AUCTEX

A sophisticated TEX environment for Emacs
Version 11.92, 2017-12-03

Kresten Krab Thorup
Per Abrahamsen
David Kastrup and others

This manual is for AUCTEX (version 11.92 from 2017-12-03), a sophisticated TeX environ-
ment for Emacs.

Copyright (© 1992-1995, 2001, 2002, 2004-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License.”

Table of Contents

Executive Summary................................. 1
CopYINg . ..o 2
1 Introduction........... 3
1.1 Overview of AUCTeXot 3
1.2 Installing AUCTeX ...t 3
1.2.1 Prerequisites.o 4

1.2.2 Configure. 5

1.2.3 Build/install and uninstall L 7

1.2.4 Loading the package, 7

1.2.5 Providing AUCTeX as a package..........coooiviiiii... 8

1.2.6 Installation for non-privileged users........................ 9

1.2.7 Installation under MS Windows................. ...t 10

1.2.8 Customizingoouueiiniii 15

1.3 Quick Starto 16
1.3.1 Functions for editing TeX filest 17
1.3.1.1 Making your TeX code more readable................ 17

1.3.1.2 Entering sectioning commands 17

1.3.1.3 Inserting environments................ccoveeeennnn. 17

1.3.1.4 Inserting macroS..........ccooueiiiiiiiiiniieennn.. 17

1.3.1.5 Changing the font 18

1.3.1.6 Other useful features................... 18

1.3.2 Creating and viewing output, debugging 19
1.3.2.1 One Command for LaTeX, helpers, viewers, and printing. .

1.3.2.2 Choosing an output format 19

1.3.2.3 Debugging LaTeX i, 20

1.3.2.4 Running LaTeX on parts of your document........... 20

2 Editing the Document Source................. 21
2.1 Imsertion of Quotes, Dollars, and Braces 21
2.2 Inserting Font Specifiers............co i 24
2.3 Inserting chapters, sections, etc. ..., 25
2.4 Inserting Environment Templates............. 27
241 EqUationsoooiiiiiiiii e 29

242 Floatso 29

2.4.3 Itemize-like Environments L 30

2.4.4 Tabular-like Environments............... ... i 30

2.4.5 Customizing Environments 31

2.5 Entering Mathematics............ .. . i 31
2.6 Completion.t 32

2.7 Marking Environments, Sections, or Texinfo Nodes............. 34

19

2.7.1 LaTeX Commands for Marking Environments and Sections.. 35
2.7.2 Texinfo Commands for Marking Environments and Sections. . 35

2.8 Commentingcouuvintiimtii i 35
2.9 Indenting.........oouuiiiiiii 36
2,10 Filling . ..ottt 38
Controlling Screen Display 41
3.1 Font Locking ... 41
3.1.1 Fontification of macros..............cooiiiiiiiiii i 42
3.1.2 Fontification of quotes........... i 45
3.1.3 Fontification of mathematical constructs 46
3.1.4 Verbatim macros and environments....................... 47
3.1.5 Faces used by font-latex................oiiiii i, 47
3.1.6 Known fontification problems............................. 47
3.2 Folding Macros and Environments............................. 47
3.3 Outlining the Document i ... 51
3.4 NaAITOWINZ. . ..ttt e e 52
3.5 Prettifying . ..o 52

Starting Processors, Viewers and

Other Programs 53
4.1 Executing Commandsttt 53
4.1.1 Starting a Command on a Document or Region........... 53
4.1.2 Selecting and Executing a Command...................... 55
4.1.3 Options for TeX Processors............ccoviiiieiiieann. 58
4.2 Viewing the Formatted Output 61
4.2.1 Starting VIewers.oouuiiinii i 61
4.2.2 Forward and Inverse Search.................... 63
4.3 Catching the errors.o 65
4.3.1 Controlling warnings to be reported....................... 66
4.3.2 List of all errors and warningscooovee... 67
4.4 Checking for problems............ ... i 67
4.5 Controlling the output......... i 68
4.6 Cleaning intermediate and output files......................... 68
4.7 Documentation about macros and packages.................... 68
Customization and Extension................. 69
5.1 Modes and Hooks ... 69
5.2 Multifile Documents 69
5.3 Automatic Parsing of TeX Files.................. ..., 71
5.4 Language SUppOrtoouutitii e 73
5.4.1 Using AUCTeX with European Languages 73
5.4.1.1 Typing and Displaying Non-ASCII Characters........ 73
5.4.1.2 Style Files for Different Languages 74

5.4.2 Using AUCTeX with Japanese TeX 76
5.5 Automatic Customization............. ... 78

5.5.1 Automatic Customization for the Site..................... 78

ii

5.5.2 Automatic Customization fora User...................... 79

5.5.3 Automatic Customization for a Directory 79
5.6 Writing Your Own Style Support ..., 80
5.6.1 A Simple Style File....... ... i 80
5.6.2 Adding Support for Macros..........cooviiiii ... 81
5.6.3 Adding Support for Environments 85
5.6.4 Adding Other Information.............. 87
5.6.5 Automatic Extraction of New Things 88

Appendix A Copying, Changes, Development,

FAQ, Texinfo Mode 90
A1 Copying this Manual.............. i 90
A.1.1 GNU Free Documentation License........................ 90
A2 Changes and New Features.............o, 97
A.3 Future Developmentt 111
A3.1 Mid-term GoalS. ..ot 111
A3.2 Wishlist ..o 112
AB.3 BUugs. ..o 114
A.4 Frequently Asked Questions................ooiiiiiiiiiiii.... 114
A.5 Features specific to AUCTeX’s Texinfo major mode 116
A.5.1 How AUCTeX and the native mode work together....... 116
A.5.2 Where the native mode is superseded.................... 116
A.5.3 Where key bindings are mapped to the native mode..... 118
A.5.4 Which native mode key bindings are missing 118
Indices........ ... 120
Key Index. . ..o 120
Function Index 120
Variable Index. ... 122

Concept INdex. . ..o 124

Executive Summary

AUCTEX is an integrated environment for editing IXTEX, ConTEXt, docTEX, Texinfo, and
TEX files.

Although AUCTEX contains a large number of features, there are no reasons to despair.
You can continue to write TEX and IATEX documents the way you are used to, and only
start using the multiple features in small steps. AUCTEX is not monolithic, each feature
described in this manual is useful by itself, but together they provide an environment where
you will make very few IATEX errors, and makes it easy to find the errors that may slip
through anyway.

It is a good idea to make a printout of AUCTEX’s reference card tex-ref.tex or one of
its typeset versions.

If you want to make AUCTEX aware of style files and multi-file documents right away,
insert the following in your .emacs file.

(setq TeX-auto-save t)
(setq TeX-parse-self t)
(setq-default TeX-master nil)

Another thing you should enable is RefTEX, a comprehensive solution for managing
cross references, bibliographies, indices, document navigation and a few other things. (see
Section “Installation” in The RefTEX manual)

For detailed information about the preview-latex subsystem of AUCTEX, see Section
“Introduction” in The preview-latex Manual.

