided, at pickling time__reduce __() will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned, it
must be of length two or three, with the following semantics:

¢ A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling __ with a true value. Oth-
erwise, anlJnpicklingError will be raised in the unpickling environment. Note that as usual, the callable
itself is pickled by name.

e Atuple of arguments for the callable objectMwone. Deprecated since release 2.8Ise the tuple of arguments

instead
e Optionally, the object’s state, which will be passed to the object'setstate __() method as described in
section 3.14.5. If the object has nosetstate __() method, then, as above, the value must be a dictionary

and it will be added to the object’'s_dict __.

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of argu-
ments; it should return the unpickled object.

If the second item wablone, then instead of calling the callable directly, itsbasicnew __() method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.8Ise the tuple of arguments instead

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable with
thecopy _reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface asduee __() method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

"These methods can also be used to implement copying class instances.
8This protocol is also used by the shallow and deep copying operations defined:ipthenodule.

64 Chapter 3. Python Runtime Services

Pickling and unpickling external objects

For the benefit of object persistence, fiiekle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
ASclI characters. The resolution of such names is not defined lyickkee module; it will delegate this resolution

to user defined functions on the pickler and unpickler

To define external persistent id resolution, you need to sgbéhsistent _id attribute of the pickler object and
thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a @essistent _id() method that

takes an object as an argument and returns eiMbae or the persistent id for that object. Whislone is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugptersistent _load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = X
def __str__ (self):
return 'My name is integer %d % self.x

i = Integer(7)
print i
p.dump(i)
datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)
up = pickle.Unpickler(dst)
class Fancylnteger(Integer):

def __ str__ (self):

return 'l am the integer %d’ % self.x

def persistent_load(persid):

9The actual mechanism for associating these user defined functions is slightly differ@itkler andcPickle . The description given
here works the same for both implementations. Users opitide module could also use subclassing to effect the same results, overriding the
persistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 65

if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpickler'persistent _load attribute can also be set to a Python list, in which

case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickl. Settingpersistent _load to a list is usually used in conjunction with tieload()

method on the Unpickler.

3.14.6 Security

Most of the security issues surrounding tiiekle andcPickle module involve unpickling. There are no known
security vulnerabilities related to pickling because you (the programmer) control the objegpisklat will interact
with, and all it produces is a string.

However, for unpickling, itis)\evera good idea to unpickle an untrusted string whose origins are dubious, for example,
strings read from a socket. This is because unpickling can create unexpected objects and even potentially run methods
of those objects, such as their class constructor or destttictor

You can defend against this by customizing your unpickler so that you can control exactly what gets unpickled and
what gets called. Unfortunately, exactly how you do this is different depending on whether you'rgickiieg or
cPickle

One common feature that both modules implement is theafe _for _unpickling __ attribute. Before calling

a callable which is not a class, the unpickler will check to make sure that the callable has either been registered as
a safe callable via theopy _reg module, or that it has an attribute safe _for _unpickling __ with a true

value. This prevents the unpickling environment from being tricked into doing evil things likesaithlink()

with an arbitrary file name. See section 3.14.5 for more details.

For safely unpickling class instances, you need to control exactly which classes will get created. Be aware that a class’s
constructor could be called (if the pickler found agetinitargs __() method) and the the class’s destructor (i.e.

its __del __() method) might get called when the object is garbage collected. Depending on the class, it isn't very
heard to trick either method into doing bad things, such as removing a file. The way to control the classes that are safe
to instantiate differs ipickle andcPickle 2.

In thepickle module, you need to derive a subclass fidnpickler , overriding thdoad _global() method.

load _global() should read two lines from the pickle data stream where the first line will the the name of the
module containing the class and the second line will be the name of the instance’s class. It then look up the class,
possibly importing the module and digging out the attribute, then it appends what it finds to the unpickler's stack.
Later on, this class will be assigned to theclass __ attribute of an empty class, as a way of magically creating

an instance without calling its class’s.init __() . You job (should you choose to accept it), would be to have

load _global() push onto the unpickler’s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If

Owe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

1A special note of caution is worth raising about tAeokie module. By default, theCookie.Cookie class is an alias for the
Cookie.SmartCookie class, which “helpfully” attempts to unpickle any cookie data string it is passed. This is a huge security hole because
cookie data typically comes from an untrusted source. You should either explicitly uSothee.SimpleCookie class — which doesn't
attempt to unpickle its string — or you should implement the defensive programming steps described later on in this section.

127 word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in pittkée or cPickle

66 Chapter 3. Python Runtime Services

this sounds like a hack, you're right. UTSL.

