/** * $Id:$ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * The contents of this file may be used under the terms of either the GNU * General Public License Version 2 or later (the "GPL", see * http://www.gnu.org/licenses/gpl.html ), or the Blender License 1.0 or * later (the "BL", see http://www.blender.org/BL/ ) which has to be * bought from the Blender Foundation to become active, in which case the * above mentioned GPL option does not apply. * * The Original Code is Copyright (C) 2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ /* plugin.c MIXED MODEL * * dec 95 * */ #include #include #include #include #include "/usr/people/blend/plugin.h" #include "/usr/people/include/Button.h" #include "/usr/people/include/util.h" #include #include #define TRUE 1 #define FALSE 0 #define N 0x1000 #define B 0x100 #define BM 0xff #define NP 12 /* 2^N */ #define NM 0xfff #define lerp(t, a, b) ( a + t * (b - a) ) #define s_curve(t) ( t * t * (3. - 2. * t) ) #define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.; static start = 1; static p[B + B + 2]; static float g3[B + B + 2][3]; static float g2[B + B + 2][2]; static float g1[B + B + 2]; extern float hnoise(float noisesize, float x, float y, float z); float Noise3(float vec[]); /* * cc -g -float -c musgrave.c ; ld musgrave.o /usr/people/trace/mips1/util.o /usr/people/frank/source/gl_util.o /usr/people/trace/mips1/Button.o /usr/people/frank/source/storage.o /usr/people/blend/noise.o -o musgrave.so -lc -limbuf -lm -lfm -lgl;cp musgrave.so /pics/textures/proc ^^^^^^ ^^^^^^ ^^^^^^ * * */ float x, y, z, x1; /* ******************************************************************* */ /* ZELF INVULLEN: struct en funktienamen niet wijzigen */ /* ******************************************************************* */ /* 1. naam: */ char _name[24]= "Musgra"; /* 2. aantal sub types */ #define NR_STYPES 5 /* 3. namen van subtypes (maximaal 16 bytes per naam) */ char _stnames[NR_STYPES][16]= {"Multi", "fBm", "Terra", "Hybrid", "Ridged"}; /* 4. aantal externe variabelen (voor buttons) */ /* #define NR_VARS 11*/ /* 5. informatie over externe variabelen */ VarStruct _varstr[/*NR_VARS*/]= { /* butcode, naam, default,min, max */ NUM|FLO, "H", 0.0, -1.0, 1.0, NUM|FLO, "lacun", 3.6, 0.0, 10.0, NUM|FLO, "octav", 0.8, 0.0, 5.0, NUM|FLO, "offst", 0.6, -1.0, 2.0, NUM|FLO, "scale", 2.9, 0.0, 10.0, NUM|FLO, "gain", 0.0, 0.0, 10.0, /* NUM|FLO, "u", 0.0, -2.0, 2.0, NUM|FLO, "v", 0.0, -2.0, 2.0, NUMSLI|FLO, "R ", 0.5, 0.0, 1.0, NUMSLI|FLO, "G ", 0.5, 0.0, 1.0, NUMSLI|FLO, "B ", 0.5, 0.0, 1.0, NUMSLI|FLO, "sx ", 3.8, -10.0, 10.0, NUMSLI|FLO, "sy ", 3.8, -10.0, 10.0, NUMSLI|FLO, "sz ", 3.8, -10.0, 10.0, */ }; /* 6. hulpstruct om variabelen te casten */ typedef struct Cast { float H, lacun, octav, offst, scale, gain; } Cast; /* ******************************************************************* */ /* ******************************************************************* */ /* het resultaat van de texture is Tin,Tr,Tg,Tb,Ta, */ float _result[8]; /* deze globals worden door blender gezet */ float ctime; /* allereerste keer */ void plugin_tex_init() { } /* return 0: eenkanaals tex, return 1: RGB texture */ void pffft(Cast *cast) { } int plugin_tex_doit(int stype, Cast *cast, float *texvec, float *dxt, float *dyt) { float fac, x, y, u, v, z, s; float value, frequency, remainder, increment, Noise3(), point[3], octaves, Hh; float result, signal, weight; int i; static int first = TRUE; static int last = 0; static float *exponent_array; /* fac= hnoise(cast->limit, texvec[0], texvec[1], texvec[2]); texvec[0]+= fac; texvec[1]+= fac; texvec[2]+= fac; */ point[0] = texvec[0] * cast->scale; point[1] = texvec[1] * cast->scale; point[2] = texvec[2] * cast->scale; octaves = cast->octav; Hh = cast->H; if(last != stype){ first = TRUE; last = stype; } last = stype; if(stype == 0) { /* precompute and store spectral weights */ if (first) { /* seize required memory for exponent_array */ exponent_array = (float *)mallocN( (octaves+1.0) * sizeof(float), "test"); frequency = 1.0; for (i=0; i<=cast->octav; i++) { /* compute weight for each frequency */ exponent_array[i] = pow( frequency, -Hh ); frequency *= cast->lacun; } first = FALSE; } value = 1.0; /* initialize vars to proper values */ frequency = 1.0; /* inner loop of multifractal construction */ for (i=0; ioctav; i++) { value *= cast->offst * frequency * Noise3( point ); point[0] *= cast->lacun; point[1] *= cast->lacun; point[2] *= cast->lacun; } /* for */ remainder = cast->octav - (int)cast->octav; if ( remainder ) /* add in ``octaves'' remainder */ /* ``i'' and spatial freq. are preset in loop above */ value += remainder * Noise3( point ) * exponent_array[i]; _result[0] = value; /* return value; */ _result[4]= 1.0; return 0; } else { if (stype == 1){ if ( first ) { /* seize required memory for exponent_array */ exponent_array = (float *)mallocN( (octaves+1) * sizeof(float) , "test"); frequency = 1.0; for (i=0; i<=octaves; i++) { /* compute weight for each frequency */ exponent_array[i] = pow( frequency, -Hh ); frequency *= cast->lacun; } first = FALSE; } value = 0.0; /* initialize vars to