There is a mailing list for general discussion about AUCTEX: write a mail with “sub-
scribe” in the subject to auctex-request@gnu.org to join it. Send contributions to
auctex@gnu.org.

Bug reports should go to bug-auctex@gnu.org, suggestions for new features, and
pleas for help should go to either auctex-devel@gnu.org (the AUCTEX developers), or
to auctex@gnu.org if they might have general interest. Please use the command M-
x TeX-submit-bug-report RET to report bugs if possible. You can subscribe to a low-
volume announcement list by sending “subscribe” in the subject of a mail to info-auctex-
request@gnu.org.

mailto:auctex-request@gnu.org
mailto:auctex@gnu.org
mailto:bug-auctex@gnu.org
mailto:auctex-devel@gnu.org
mailto:auctex@gnu.org
mailto:info-auctex-request@gnu.org
mailto:info-auctex-request@gnu.org

Copying

AUCTEX primarily consists of Lisp files for Emacs (and XEmacs), but there are also instal-
lation scripts and files and TEX support files. All of those are free; this means that everyone
is free to use them and free to redistribute them on a free basis. The files of AUCTEX are not
in the public domain; they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good cooperating citizen
would want to do. What is not allowed is to try to prevent others from further sharing any
version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
files that constitute AUCTEX, that you receive source code or else can get it if you want it,
that you can change these files or use pieces of them in new free programs, and that you
know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of parts of AUCTEX, you must
give the recipients all the rights that you have. You must make sure that they, too, receive
or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for AUCTEX. If any parts are modified by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

The precise conditions of the licenses for the files currently being distributed as part of
AUCTEX are found in the General Public Licenses that accompany them. This manual
specifically is covered by the GNU Free Documentation License (see Section A.1 [Copying
this Manual], page 90).

1 Introduction

1.1 Overview of AUCTEX

AUCTEX is a comprehensive customizable integrated environment for writing input files for
TEX, INTEX, ConTEXt, Texinfo, and docTEX using Emacs or XEmacs.

It supports you in the insertion of macros, environments, and sectioning commands by
providing completion alternatives and prompting for parameters. It automatically indents
your text as you type it and lets you format a whole file at once. The outlining and folding
facilities provide you with a focused and clean view of your text.

AUCTEX lets you process your source files by running TEX and related tools (such as
output filters, post processors for generating indices and bibliographies, and viewers) from
inside Emacs. AUCTEX lets you browse through the errors TEX reported, while it moves the
cursor directly to the reported error, and displays some documentation for that particular
error. This will even work when the document is spread over several files.

One component of AUCTEX that IATEX users will find attractive is preview-latex, a
combination of folding and in-source previewing that provides true “What You See Is What
You Get” experience in your sourcebuffer, while letting you retain full control.

More detailed information about the features and usage of AUCTEX can be found in the
remainder of this manual.

AUCTEX is written entirely in Emacs Lisp, and hence you can easily add new features
for your own needs. It is a GNU project and distributed under the ‘GNU General Public
License Version 3’.

The most recent version is always available at http://ftp.gnu.org/pub/gnu/auctex/.

WWW users may want to check out the AUCTEX page at http://www.gnu.org/
software/auctex/.

For comprehensive information about how to install AUCTEX See Section 1.2 [Installa-
tion], page 3, or Section 1.2.7 [Installation under MS Windows], page 10, respectively.

If you are considering upgrading AUCTEX, the recent changes are described in
Section A.2 [Changes|, page 97.

If you want to discuss AUCTEX with other users or its developers, there are several
mailing lists you can use.

Send a mail with the subject “subscribe” to auctex-request@gnu.org in order to join
the general discussion list for AUCTEX. Articles should be sent to auctex@gnu.org. In a
similar way, you can subscribe to the info-auctex@gnu.org list for just getting important
announcements about AUCTEX. The list bug-auctex@gnu.org is for bug reports which
you should usually file with the M-x TeX-submit-bug-report RET command. If you want
to address the developers of AUCTEX themselves with technical issues, they can be found
on the discussion list auctex-devel@gnu.org.

1.2 Installing AUCTEX

The modern and strongly recommended way of installing AUCTEX is by using the Emacs
package manager integrated in Emacs 24 and greater (ELPA). Simply do M-x list-
packages RET, mark the auctex package for installation with i, and hit x to execute the

http://ftp.gnu.org/pub/gnu/auctex/
http://www.gnu.org/software/auctex/
http://www.gnu.org/software/auctex/
mailto:auctex-request@gnu.org
mailto:auctex@gnu.org
mailto:info-auctex@gnu.org
mailto:bug-auctex@gnu.org
mailto:auctex-devel@gnu.org

Chapter 1: Introduction 4

installation procedure. That’s all. This installation procedure has several advantages. Be-
sides being platform and OS independent, you will receive intermediate releases between
major AUCTEX releases conveniently. For past ELPA releases, see https://elpa.gnu.
org/packages/auctex.html. Once the installation is completed, you can skip the rest of
this section and proceed to Section 1.3 [Quick Start], page 16.

The remainder of this section is about installing AUCTEX from a release tarball or from
a checkout of the AUCTEX repository.

Installing AUCTEX should be simple: merely ./configure, make, and make install
for a standard site-wide installation (most other installations can be done by specifying a
--prefix=... option).

On many systems, this will already activate the package, making its modes the de-
fault instead of the built-in modes of Emacs. If this is not the case, consult Section 1.2.4
[Loading the package], page 7. Please read through this document fully before installing
anything. The installation procedure has changed as compared to earlier versions. Users
of MS Windows are asked to consult See Section 1.2.7 [Installation under MS Windows],
page 10.

1.2.1 Prerequisites
e A recent version of Emacs, alternatively XEmacs

Emacs 20 is no longer supported, and neither is XEmacs with a version of xemacs-base
older than 1.84 (released in sumo from 02/02/2004). Using preview-latex requires a
version of Emacs compiled with image support. While the X11 version of Emacs 21
will likely work, Fmacs 22 and later is preferred.

Windows Precompiled versions are available from ftp://ftp.gnu.org/gnu/emacs/
windows/.

Mac OS X For an overview of precompiled versions of Emacs for Mac OS X see for
example http://www.emacswiki.org/cgi-bin/wiki/EmacsForMacOS.

GNU/Linux
Most GNU /Linux distributions nowadays provide a recent variant of Emacs
via their package repositories.

Self-compiled
Compiling Emacs yourself requires a C compiler and a number of tools
and development libraries. Details are beyond the scope of this manual.
Instructions for checking out the source code can be found at https://
savannah.gnu.org/bzr/?group=emacs.

If you really need to use Emacs 21 on platforms where this implies missing image
support, you should disable the installation of preview-latex (see below).