Things are a little cleaner wittPickle , but not by much. To control what gets unpickled, you can set the unpickler’s
find _global attribute to a function oNone. If it is None then any attempts to unpickle instances will raise an
UnpicklingError . If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class, again performing any necessary imports, and it
may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

class TextReader:
""Print and number lines in a text file.""
def __init__ (self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh] # remove filehandle entry
return odict

def __ setstate__(self,dict):

fh = open(dict['file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.fh = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

3.14. pickle — Python object serialization 67

'7: class TextReader:’
>>> import pickle
>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thatickle works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upiekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to theickle module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster thpickle because the former is implemented in C. Second, in

the cPickle module the callableRickler() and Unpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pickle andcPickle are identical, so it is possible to upéckle and
cPickle interchangeably with existing picklEs

There are additional minor differences in API betweickle andpickle , however for most applications, they
are interchangable. More documentation is provided irpibkle module documentation, which includes a list of
the documented differences.

3.16 copy _reg — Register pickle support functions

Thecopy _reg module provides support for theeckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. Bbjectis not callable (and hence not valid as a constructor), raises
TypeError

13since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

68 Chapter 3. Python Runtime Services

pickle (type, functimﬁ, constructoﬂ)
Declares thafunction should be used as a “reduction” function for objects of tyypee type must not be a
“classic” class object. (Classic classes are handled differently; see the documentatiorpfokithe module
for details.)functionshould return either a string or a tuple containing two or three elements.

The optionakonstructorparameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returnedfioyctionat pickling time. TypeError will be raised if
objectis a class oconstructoris not callable.

See thepickle module for more details on the interface expectefiinttionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithkée module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (d&mor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.8):
Generic interface tdbm-style databases.

Moduledbhash (section 7.10):
BSD db database interface.

3.17. shelve — Python object persistence 69

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.9):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle (section 3.14):
Object serialization used Ishelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):
e A shallow copyconstructs a new compound object and then (to the extent possible) meferéncesnto it to
the objects found in the original.
e A deep copyonstructs a new compound object and then, recursively, insgptssinto it of the objects found
in the original.
Two problems often exist with deep copy operations that don't exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.
e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs () ,__getstate __() and__setstate __() . See the description of modytéckle for
information on these methods. Thepy module does not use tlwwpy _reg registration module.

70 Chapter 3. Python Runtime Services

In order for a class to define its own copy implementation, it can define special methadpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadleépeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doé$).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules pf/¢’ files. Therefore, the Python maintainers reserve the right

to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and de-
serializing Python objects, use thigkle module. There may also be unknown security problems mihshal .

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppsded; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C’dlong int type has only 32 bits, a Python long integer object is returned instead. While of a different type,

the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, filg
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modeavp’ or
‘w+b’).
If the value has (or contains an object that has) an unsupported tyfady@Error exception is raised — but
garbage data will also be written to the file. The object will not be properly read balciaty)

load (file)
Read one value from the open file and return it. If no valid value is read, E&$¢Error , ValueError — or
TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

14The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

15As opposed to the known security issues inpiekle module!

3.19. marshal — Internal Python object serialization 71

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, reéi&@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwean() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manufar details).

Warning messages are normally writtersye.stderr , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

The printing of warning messages is done by calshgwwarning() , which may be overidden; the default imple-
mentation of this function formats the message by callorghatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclBgsepfition
UserWarning The default category favarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\i@ning class.

72 Chapter 3. Python Runtime Services

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the foracfion messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messagés a compiled regular expression that the warning message must match (the match is case-insensitive)
e categoryis a class (a subclassWfarning) of which the warning category must be a subclass in order to match
e moduleis a compiled regular expression that the module name must match

¢ linenois an integer that the line number where the warning occurred must matho onatch all line numbers

Since thewWarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alMW options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagystetderr).

3.20.3 Available Functions

warn (messag[a categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.calegoryargument, if given, must be a warning
category class (see above); it defaultddserWarning . This function raises an exception if the particular
warning issued is changed into an error by the warnings filter see abovestadkdevebrgument can be used
by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() 's caller, rather than to the source a@éprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit (message, category, filename, Iinénmodule[, registry]])
This is a low-level interface to the functionality afflarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pjth
stripped; if no registry is passed, the warning is never suppressed.

3.20. warnings — Warning control 73

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation call®wwarning(message category filename
lineno) and writes the resulting string fde, which defaults tesys.stderr . You may replace this function
with an alternative implementation by assigninguiarnings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (actior{, messag[e categor)[, module[, Iinenc{, appenc]]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaaitpéndis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous caliteovarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigbg statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has th¢ $offrx mode
typd , wheresuffixis a string to be appended to the module name to form the filename to searofofie,
is the mode string to pass to the built@pen() function to open the file (this can B for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCEPY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedyey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduléPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour&/(RESOURQCEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a tripfidle, pathname descriptio) wherefile is an open file

object positioned at the beginningathnamds the pathname of the file found, adéscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnefile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (hames containing dots). In ordeRtMfiniat
is, submoduléM of packageP, usefind _module() andload _module() to find and load packadge and
then usdind _module() with the pathargument set t®. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding

74 Chapter 3. Python Runtime Services

compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileeargument is an open file, afitenameis the corresponding

file name; these can done and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedyey _suffixes() , describing what kind of module

must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (mspatError)
is raised.