proper values */ frequency = 1.0; /* inner loop of spectral construction */ for (i=0; ilacun; point[1] *= cast->lacun; point[2] *= cast->lacun; } /* for */ remainder = octaves - (int)octaves; if ( remainder ) /* add in ``octaves'' remainder */ /* ``i'' and spatial freq. are preset in loop above */ value += remainder * Noise3( point ) * exponent_array[i]; _result[0] = value; _result[4]= 1.0; return 0; } else { if (stype == 2){ if ( first ) { /* seize required memory for exponent_array */ exponent_array = (float *)mallocN( (octaves+1) * sizeof(float) , "test"); frequency = 1.0; for (i=0; i<=octaves; i++) { /* compute weight for each frequency */ exponent_array[i] = pow( frequency, -Hh ); frequency *= cast->lacun; } first = FALSE; } /* first unscaled octave of function; later octaves are scaled */ value = cast->offst + Noise3( point ); point[0] *= cast->lacun; point[1] *= cast->lacun; point[2] *= cast->lacun; /* spectral construction inner loop, where the fractal is built */ for (i=1; ioffst; /* scale amplitude appropriately for this frequency */ increment *= exponent_array[i]; /* scale increment by current `altitude' of function */ increment *= value; /* add increment to ``value'' */ value += increment; /* raise spatial frequency */ point[0] *= cast->lacun; point[1] *= cast->lacun; point[2] *= cast->lacun; } /* for */ /* take care of remainder in ``octaves'' */ remainder = octaves - (int)octaves; if ( remainder ) { /* ``i'' and spatial freq. are preset in loop above */ /* note that the main loop code is made shorter here */ /* you may want to that loop more like this */ increment = (Noise3( point ) + cast->offst) * exponent_array[i]; value += remainder * increment * value; } _result[0] = value; _result[4]= 1.0; return 0; } else { if (stype == 3){ if ( first ) { /* seize required memory for exponent_array */ exponent_array = (float *)mallocN( (octaves+1) * sizeof(float) , "test"); frequency = 1.0; for (i=0; i<=octaves; i++) { /* compute weight for each frequency */ exponent_array[i] = pow( frequency, -Hh ); frequency *= cast->lacun; } first = FALSE; } result = ( Noise3( point ) + cast->offst ) * exponent_array[0]; weight = result; /* increase frequency */ point[0] *= cast->lacun; point[1] *= cast->lacun; point[2] *= cast->lacun; /* spectral construction inner loop, where the fractal is built */ for (i=1; i 1.0 ) weight = 1.0; /* get next higher frequency */ signal = ( Noise3( point ) + cast->offst ) * exponent_array[i]; /* add it in, weighted by previous freq's local value */ result += weight * signal; /* update the (monotonically decreasing) weighting value */ /* (this is why H must specify a high fractal dimension) */ weight *= signal; /* increase frequency */ point[0] *= cast->lacun; point[1] *= cast->lacun; point[2] *= cast->lacun; } /* for */ /* take care of remainder in ``octaves'' */ remainder = octaves - (int)octaves; if ( remainder ) /* ``i'' and spatial freq. are preset in loop above */ result += remainder * Noise3( point ) * exponent_array[i]; _result[0] = result; _result[4]= 1.0; return 0; } else { if (stype == 4){ if ( first ) { /* seize required memory for exponent_array */ exponent_array = (float *)mallocN( (octaves+1) * sizeof(float) , "test"); frequency = 1.0; for (i=0; i<=octaves; i++) { /* compute weight for each frequency */ exponent_array[i] = pow( frequency, -Hh ); frequency *= cast->lacun; } first = FALSE; } /* get first octave */ signal = Noise3( point ); /* get absolute value of signal (this creates the ridges) */ if ( signal < 0.0 ) signal = -signal; /* invert and translate (note that "cast->offst" should be ~= 1.0) */ signal = cast->offst - signal; /* square the signal, to increase "sharpness" of ridges */ signal *= signal; /* assign initial values */ result = signal; weight = 1.0; for( i=1; ilacun; point[1] *= cast->lacun; point[2] *= cast->lacun; /* weight successive contributions by previous signal */ weight = signal * cast->gain; if ( weight > 1.0 ) weight = 1.0; if ( weight < 0.0 ) weight = 0.0; signal = Noise3( point ); if ( signal < 0.0 ) signal = -signal; signal = cast->offst - signal; signal *= signal; /* weight the contribution */ signal *= weight; result += signal * exponent_array[i]; } _result[0] = result; _result[4]= 1.0; return 0; } } } }}} void plugin_tex_getinfo( int *stypes, int *vars) { *stypes= NR_STYPES; /**vars= NR_VARS;*/ *vars= sizeof(_varstr) / sizeof(VarStruct); } static void normalize2(float v[2]) { float s; s = sqrt(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] / s; v[1] = v[1] / s; } static void normalize3(float v[3]) { float s; s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; } static void init(void) { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (float)((random() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((random() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((random() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = random() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } } float Noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; register i, j; if (start) { start = 0; init(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); }