While XEmacs (version 21.4.15, 21.4.17 or later) is supported, doing this in a satisfac-
tory manner has proven to be difficult. This is mostly due to technical shortcomings
and differing API’s which are hard to come by. If AUCTEX is your main application
for XEmacs, you are likely to get better results and support by switching to Emacs.
Of course, you can improve support for your favorite editor by giving feedback in case
you encounter bugs.

https://elpa.gnu.org/packages/auctex.html
https://elpa.gnu.org/packages/auctex.html
ftp://ftp.gnu.org/gnu/emacs/windows/
ftp://ftp.gnu.org/gnu/emacs/windows/
http://www.emacswiki.org/cgi-bin/wiki/EmacsForMacOS
https://savannah.gnu.org/bzr/?group=emacs
https://savannah.gnu.org/bzr/?group=emacs

Chapter 1: Introduction 5

e A working TEX installation

Well, AUCTEX would be pointless without that. Processing documentation requires
TEX, WITEX and Texinfo during installation. preview-latex requires Dvips for its op-
eration in DVI mode. The default configuration of AUCTEX is tailored for teTEX or
TEXlive-based distributions, but can be adapted easily.

e A recent Ghostscript

This is needed for operation of preview-latex in both DVI and PDF mode. Most versions
of Ghostscript nowadays in use should work fine (version 7.0 and newer).

e GNU make

Recent AUCTEX uses GNU make specific capabilities in the Makefiles. If your OS’s
default make command is not GNU make, you have to obtain it in order to build
AUCTEX by yourself. GNU make is sometimes provided under the name gmake in
your OS’s binary package system.

e The texinfo package

Strictly speaking, you can get away without it if you are building from the distribution
tarball, have not modified any files and don’t need a printed version of the manual: the
pregenerated info file is included in the tarball. At least version 4.0 is required.

For some known issues with various software, see Section “Known problems” in the
preview-latex manual.

1.2.2 Configure

The first step is to configure the source code, telling it where various files will be. To do so,
run

./configure options

(Note: if you have fetched AUCTEX from Git rather than a regular release, you will have
to first follow the instructions in README.GIT).

On many machines, you will not need to specify any options, but if configure cannot
determine something on its own, you’ll need to help it out with one of these options:

--prefix=/usr/local
All automatic placements for package components will be chosen from sensible
existing hierarchies below this: directories like man, share and bin are supposed
to be directly below prefix.

Only if no workable placement can be found there, in some cases an alternative
search will be made in a prefix deduced from a suitable binary.

/usr/local is the default prefix, intended to be suitable for a site-wide in-
stallation. If you are packaging this as an operating system component for
distribution, the setting /usr will probably be the right choice. If you are plan-
ning to install the package as a single non-priviledged user, you will typically
set prefix to your home directory.

--with-emacs[=/path/to/emacs]
If you are using a pretest which isn’t in your $PATH, or configure is not finding
the right Emacs executable, you can specify it with this option.

Chapter 1: Introduction 6

--with-xemacs[=/path/to/xemacs]
Configure for generation under XEmacs (Emacs is the default). Again, the
name of the right XEmacs executable can be specified, complete with path if
necessary.

--with-packagedir=/dir
This XEmacs-only option configures the directory for XEmacs packages. A typ-
ical user-local setting would be ~/.xemacs/xemacs-packages. If this directory
exists and is below prefix, it should be detected automatically. This will install
and activate the package.

--without-packagedir
This XEmacs-only option switches the detection of a package directory and
corresponding installation off. Consequently, the Emacs installation scheme
will be used. This might be appropriate if you are using a different package
system /installer than the XEmacs one and want to avoid conflicts.

The Emacs installation scheme has the following options:

--with-lispdir=/dir
This Emacs-only option specifies the location of the site-1lisp directory within
‘load-path’ under which the files will get installed (the bulk will get installed
in a subdirectory). ./configure should figure this out by itself.

--with-auctexstartfile=auctex.el

--with-previewstartfile=preview-latex.el
This is the name of the respective startup files. If lispdir contains a subdirectory
site-start.d, the start files are placed there, and site-start.el should load
them automatically. Please be aware that you must not move the start files
after installation since other files are found relative to them.

--with-packagelispdir=auctex
This is the directory where the bulk of the package gets located. The startfile
adds this into load-path.

--with-auto-dir=/dir
You can use this option to specify the directory containing automatically gen-
erated information. It is not necessary for most TEX installs, but may be used
if you don’t like the directory that configure is suggesting.

--help This is not an option specific to AUCTEX. A number of standard options to
configure exist, and we do not have the room to describe them here; a short
description of each is available, using —-help. If you use ‘--help=recursive’,
then also preview-latex-specific options will get listed.

--disable-preview
This disables configuration and installation of preview-latex. This option is not
actually recommended. If your Emacs does not support images, you should
really upgrade to a newer version. Distributors should, if possible, refrain from
distributing AUCTEX and preview-latex separately in order to avoid confusion
and upgrade hassles if users install partial packages on their own.

Chapter 1: Introduction 7

--with-texmf-dir=/dir

--without-texmf-dir
This option is used for specifying a TDS-compliant directory hierarchy. Using
--with-texmf-dir=/dir you can specify where the TEX TDS directory hierar-
chy resides, and the TEX files will get installed in /dir/tex/latex/preview/.
If you use the --without-texmf-dir option, the TEX-related files will be kept
in the Emacs Lisp tree, and at runtime the TEXINPUTS environment variable
will be made to point there. You can install those files into your own TEX tree
at some later time with M-x preview-install-styles RET.

--with-tex-dir=/dir
If you want to specify an exact directory for the preview TEX files, use ——with-
tex-dir=/dir. In this case, the files will be placed in /dir, and you’ll also
need the following option:

--with-doc-dir=/dir
This option may be used to specify where the TEX documentation goes. It

is to be used when you are using --with-tex-dir=/dir, but is normally not
necessary otherwise.

1.2.3 Build/install and uninstall

Once configure has been run, simply enter
make

at the prompt to byte-compile the lisp files, extract the TEX files and build the documen-
tation files. To install the files into the locations chosen earlier, type

make install
You may need special privileges to install, e.g., if you are installing into system directories.

Should you want to completely remove the installed package, in the same directory you
built AUCTEX run

make uninstall

You will need administration privileges if you installed the package into system directories.

1.2.4 Loading the package

You can detect the successful activation of AUCTEX and preview-latex in the menus after
loading a IATEX file like preview/circ.tex: AUCTEX then gives you a ‘Command’ menu,
and preview-latex gives you a ‘Preview’ menu.

For XEmacs, if the installation occured into a valid package directory (which is the
default), then this should work out of the box.

With Emacs (or if you explicitly disabled use of the package system), the startup files
auctex.el and preview-latex.el may already be in a directory of the site-start.d/
variety if your Emacs installation provides it. In that case they should be automatically
loaded on startup and nothing else needs to be done. If not, they should at least have been
placed somewhere in your load-path. You can then load them by placing the lines

(load "auctex.el" nil t t)
(load "preview-latex.el" nil t t)

Chapter 1: Introduction 8

into your init file.

