
mpr − a memory allocation profiler for C/C++ programs

libmpr.a

To use mpr with a statically linked executable, link against libmpr.a. You will need to set the MPRFI environment
variable − see the mpr and MPRFI sections below for further details.

libmpr.so

To use mpr with a dynamically linked executable, do one of the following:

dynamically link against libmpr.so1. 
statically link against libmpr.a2. 
use the dynamic linker/loader to load libmpr.so at execution time3. 

Method (3) is obviously the most convenient, and can even be used with programs for which you don't have source − it is
therefore the method of choice for most users. You will need to set the MPRFI and LD_PRELOAD environment variables
− see the mpr and MPRFI sections below for further details.

mpr a.out [arg ...]

mpr is a simple wrapper that runs your program, after setting the environment variables LD_PRELOAD and MPRFI so that
calls to malloc()/free() can be intercepted and logged.

        % mpr perl −e 'print "goodbye, cruel world\n"'
        % mpr python −c 'print "goodbye, cruel world"'
        % mpr tcl −c 'puts "goodbye, cruel world"'
        % mpr lua −e 'print "goodbye, cruel world"'

If your program has not been linked against libmpr.a or libmpr.so, mpr will add libmpr.so to the environment variable
LD_PRELOAD to force libmpr.so to be loaded before your program runs.

If the MPRFI environment variable is unset, mpr will set it to "gzip −1 >log.%p.gz". This will save the log
messages to a file named log.pid.gz in the current directory, where pid is the process ID of the process that executes
your program. If your program creates child processes, there may be multiple log files created. See the MPRFI section below
for details on MPRFI, and the MPRNOCHILD section below for details on how to disable tracing child memory
allocations.

NOTE: If mpr cannot find libmpr.so, it will print an error message to stderr and exit without running your program −
you will need to manually set the environment variable LD_LIBRARY_PATH to include the directory containing
libmpr.so.

NOTE: On NetBSD, you will need to manually set the environment variable MPRLD_PRELOAD to the complete path
name for libmpr.so, since ld.elf_so(1) on NetBSD does not search LD_LIBRARY_PATH for LD_PRELOAD
objects.

MPRFI

The MPRFI environment variable defines a shell pipeline that is used to filter the log messages emitted by mpr's
malloc()/free() hook functions. The pipeline is created by forking an MPRSH shell subprocess of the process running
your program.

If you use the wrapper mpr to run your program and MPRFI is not already set, it will be set to 'gzip −1 >log.%p.gz'
automatically. The '%p' directive is replaced with the process ID of the process running your program.

If you only wish to catch memory leaks (i.e. if you are not interested in your program's entire allocation history), you can use
mprleak in MPRFI:

 mpr−2.8



        % env MPRFI='mprleak >leaks.%p' mpr a.out ...

If you have statically linked libmpr.a into your program, you can disable the mpr hook functions by unsetting MPRFI or
setting it to the empty string:

        % env MPRFI= a.out ...

MPRNOCHILD

If the MPRNOCHILD environment variable is set, then mpr will not track memory allocations by child processes (i.e. it will
not create multiple log.pid files). This can be useful if your program is a frontend that invokes other programs.

        % env MPRNOCHILD=1 a.out ...

mprmap [−f|−F a.c,b.c,...] [−l] [−Ix] [−i foo,bar,...] [−p] a.out [log]

mprmap maps program counters in an MPRFI log file to function names and, optionally, file names and line numbers.

        % mprmap a.out <log
        % mprmap a.out log
        % mprmap a.out log.gz

To examine memory leaks, use mprleak as a pre−filter:

        % mprleak log | mprmap a.out

Use option −i if you have "wrapper" functions around calls to malloc()/free() that are cluttering your call chains. Its
argument is a list of comma−separated functions that you wish to ignore.

        void *xmalloc(size_t sz)
        {
                void *p = malloc(sz);
                if (!p && sz)
                        abort();
                return p;
        }

        void *xrealloc(void *ptr, size_t sz)
        {
                void *p = realloc(ptr, sz);
                if (!p && sz)
                        abort();
                return p;
        }

In the code fragment above, xmalloc()/xrealloc() are wrappers around malloc()/realloc() that check for
allocation failures. Since they are not directly responsible for the allocations, you can ignore them with:

        % mprmap −i xmalloc,xrealloc ...