Important: the caller is responsible for closing tfile argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namég
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
Return 1 if the import lock is currently held, else 0. On platforms without threads, always return 0.

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (se _frozen()).

The following constant and functions are obsolete; their functionality is available thrindjh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise arimportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callestame None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python

3.21. imp — Access the import internals 75

interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (namé
Returnl if there is a built-in module calledamewhich can be initialized again. Returh if there is a built-in
module callechamewhich cannot be initialized again (sedt _builtin()). Return0 if there is no built-in
module callechame

is _frozen (name¢
Returnl if there is a frozen module (sé@t _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeagain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tifmargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeabain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEneargument is used to construct
the name of the initialization function: an external C function caliedt * nam€) ’ in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or *.pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincnd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:

76 Chapter 3. Python Runtime Services

Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incleelead() function can be
found in the modul&nee .

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classlinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optimeas argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
" __name__’ setto’ __console __’ andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class buildteoactiveln-
terpreter and adds prompting using the familsys.psl andsys.ps2 , and input buffering.

interact ([bannel[, readfun({, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instahterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, fiIenam&{, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limcisin
always makes the same decision as the real interpreter main loop.

sourceis the source strindjlenameis the optional filename from which source was read, defaultirigite
put>" ; andsymbolis the optional grammar start symbol, which should be eitiagle’ (the default) or
‘eval’

Returns a code object (the samecampile(source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise®verflowError or ValueError if the command cotains an invalid literal.

3.22.1 Interactive Interpreter Objects

runsource (source[, filenamé, symbo]|])
Compile and run some source in the interpreter. Arguments are the samecasifuite _command() ; the
default forfilenameis '<input>' , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrectcompile _command() raised an exceptiorSyntaxError or Overflow-
Error). A syntax traceback will be printed by calling tlsowsyntaxerror() method. run-
source() returnsO.

eThe input is incomplete, and more input is requiredmpile _command() returnedNone. run-
source() returnsl.

3.22. code — Interpreter base classes 77

eThe input is completegompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnso.

The return value can be used to decide whether tays@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocalrewtraceback() is called to display a traceback. All
exceptions are caught excepgstemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Ifflenameis given, it is stuffed into the exception instead of the default filename provided by Python's
parser, because it always usestring>’ when reading from a string. The output is written by wrée()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by theite() = method.

write (data)
Write a string to the standard error streasyq.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.22.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
—since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreterisource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valuelisf more input is requiredQ if the line was dealt with in some way (this is the
same asunsource()).

resetbuffer 0
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in funegan_input() ;
a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

78 Chapter 3. Python Runtime Services

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use ttede module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print ‘or
" next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, ﬁlenamé, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objscluifceis valid
Python code. In that case, the filename attribute of the code object wilehame which defaults td<in-
put>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise®yntaxError s raised if there is invalid Python
syntax, andDverflowError or ValueError if there is an invalid literal.

The symbolargument determines whethsurceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

classCompile ()
Instances of this class havecall __() methods indentical in signature to the built-in functemmpile()
but with the difference that if the instance compiles program text containingfature __ statement, the
instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have call __() methods identical in signature mmpile _command() ; the
difference is that if the instance compiles program text containing fature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:

from codeop import CommandCompiler
except ImportError:

def CommandCompiler():

3.23. codeop — Compile Python code 79

from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.24 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstrudrettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

classPrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using teeamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscenat depth andwidth. The amount
of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... . By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> jmport pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
I
'fusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],
"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]
>>>
>>> import parser
>>> tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (..))N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)

80 Chapter 3. Python Runtime Services

Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteachahts statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representellexifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", '/usr/localllib/pythonl.5’, 'fusr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation aifject This takes into Account the options passed to Fhet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using

3.24. pprint — Data pretty printer 81

eval() . Note that this returns false for recursive objects. Ifdepthparameter of th€rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brélpif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedigpr() and the Python debugger.