If you explicitly used --with-1ispdir, you may need to add the specified directory into
FEmacs’ load-path variable by adding something like

(add-to-1list ’load-path ""/elisp")
before the above lines into your Emacs startup file.

For site-wide activation in GNU Emacs, see See Section 1.2.5 [Advice for package
providers], page 8.

Once activated, the modes provided by AUCTEX are used per default for all supported
file types. If you want to change the modes for which it is operative instead of the default,
use

M-x customize-variable RET TeX-modes RET

If you want to remove a preinstalled AUCTEX completely before any of its modes have
been used,

(unload-feature ’tex-site)

should accomplish that.
1.2.5 Providing AUCTEX as a package

As a package provider, you should make sure that your users will be served best according
to their intentions, and keep in mind that a system might be used by more than one user,
with different preferences.

There are people that prefer the built-in Emacs modes for editing TEX files, in particular
plain TEX users. There are various ways to tell AUCTEX even after auto-activation that
it should not get used, and they are described in Chapter 1 [Introduction to AUCTEX],
page 3.

So if you have users that don’t want to use the preinstalled AUCTEX, they can easily
get rid of it. Activating AUCTEX by default is therefore a good choice.

If the installation procedure did not achieve this already by placing auctex.el and
preview-latex.el into a possibly existing site-start.d directory, you can do this by
placing

(load "auctex.el" nil t t)
(load "preview-latex.el" nil t t)

in the system-wide site-start.el.

If your package is intended as an XEmacs package or to accompany a precompiled version
of Emacs, you might not know which TEX system will be available when preview-latex gets
used. In this case you should build using the --without-texmf-dir option described
previously. This can also be convenient for systems that are intended to support more than
a single TeX distribution. Since more often than not TEX packages for operating system
distributions are either much more outdated or much less complete than separately provided
systems like TEX Live, this method may be generally preferable when providing packages.

The following package structure would be adequate for a typical fully supported Unix-like
installation:

‘preview-tetex’
Style files and documentation for preview.sty, placed into a TEX tree where
it is accessible from the teTEX executables usually delivered with a system. If

Chapter 1: Introduction 9

there are other commonly used TEX system packages, it might be appropriate
to provide separate packages for those.

‘auctex-emacs-tetex’
This package will require the installation of ‘preview-tetex’ and will record in
‘TeX-macro-global’ where to find the TEX tree. It is also a good idea to run

emacs -batch -f TeX-auto-generate-global

when either AUCTEX or teTEX get installed or upgraded. If your users might
want to work with a different TEX distribution (nowadays pretty common),
instead consider the following:

‘auctex-emacs’
This package will be compiled with ‘--without-texmf-dir’ and will conse-
quently contain the ‘preview’ style files in its private directory. It will prob-
ably not be possible to initialize ‘TeX-macro-global’ to a sensible value, so
running ‘TeX-auto-generate-global’ does not appear useful. This package
would neither conflict with nor provide ‘preview-tetex’.

‘auctex-xemacs-tetex’

‘auctex-xemacs’
Those are the obvious XEmacs equivalents. For XEmacs, there is the additional
problem that the XEmacs sumo package tree already possibly provides its own
version of AUCTEX, and the user might even have used the XEmacs package
manager to updating this package, or even installing a private AUCTEX version.
So you should make sure that such a package will not conflict with existing
XEmacs packages and will be at an appropriate place in the load order (after
site-wide and user-specific locations, but before a distribution-specific sumo
package tree). Using the --without-packagedir option might be one idea to
avoid conflicts. Another might be to refrain from providing an XEmacs package
and just rely on the user or system administrator to instead use the XEmacs
package system.

1.2.6 Installation for non-privileged users

Often people without system administration privileges want to install software for their
private use. In that case you need to pass more options to the configure script. For
XEmacs users, this is fairly easy, because the XEmacs package system has been designed
to make this sort of thing practical: but GNU Emacs users (and XEmacs users for whom
the package system is for some reason misbehaving) may need to do a little more work.

The main expedient is using the --prefix option to the configure script, and let it
point to the personal home directory. In that way, resulting binaries will be installed under
the bin subdirectory of your home directory, manual pages under man and so on. It is
reasonably easy to maintain a bunch of personal software, since the prefix argument is
supported by most configure scripts.

You’ll have to add something like /home/myself/share/emacs/site-lisp to your
load-path variable, if it isn’t there already.

XEmacs users can achieve the same end by pointing configure at an appropriate package
directory (normally --with-packagedir="/.xemacs/xemacs-packages will serve). The

Chapter 1: Introduction 10

package directory stands a good chance at being detected automatically as long as it is in
a subtree of the specified prefix.

Now here is another thing to ponder: perhaps you want to make it easy for other
users to share parts of your personal Emacs configuration. In general, you can do this
by writing ‘“myself/’ anywhere where you specify paths to something installed in your
personal subdirectories, not merely ‘~/’, since the latter, when used by other users, will
point to non-existent files.

For yourself, it will do to manipulate environment variables in your .profile resp.
.login files. But if people will be copying just Elisp files, their copies will not work. While
it would in general be preferable if the added components where available from a shell
level, too (like when you call the standalone info reader, or try using preview.sty for
functionality besides of Emacs previews), it will be a big help already if things work from
inside of Emacs.

Here is how to do the various parts:

Making the Elisp available
In GNU Emacs, it should be sufficient if people just do

(load "“myself/share/emacs/site-lisp/auctex.el" nil t t)
(load ""myself/share/emacs/site-lisp/preview-latex.el" nil t t)

where the path points to your personal installation. The rest of the package should be
found relative from there without further ado.

In XEmacs, you should ask the other users to add symbolic links in the subdirecto-
ries 1isp, info and etc of their ~/.xemacs/xemacs-packages/ directory. (Alas, there is
presently no easy programmatic way to do this, except to have a script do the symlinking
for them.)

Making the Info files available

For making the info files accessible from within Elisp, something like the following might
be convenient to add into your or other people’s startup files:

(eval-after-load ’info
> (add-to-list ’Info-directory-list "“myself/info"))

In XEmacs, as long as XEmacs can see the package, there should be no need to do
anything at all; the info files should be immediately visible. However, you might want to
set INFOPATH anyway, for the sake of standalone readers outside of XEmacs. (The info files
in XEmacs are normally in ~/.xemacs/xemacs-packages/info.)

Making the IWTEX style available

If you want others to be able to share your installation, you should configure it using
‘——without-texmf-dir’, in which case things should work as well for them as for you.

1.2.7 Installation under MS Windows

Chapter 1: Introduction 11

In a Nutshell

The following are brief installation instructions for the impatient. In case you don’t under-
stand some of this, run into trouble of some sort, or need more elaborate information, refer
to the detailed instructions further below.