As indicated above, "," (comma) is the default separator for the list of functions to be ignored with option −i. If you are
using mprmap with a C++ program, you can use option −I to specify a different separator since "," may appear in a C++
function's signature:

        % mprmap −I'#' −i 'objalloc(void *, size_t)#objalloc(size_t)' a.out log

Option −f displays file names in addition to function names. This only works for those parts of your program that were
compiled with the −g option of the C compiler. Parts of your program that were not compiled with −g, or whose symbol
tables have been stripped, will not display file names. Option −l displays line numbers in addition to file names and function
names − it should be used in conjunction with option −f.

        % mprmap −f −l −i xmalloc,xrealloc a.out log

 mpr−2.8



Option −F is similar to option −f, but it restricts the set of source files for which file names are displayed. For example, to
display file names and line numbers only for files a.c and b.c:

        % mprmap −F a.c,b.c −l a.out log

To display file names and line numbers only for source files in directory src/dir1:

        % mprmap −F "`cd src/dir1; echo *.c`" −l a.out log

Option −p is useful if you are using mprmap with a C++ program. By default, mprmap will print the full signature of each
C++ function − this can result in unwieldy looking output. Option −p omits the parameter list portion of the signature.

mprchain [−c N] [−C N] [−w N] [−n] [−m] [log]

mprchain groups memory allocations by call chains. Its stdin should be connected to the stdout of mprmap.

        % mprmap a.out log | mprchain

To see memory leaks grouped by call chains, use mprleak as a pre−filter to mprmap:

        % mprleak log | mprmap a.out | mprchain

mprchain displays the call chain in column 1, the number of allocations/leaks by the call chain in column 2, the total
amount of memory allocated/leaked by the call chain in column 3, and the percentage of memory allocated/leaked by the call
chain in column 4. mprchain also prints a separator line "−−" between each call chain, which helps to distinguish between
call chains that span multiple lines.

Option −c sets the length of the call chains (default=999999).

        % mprmap −f −l a.out log | mprchain −c9

Option −C sets the number of call chain entries to display per line. By default, mprchain tries to squeeze as many entries as
it can onto one line.

        % mprmap −f −l a.out log | mprchain −C1

Option −w sets the width of the display (default=80).

        % mprmap −f −l a.out log | mprchain −w132

Option −n omits the percentage column.

Option −m displays, in column 3, the maximum amount of memory that was allocated at any time by the call chain (instead of
the total amount of memory allocated by the call chain).

        main()
        {
                int i;
                char *p1, *p2;
                for (i=0; i<10; i++) {
                        p1 = malloc(200);
                        free(p1);
                }
                p1 = malloc(150);
                p2 = malloc(100);
                free(p1);
                free(p2);
        }

In the code fragment above, without option −m, mprchain will show main() as having allocated a total of 2250 bytes;
with option −m, it will show main() as having allocated a maximum of 250 bytes.

 mpr−2.8



mprsize [−n] [log]

mprsize groups memory allocations by size. Its input should be the the MPRFI log file.

        % mprsize <log
        % mprsize log
        % mprsize log.gz

To see memory leaks grouped by size, use mprleak as a pre−filter.

        % mprleak log | mprsize

mprsize displays the size in column 1, the number of allocations/leaks of that size in column 2, the amount of memory
allocated/leaked by that size in column 3, and the percentage of memory allocated/leaked by that size in column 4.

Option −n omits the percentage column.

mprleak [log]

mprleak identifies those allocations that lead to memory leaks. Its input should be the MPRFI log file. It is most often used
as a pre−filter for mprmap or mprsize.

        % mprleak <log | mprmap a.out
        % mprleak log | mprmap a.out
        % mprleak log.gz | mprmap a.out

To examine memory leaks grouped by call chains:

        % mprleak log | mprmap a.out | mprchain

To examine memory leaks grouped by size:

        % mprleak log | mprsize

If you only wish to catch memory leaks in your program (i.e. if you are not interested in your program's entire allocation
history), you can use mprleak in MPRFI.