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulxdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defddt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner agxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type ahbjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,

82 Chapter 3. Python Runtime Services

with level - 1 for the value ofevelin the recursive call.

repr _typq obj, leve)
Formatting methods for specific types are implemented as methods with a hame based on the type name. In
the method namdypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &epr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>', '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.26 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance @ésswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsaiffieis given, it must be a string d&fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takedasoo _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab
This function is an interface to tHeyCode_New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, dict

3.26. new — Creation of runtime internal objects 83

This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsifaupesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first lib/python2.2/site-packages’ and then lib/site-python’ (on UNIx). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgs@ath , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per
line) to be added tgys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped. Lines starting witmport are executed.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 2.2.2 library is
then installed in/usr/local/lib/python2.2’ (where only the first three characterssyfs.version are used to form the
installation path name). Suppose this has a subdirectast/lbcal/lib/python2.2/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedslys.path , in this order:

/usr/local/lib/python2.2/site-packages/bar
/usr/local/lib/python2.2/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module rateeastomize , which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-Wix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importgifecustomize is still attempted.

84 Chapter 3. Python Runtime Services

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user's home directory and if it can be opened, executes it (using

execfile()) in its own (the modulaiser 's) global namespace. Errors during this phase are not caught; that's up
to the program that imports theser module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpjthonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabser.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoubdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.27):
Site-wide customization mechanism.

3.29 __Dbuiltin ___ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.cpuiltin -~ __.open is the full name
for the built-in functionopen() . See section 2.1, “Built-in Functions.”

3.30 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter's main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. Itis this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "_main__"

3.28. user — User-specific configuration hook 85

main()

86

Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.

fpformat General floating point formatting functions.

StringlO Read and write strings as if they were files.

cStringlO Faster version aBtringlO , but not subclassable.

codecs Encode and decode data and streams.

unicodedata Access the Unicode Database.

Information on the methods of string objects can be found in section 2.2.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii _letters
The concatenation of thascii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase

The lowercase lettefrabcdefghijkimnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii _uppercase
The uppercase lettetABCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will not

change.
digits
The string'0123456789'’
hexdigits
The string'0123456789abcdefABCDEF’

letters
The concatenation of the strinisvercase anduppercase described below. The specific value is locale-
dependent, and will be updated whenale.setlocale() is called.

lowercase

87

A string containing all the characters that are considered lowercase letters. On most systems this is the string

"abcdefghijkimnopqgrstuvwxyz’ . Do not change its definition — the effect on the routings
per() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.
octdigits
The string’01234567"
punctuation

String of Asclii characters which are considered punctuation characters iCthozale.

printable
String of characters which are considered printable. This is a combinatdigitd , letters , punctua-
tion , andwhitespace

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string

"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifmser()
and swapcase() is undefined. The specific value is locale-dependent, and will be updated lathen
cale.setlocale() is called.

whitespace

A string containing all characters that are considered whitespace. On most systems this includes the characters

space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String

Methods” (section 2.2.6) for more information on those. The functions defined in this module are:
atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'(or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C

library. The specific set of strings accepted which cause these values to be returned depends entirely on the C

library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘0OX’ means 16,0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (s[, basd)
Deprecated since release 2.Qse thelong() built-in function.

Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asatoi() . Atrailing ‘I "or ‘L’

is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the

88 Chapter 4. String Services

capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, starl[,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained irg[start end .
Return-1 on failure. Defaults fostart andendand interpretation of negative values is the same as for slices.

rfind (s, suk{, starl{, end]])
Like find() but find the highest index.

index (s, suki, starl{, end]])
Like find() but raisevalueError when the substring is not found.

rindex (s, suli, starl{, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk{, start[, end]])
Return the number of (non-overlapping) occurrences of substtibn string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy 0§, but with upper case letters converted to lower case.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irffrominto the character at the same positionanfrom andto must have the same length.

Warning: Don'’t use strings derived frodowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayiswee() andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumemaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahexcstit-1

elements).

splitfields (s[, se;{, maxspliﬂ])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(S, sep, sep’equalss.

joinfields (Words[, sep])
This function behaves identically join() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ifoirdields() method on string
objects; use thpin() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removechdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on.

4.1. string — Common string operations 89

rstrip (s[, chars])
Return a copy of the string with trailing characters removedhérsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the both ends of the string this method is called on.

swapcase (9)
Return a copy o8, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usihp
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stamgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstnaxsplitoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usifgitirmbemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Trhedule is always available.

Regular expressions use the backslash charaétgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression musi\bé, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with . So r'\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: There module has two distinct implementationste is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available m®thraodule.

See Also:

Mastering Regular Expressions

90 Chapter 4. String Services

Book on regular expressions by Jeffrey Friedl, published by O’'Reilly. The Python material in this book dates
from before thee module, but it covers writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidiB are both regular expressions,
thenABis also a regular expression. If a stripgnatches A and another striggmatches B, the stringq will match

AB if A andB do no specify boundary conditions that are no longer satisfiedgpyThus, complex expressions

can easily be constructed from simpler primitive expressions like the ones described here. For details of the theory
and implementation of regular expressions, consult the Friedl book referenced below, or almost any textbook about
compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactexs,‘ Bkeor

‘0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast . (In the rest of this section, we’ll write RE’s itthis sp