1. Install the prerequisites, i.e. Emacs or XEmacs, MSYS or Cygwin, a TEX system, and
Ghostscript.

2. Open the MSYS shell or a Cygwin shell and change to the directory containing the
unzipped file contents.

3. Configure AUCTEX:

For Emacs: Many people like to install AUCTEX into the pseudo file system hier-
archy set up by the Emacs installation. Assuming Emacs is installed in C:/Program
Files/Emacs and the directory for local additions of your TEX system, e.g. MiKTEX, is
C:/localtexmf, you can do this by typing the following statement at the shell prompt:

./configure --prefix=’C:/Program Files/Emacs’ \
--infodir=’C:/Program Files/Emacs/info’ \
--with-texmf-dir="C:/localtexmf’

For XEmacs: You can install AUCTEX as an XEmacs package. Assuming XEmacs
is installed in C:/Program Files/XEmacs and the directory for local additions of your
TEX system, e.g. MiKTEX, is C:/localtexmf, you can do this by typing the following
command at the shell prompt:

./configure --with-xemacs=’C:/Program Files/XEmacs/bin/xemacs’ \
—--with-texmf-dir="C:/localtexmf’

The commands above are examples for common usage. More on configuration options
can be found in the detailed installation instructions below.
If the configuration script failed to find all required programs, make sure that these

programs are in your system path and add directories containing the programs to the
PATH environment variable if necessary. Here is how to do that in W2000/XP:

1. On the desktop, right click “My Computer” and select properties.

2. Click on “Advanced” in the “System Properties” window.

3. Select “Environment Variables”.

4. Select “path” in “System Variables” and click “edit”. Move to the front in the

line (this might require scrolling) and add the missing path including drive letter,
ended with a semicolon.

4. If there were no further error messages, type
make
In case there were, please refer to the detailed description below.
5. Finish the installation by typing
make install

Detailed Installation Instructions

Installation of AUCTEX under Windows is in itself not more complicated than on other
platforms. However, meeting the prerequisites might require more work than on some other
platforms, and feel less natural.

Chapter 1: Introduction 12

If you are experiencing any problems, even if you think they are of your own making,
be sure to report them to auctex-devel@gnu.org so that we can explain things better in
future.

Windows is a problematic platform for installation scripts. The main problem is that the
installation procedure requires consistent file names in order to find its way in the directory
hierarchy, and Windows path names are a mess.

The installation procedure tries finding stuff in system search paths and in Emacs paths.
For that to succeed, you have to use the same syntax and spelling and case of paths ev-
erywhere: in your system search paths, in Emacs’ load-path variable, as argument to the
scripts. If your path names contain spaces or other ‘shell-unfriendly’ characters, most no-
tably backslashes for directory separators, place the whole path in ‘"double quote marks"’
whenever you specify it on a command line.

Avoid ‘helpful’ magic file names like ‘/cygdrive/c’ and ‘C:\PROGRA™1\’ like the plague.
It is quite unlikely that the scripts will be able to identify the actual file names in-
volved. Use the full paths, making use of normal Windows drive letters like * >C: /Program
Files/Emacs’ ' where required, and using the same combination of upper- and lowercase
letters as in the actual files. File names containing shell-special characters like spaces or
backslashes (if you prefer that syntax) need to get properly quoted to the shell: the above
example used single quotes for that.

Ok, now here are the steps to perform:

1. You need to unpack the AUCTEX distribution (which you seemingly have done since
you are reading this). It must be unpacked in a separate installation directory outside
of your Emacs file hierarchy: the installation will later copy all necessary files to their

final destination, and you can ultimately remove the directory where you unpacked the
files.

Line endings are a problem under Windows. The distribution contains only text files,
and theoretically most of the involved tools should get along with that. However, the
files are processed by various utilities, and it is conceivable that not all of them will
use the same line ending conventions. If you encounter problems, it might help if you
try unpacking (or checking out) the files in binary mode, if your tools allow that.

If you don’t have a suitable unpacking tool, skip to the next step: this should provide
you with a working ‘unzip’ command.

2. The installation of AUCTEX will require the MSYS tool set from http://www.mingw.
org/ or the Cygwin tool set from http://cygwin.com/. The latter is slower and
larger (the download size of the base system is about 15 MB) but comes with a package
manager that allows for updating the tool set and installing additional packages like,
for example, the spell checker aspell.

If Cygwin specific paths like ‘/cygdrive/c’ crop up in the course of the installation,
using a non-Cygwin Emacs could conceivably cause trouble. Using Cygwin either for
everything or nothing might save headaches, if things don’t work out.

3. Install a current version of XEmacs from http://www.xemacs.org/ or Emacs from
ftp://ftp.gnu.org/gnu/emacs/windows/. Emacs is the recommended choice
because it is currently the primary platform for AUCTEX development.

mailto:auctex-devel@gnu.org
http://www.mingw.org/
http://www.mingw.org/
http://cygwin.com/
http://www.xemacs.org/
ftp://ftp.gnu.org/gnu/emacs/windows/

Chapter 1: Introduction 13

4. You need a working TEX installation. One popular installation under Windows is
MiKTEX (http: //www . miktex . org). Another much more extensive system is
TEX Live (http://www.tug.org/texlive) which is rather close to its Unix cousins.

5. A working copy of Ghostscript (http://www.cs.wisc.edu/ ghost/) is required for
preview-latex operation. Examining the output from

gswin32c -h

on a Windows command line should tell you whether your Ghostscript supports the
pugl6m device needed for PNG support. MiKTeX apparently comes with its own Ghost-
script called ‘mgs.exe’.

6. Perl (http://www.perl.org) is needed for rebuilding the documentation if you are
working with a copy from Git or have touched documentation source files in the preview-
latex part. If the line endings of the file preview/latex/preview.dtx don’t correspond
with what Perl calls \n when reading text files, you’ll run into trouble.

7. Now the fun stuff starts. If you have not yet done so, unpack the AUCTEX distribution
into a separate directory after rereading the instructions for unpacking above.

8. Ready for takeoff. Start some shell (typically bash) capable of running configure,
change into the installation directory and call ./configure with appropriate options.

Typical options you’ll want to specify will be

—--prefix=drive:/path/to/emacs-hierarchy

which tells configure where to perform the installation. It may also make
configure find Emacs or XEmacs automatically; if this doesn’t happen,
try one of ‘--with-emacs’ or ‘--with-xemacs’ as described below. All
automatic detection of files and directories restricts itself to directories
below the prefix or in the same hierarchy as the program accessing the
files. Usually, directories like man, share and bin will be situated right
under prefix.

This option also affects the defaults for placing the Texinfo documentation
files (see also ‘--infodir’ below) and automatically generated style hooks.

If you have a central directory hierarchy (not untypical with Cygwin) for
such stuff, you might want to specify its root here. You stand a good
chance that this will be the only option you need to supply, as long as your
TEX-related executables are in your system path, which they better be for
AUCTEX’s operation, anyway.

-—with-emacs
if you are installing for a version of KEmacs. You can use
‘-—with-emacs=drive:/path/to/emacs’ to specify the name of the in-
stalled Emacs executable, complete with its path if necessary (if Emacs
is not within a directory specified in your PATH environment setting).