        % env MPRFI='mprleak >leaks.%p' mpr a.out ...

mprhisto [−c N] [−w N] [−b N] [log]

mprhisto displays a memory allocation histogram. Its input should be the MPRFI log file.

        % mprhisto <log
        % mprhisto log
        % mprhisto log.gz

mprhisto uses "*" (asterisk) to represent a 1KB block of allocated memory. For example, to find the maximum amount of
memory (within 1KB) that was allocated at any point during the life of your program:

        % mprhisto log | awk '{if (length>m) m=length} END {print m}'

Use option −b to change the default block size. For example, to see a histogram with a block size of 2KB:

        % mprhisto −b2048 log

Option −c sets the length of the call chains to display alongside the histogram (by default, no call chains are displayed). If
you use option −c, you should pre−filter the MPRFI log file through mprmap so that call chain program counters are
mapped to function names. For example, to see a histogram with a block size of 2KB and call chains of length 5:

 mpr−2.8



        % mprmap a.out log | mprhisto −b2048 −c5

Note that without option −c, mprhisto will not show adjacent histogram entries of the same length (i.e. mprhisto only
shows changes in the amount of allocated memory in multiples of the block size). If you use option −c, mprhisto is more
verbose and prints a line for everymalloc()/free() (i.e. every line in the MPRFI log file).

Option −w sets the width of the display (default=80), and is useful when you use option −c to show call chains alongside the
histogram. With option −c, mprhisto tries to right justify the call chains to line up in column 80 (the histogram is easier to
visualize by separating it from the call chains). However, if the output scrolls off the end of the screen or if the call chains are
too close to the histogram, you can

use option −b to increase the block size (so that the histograms are shorter)1. 
use option −c to decrease the length of the call chains2. 
use option −w to increase the width of the display3. 

For example, to see a histogram with a block size of 2KB and call chains of length 5 on a 132−column wide display:

        % mprmap a.out log | mprhisto −w132 −b2048 −c5

MPRAWK

If the MPRAWK environment variable is set, it names the AWK interpreter used by the mpr scripts. The default interpreter
used is awk.

The quality of your AWK interpreter can make a big difference to the runtime of mprmap. I suggest that you install Michael
Brennan's excellent mawk on your system. Even GNU gawk, which is the standard AWK interpreter on most Linux systems,
loses − I have seen improvements of over 500% using mawk vs gawk. For example, to force all the mpr scripts to use mawk:

        % export MPRAWK='mawk −W sprintf=4096'

MPRTMP

If the MPRTMP environment variable is set, it names the directory in which the mpr scripts will create their temporary
output files. The default directory is /tmp. For example, to force all temporary files to be created in the tmp subdirectory of
your home directory:

        % export MPRTMP=$HOME/tmp

MPRSYNC

If the MPRSYNC environment variable is set, it will force all output to the MPRFI pipe to be line buffered, instead of 8KB
buffered. This may be useful if you wish to visualize the MPRFI pipe while your program is running.

        % env MPRSYNC=1 MPRFI=mprhisto mpr a.out

You may need to force your awk interpreter to unbuffer or line−buffer stdout in order for this to work. For example, if you're
using mawk:

        % env MPRAWK='mawk −W interactive' MPRSYNC=1 MPRFI=mprhisto mpr a.out

MPRSH

If the MPRSH environment variable is set, it names the shell program used to run the MPRFI pipeline. The default shell
used is /bin/sh. It is required on systems like Solaris8, where /bin/sh sometimes fails (for unknown reasons).

        % export MPRSH=/bin/ksh

 mpr−2.8



MPRLD_PRELOAD

As mentioned in the mpr section above, on NetBSD you must manually set the environment variable MPRLD_PRELOAD
to the complete path name for libmpr.so, since ld.elf_so(1) on NetBSD does not search LD_LIBRARY_PATH for
LD_PRELOAD objects.

        % export MPRLD_PRELOAD=/usr/local/lib/libmpr.so

 mpr−2.8


	 mpr-2.8