--with-xemacs
if you are installing for a version of XEmacs. Again, you can use
‘~-—with-xemacs=drive:/path/to/xemacs’ to specify the name of the in-
stalled XEmacs executable complete with its path if necessary. It may also
be necessary to specify this option if a copy of Emacs is found in your PATH

http://www.miktex.org
http://www.tug.org/texlive
http://www.cs.wisc.edu/~ghost/
http://www.perl.org

Chapter 1: Introduction 14

environment setting, but you still would like to install a copy of AUCTEX
for XEmacs.

--with-packagedir=drive:/dir
is an XEmacs-only option giving the location of the package directory. This
will install and activate the package. Emacs uses a different installation
scheme:

--with-lispdir=drive:/path/to/site-1isp
This Emacs-only option tells a place in load-path below which the files
are situated. The startup files auctex.el and preview-latex.el will
get installed here unless a subdirectory site-start.d exists which will
then be used instead. The other files from AUCTEX will be installed in a
subdirectory called auctex.

If you think that you need a different setup, please refer to the full instal-
lation instructions in Section 1.2.2 [Configure], page 5.

--infodir=drive:/path/to/info/directory
If you are installing into an Emacs directory, info files have to be put into
the info folder below that directory. The configuration script will usually
try to install into the folder share/info, so you have to override this by
specifying something like ‘~-infodir=’C:/Program Files/info’’ for the
configure call.

--with-auto-dir=drive:/dir
Directory containing automatically generated information. You should not
normally need to set this, as ‘-—prefix’ should take care of this.

--disable-preview
Use this option if your Emacs version is unable to support image display.
This will be the case if you are using a native variant of Emacs 21.

--with-texmf-dir=drive:/dir
This will specify the directory where your TEX installation sits. If your
TEX installation does not conform to the TDS (TEX directory standard),
you may need to specify more options to get everything in place.

For more information about any of the above and additional options, see Section 1.2.2

[Configure], page 5.

Calling ./configure --help=recursive will tell about other options, but those are

almost never required.

Some executables might not be found in your path. That is not a good idea, but you

can get around by specifying environment variables to configure:
GS="drive:/path/to/gswin32c.exe" ./configure ...

should work for this purpose. gswin32c.exe is the usual name for the required com-

mand line executable under Windows; in contrast, gswin32.exe is likely to fail.

As an alternative to specifying variables for the configure call you can add directories

containing the required executables to the PATH variable of your Windows system.

This is especially a good idea if Emacs has trouble finding the respective programs

later during normal operation.

Chapter 1: Introduction 15

9.
10.
11.

12.

13.

Run make in the installation directory.
Run make install in the installation directory.
With XEmacs, AUCTEX and preview-latex should now be active by default. With
Emacs, activation depends on a working site-start.d directory or similar setup,
since then the startup files auctex.el and preview-latex.el will have been placed
there. If this has not been done, you should be able to load the startup files manually
with

(load "auctex.el" nil t t)

(load "preview-latex.el" nil t t)
in either a site-wide site-start.el or your personal startup file (usually accessible as
~/.emacs from within Emacs and ~/.xemacs/init.el from within XEmacs).
The default configuration of AUCTEX is probably not the best fit for Windows systems
with MiKTEX. You might want to add

(require ’tex-mik)
after loading auctex.el and preview-latex.el in order to get more appropriate values
for some customization options.
You can always use

M-x customize-group RET AUCTeX RET
in order to customize more stuff, or use the ‘Customize’ menu.
Load preview/circ.tex into Emacs or XEmacs and see if you get the ‘Command’ menu.
Try using it to IATEX the file.
Check whether the ‘Preview’ menu is available in this file. Use it to generate previews
for the document.
If this barfs and tells you that image type ‘png’ is not supported, you can either add
PNG support to your Emacs installation or choose another image format to be used by
preview-latex.
Adding support for an image format usually involves the installation of a library, e.g.
from http://gnuwin32.sf.net/. If you got your Emacs from http://www.gnu.
org you might want to check its README file (ftp://ftp.gnu.org/gnu/emacs/
windows/README) for details.
A different image format can be chosen by setting the variable preview-image-type.
While it is recommended to keep the ‘dvipng’ or ‘png’ setting, you can temporarily
select a different format like ‘pnm’ to check if the lack of PNG support is the only
problem with your Emacs installation.
Try adding the line

(setq preview-image-type ’pnm)
to your init file for a quick test. You should remove the line after the test again, because
PNM files take away vast amounts of disk space, and thus also of load/save time.

Well, that about is all. Have fun!

1.2.8 Customizing

Most of the site-specific customization should already have happened during configuration
of AUCTEX. Any further customization can be done with customization buffers directly

http://gnuwin32.sf.net/
http://www.gnu.org
http://www.gnu.org
ftp://ftp.gnu.org/gnu/emacs/windows/README
ftp://ftp.gnu.org/gnu/emacs/windows/README

Chapter 1: Introduction 16

in Emacs. Just type M-x customize-group RET AUCTeX RET to open the customization
group for AUCTEX or use the menu entries provided in the mode menus. Editing the
file tex-site.el as suggested in former versions of AUCTEX should not be done anymore
because the installation routine will overwrite those changes.

You might check some variables with a special significance. They are accessible directly
by typing M-x customize-variable RET <variable> RET.

TeX-macro-global [User Option]
Directories containing the site’s TEX style files.

Normally, AUCTEX will only allow you to complete macros and environments which are
built-in, specified in AUCTEX style files or defined by yourself. If you issue the M-x TeX-
auto-generate-global command after loading AUCTEX, you will be able to complete on
all macros available in the standard style files used by your document. To do this, you
must set this variable to a list of directories where the standard style files are located. The
directories will be searched recursively, so there is no reason to list subdirectories explicitly.
Automatic configuration will already have set the variable for you if it could use the program
‘kpsewhich’. In this case you normally don’t have to alter anything.

1.3 Quick Start

AUCTEX is a powerful program offering many features and configuration options. If you are
new to AUCTEX this might be deterrent. Fortunately you do not have to learn everything at
once. This Quick Start Guide will give you the knowledge of the most important commands
and enable you to prepare your first INTEX document with AUCTEX after only a few minutes
of reading.

In this introduction, we assume that AUCTEX is already installed on your system. If
this is not the case, you should read the file INSTALL in the base directory of the unpacked
distribution tarball. These installation instructions are available in this manual as well,
Section 1.2 [Installation], page 3. We also assume that you are familiar with the way
keystrokes are written in Emacs manuals. If not, have a look at the Emacs Tutorial in the
Help menu.

If AUCTEX is installed in any other way than from the Emacs package manager (ELPA),
you might still need to activate it, by inserting

(load "auctex.el" nil t t)
in your user init file.!

If AUCTEX is installed from ELPA, the installation procedure already cares about loading
AUCTEX correctly and you must not have the line above in your init file. Note that this
also applies if you have the following line in your init file

(package-initialize)
In order to get support for many of the IATEX packages you will use in your documents,
you should enable document parsing as well, which can be achieved by putting

(setq TeX-auto-save t)

! This usually is a file in your home directory called .emacs if you are utilizing GNU Emacs or
.xemacs/init.el if you are using XEmacs.

Chapter 1: Introduction 17

(setq TeX-parse-self t)

into your init file. Finally, if you often use \include or \input, you should make
AUCTEX aware of the multi-file document structure. You can do this by inserting

(setq-default TeX-master nil)

into your init file. Each time you open a new file, AUCTEX will then ask you for a
master file.

This Quick Start Guide covers two main topics: First we explain how AUCTEX helps
you in editing your input file for TpX, IATEX, and some other formats. Then we describe
the functions that AUCTEX provides for processing the input files with IATEX, BibTgX,
etc., and for viewing and debugging.

1.3.1 Functions for editing TeX files

1.3.1.1 Making your TEX code more readable

AUCTEX can do syntax highlighting of your source code, that means commands will get
special colors or fonts. You can enable it locally by typing M-x font-lock-mode RET. If you
want to have font locking activated generally, enable global-font-lock-mode, e.g. with
M-x customize-variable RET global-font-lock-mode RET.

AUCTEX will indent new lines to indicate their syntactical relationship to the surround-
ing text. For example, the text of a \footnote or text inside of an environment will be
indented relative to the text around it. If the indenting has gotten wrong after adding or
deleting some characters, use TAB to reindent the line, M-q for the whole paragraph, or M-x
LaTeX-fill-buffer RET for the whole buffer.

1.3.1.2 Entering sectioning commands

Insertion of sectioning macros, that is ‘\chapter’, ‘\section’, ‘\subsection’, etc. and
accompanying ‘\label’ commands may be eased by using C-c C-s. You will be asked for
the section level. As nearly everywhere in AUCTREX, you can use the TAB or SPC key to get
a list of available level names, and to auto-complete what you started typing. Next, you
will be asked for the printed title of the section, and last you will be asked for a label to be
associated with the section.

1.3.1.3 Inserting environments

Similarly, you can insert environments, that is ‘\begin{}—‘\end{}’ pairs: Type C-c C-e,
and select an environment type. Again, you can use TAB or SPC to get a list, and to complete
what you type. Actually, the list will not only provide standard IATEX environments, but
also take your ‘\documentclass’ and ‘\usepackage’ commands into account if you have
parsing enabled by setting TeX-parse-self to t. If you use a couple of environments
frequently, you can use the up and down arrow keys (or M-p and M-n) in the minibuffer to
get back to the previously inserted commands.

Some environments need additional arguments. Often, AUCTEX knows about this and
asks you to enter a value.
1.3.1.4 Inserting macros

C-c C-m, or simply C-c RET will give you a prompt that asks you for a IATEX macro. You
can use TAB for completion, or the up/down arrow keys (or M-p and M-n) to browse the

Chapter 1: Introduction 18

command history. In many cases, AUCTEX knows which arguments a macro needs and will
ask you for that. It even can differentiate between mandatory and optional arguments—for
details, see Section 2.6 [Completion], page 32.

An additional help for inserting macros is provided by the possibility to complete macros
right in the buffer. With point at the end of a partially written macro, you can complete it
by typing M-TAB.

1.3.1.5 Changing the font

AUCTEX provides convenient keyboard shortcuts for inserting macros which specify the
font to be used for typesetting certain parts of the text. They start with C-c C-f, and the
last C- combination tells AUCTEX which font you want:

C-c C-f C-b

Insert bold face ‘\textbf{x} text.
C-c C-f C-1

Insert #talics ‘\textit{x}’ text.
C-c C-f C-e

Insert emphasized ‘\emph{x}’ text.
C-c C-f C-s

Insert slanted ‘\textsl{x}’ text.
C-c C-f C-r

Insert roman \textrm{x} text.
C-c C-f C-f

Insert sans serif ‘\textsf{x}’ text.
C-c C-f C-t

Insert typewriter ‘\texttt{x} text.
C-c C-f C-c

Insert SMALL CAPS ‘\textsc{x}’ text.
C-c C-f C-d

Delete the innermost font specification containing point.

If you want to change font attributes of existing text, mark it as an active region, and
then invoke the commands. If no region is selected, the command will be inserted with
empty braces, and you can start typing the changed text.

Most of those commands will also work in math mode, but then macros like \mathbf
will be inserted.

1.3.1.6 Other useful features

AUCTEX also tries to help you when inserting the right “quote” signs for your language,
dollar signs to typeset math, or pairs of braces. It offers shortcuts for commenting out text
(C-c ; for the current region or C-c 7 for the paragraph you are in). The same keystrokes
will remove the % signs, if the region or paragraph is commented out yet. With TeX-fold-
mode, you can hide certain parts (like footnotes, references etc.) that you do not edit
currently. Support for Emacs’ outline mode is provided as well. And there’s more, but this
is beyond the scope of this Quick Start Guide.

Chapter 1: Introduction 19

1.3.2 Creating and viewing output, debugging

1.3.2.1 One Command for IATEX, helpers, viewers, and printing

If you have typed some text and want to run IATEX (or TEX, or other programs—see below)
on it, type C-c C-c. If applicable, you will be asked whether you want to save changes,
and which program you want to invoke. In many cases, the choice that AUCTEX suggests
will be just what you want: first latex, then a viewer. If a latex run produces or changes
input files for makeindex, the next suggestion will be to run that program, and AUCTEX
knows that you need to run latex again afterwards—the same holds for BibTEX.

When no processor invocation is necessary anymore, AUCTEX will suggest to run a
viewer, or you can chose to create a PostScript file using dvips, or to directly print it.

Actually, there is another command which comes in handy to compile documents: type
C-c C-a (TeX-command-run-all) and AUCTEX will compile the document for you until it
is ready and then run the viewer. This is the same as issuing repeatedly C-c C-c and letting
AUCTEX guess the next command to run.

At this place, a warning needs to be given: First, although AUCTEX is really good
in detecting the standard situations when an additional latex run is necessary, it cannot
detect it always. Second, the creation of PostScript files or direct printing currently only
works when your output file is a DVI file, not a PDF file.

Ah, you didn’t know you can do both? That brings us to the next topic.

1.3.2.2 Choosing an output format

From a IATEX file, you can produce DVI output, or a PDF file directly via pdflatex. You
can switch on source specials for easier navigation in the output file, or tell latex to stop
after an error (usually \noninteractive is used, to allow you to detect all errors in a single
run).

These options are controlled by toggles, the keystrokes should be easy to memorize:

C-c C-t C-p
This command toggles between DVI and PDF output

C-c C-t C-1
toggles interactive mode

C-c C-t C-s
toggles source specials support

C-c C-t C-o
toggles usage of Omega/lambda.

There is also another possibility: compile the document with tex (or latex) and then
convert the resulting DVI file to PDF using dvips—ps2pdf sequence. If you want to go
by this route, when TeX-PDF-via-dvips-ps2pdf variable is non-nil, AUCTEX will suggest
you to run the appropriate command when you type C-C C-c. For details, see Section 4.1.3
[Processor Options|, page 58.

Chapter 1: Introduction 20

1.3.2.3 Debugging BKTEX

When AUCTEX runs a program, it creates an output buffer in which it displays the output of
the command. If there is a syntactical error in your file, latex will not complete successfully.
AUCTEX will tell you that, and you can get to the place where the first error occured by
pressing C-c ¢ (the last character is a backtick). The view will be split in two windows,
the output will be displayed in the lower buffer, and both buffers will be centered around
the place where the error ocurred. You can then try to fix it in the document buffer, and
use the same keystrokes to get to the next error. This procedure may be repeated until
all errors have been dealt with. By pressing C-c C-w (TeX-toggle-debug-boxes) you can
toggle whether AUCTEX should notify you of overfull and underfull boxes in addition to
regular errors.

If you have a recent version of GNU Emacs (24 or later), issue M-x TeX-error-overview
RET to see a nicely formatted list of all errors and warnings reported by the compiler.

If a command got stuck in a seemingly infinite loop, or you want to stop execution for
other reasons, you can use C-c C-k (for “kill”). Similar to C-1, which centers the buffer
you are in around your current position, C-c C-1 centers the output buffer so that the last
lines added at the bottom become visible.

1.3.2.4 Running IATEX on parts of your document

If you want to check how some part of your text looks like, and do not want to wait until
the whole document has been typeset, then mark it as a region and use C-c C-r. It behaves
just like C-c C-c, but it only uses the document preamble and the region you marked.

If you are using \include or \input to structure your document, try C-c C-b while you
are editing one of the included files. It will run latex only on the current buffer, using the
preamble from the master file.

21

2 Editing the Document Source

The most commonly used commands/macros of AUCTEX are those which simply insert
templates for often used TEX, IATEX, or ConTEXt constructs, like font changes, handling of
environments, etc. These features are very simple, and easy to learn, and help you avoid
mistakes like mismatched braces, or ‘\begin{}’-‘\end{}’ pairs.

Apart from that this chapter contains a description of some features for entering more
specialized sorts of text, for formatting the source by indenting and filling and for navigating
through the document.

2.1 Insertion of Quotes, Dollars, and Braces

Quotation Marks

In TEX, literal double quotes ‘"1ike this"’ are seldom used, instead two single quotes are
used ‘“ ‘like this’’’. To help you insert these efficiently, AUCTEX allows you to continue
to press " to insert two single quotes. To get a literal double quote, press " twice.

TeX-insert-quote count [Command]
(") Insert the appropriate quote marks for TEX.

Inserts the value of TeX-open-quote (normally ‘¢ ¢’) or TeX-close-quote (normally
©227) depending on the context. With prefix argument, always inserts ‘"’ characters.

TeX-open-quote [User Option]
String inserted by typing " to open a quotation. (See Section 5.4.1 [European],
page 73, for language-specific quotation mark insertion.)

TeX-close-quote [User Option]
String inserted by typing " to close a quotation. (See Section 5.4.1 [European],
page 73, for language-specific quotation mark insertion.)

TeX-quote-after-quote [User Option]
Determines the behavior of ". If it is non-nil, typing " will insert a literal double quote.
The respective values of TeX-open—-quote and TeX-close—-quote will be inserted after
typing " once again.

The ‘babel’ package provides special support for the requirements of typesetting quo-
tation marks in many different languages. If you use this package, either directly or by
loading a language-specific style file, you should also use the special commands for quote
insertion instead of the standard quotes shown above. AUCTEX is able to recognize several
of these languages and will change quote insertion accordingly. See Section 5.4.1 [European],
page 73, for details about this feature and how to control it.

In case you are using the ‘csquotes’ package, you should customize LaTeX-csquotes-—
open-quote, LaTeX-csquotes-close-quote and LaTeX-csquotes-quote-after—quote.
The quotation characters will only be used if both variables—LaTeX-csquotes-open-quote
and LaTeX-csquotes-close-quote—are non-empty strings. But then the ‘csquotes’-
related values will take precedence over the language-specific ones.

Chapter 2: Editing the Document Source 22

Dollar Signs

In AUCTEX, dollar signs should match like they do in TEX. This has been partially imple-
mented, we assume dollar signs always match within a paragraph. By default, the first ‘$’
you insert in a paragraph will do nothing special. The second ‘$’ will match the first. This
will be indicated by moving the cursor temporarily over the first dollar sign.

TeX-insert-dollar arg [Command]
($) Insert dollar sign.

Show matching dollar sign if this dollar sign end the TEX math mode.
With optional arg, insert that many dollar signs.

TEX and IATEX users often look for a way to insert inline equations like ‘$...$’
or ‘\(...\)’ simply typing $. AUCTEX helps them through the customizable variable
TeX-electric-math.

TeX-electric-math [User Option]
If the variable is non-nil and you type $ outside math mode, AUCTEX will auto-
matically insert the opening and closing symbols for an inline equation and put the
point between them. The opening symbol will blink when blink-matching-paren is
non-nil. If TeX-electric-math is nil, typing $ simply inserts ‘¢’ at point, this is the
default.

Besides nil, possible values for this variable are (cons "$" "$") for TEX inline equa-
tions ‘$...%$’, and (cons "\\ (" "\\)") for [ATEX inline equations ‘\ (...\)".

If the variable is non-nil and point is inside math mode right between a couple of
single dollars, pressing $ will insert another pair of dollar signs and leave the point
between them. Thus, if TeX-electric-math is set to (cons "$" "$") you can easily
obtain a TEX display equation ‘$$. . .$$’ by pressing $ twice in a row. (Note that you
should not use double dollar signs in IATEX because this practice can lead to wrong
spacing in typeset documents.)

In addition, when the variable is non-nil and there is an active region outside math
mode, typing $ will put around the active region symbols for opening and closing
inline equation and keep the region active, leaving point after the closing symbol.
By pressing repeatedly $§ while the region is active you can toggle between an inline
equation, a display equation, and no equation. To be precise, ‘$...$ is replaced by
‘$$...8%", whereas ‘\(...\)" is replaced by ‘\[...\]".

If you want to automatically insert ‘$...$" in plain TEX files, and ‘\(...\)’ in IATEX
files by pressing $, add the following to your init file

(add-hook ’plain-TeX-mode-hook
(lambda () (set (make-variable-buffer-local ’TeX-electric-math)
(cons "$" "$"))))

(add-hook ’LaTeX-mode-hook
(lambda () (set (make-variable-buffer-local ’TeX-electric-math)
(cons "\\(" "\\)"))))

Chapter 2: Editing the Document Source 23

Braces

To avoid unbalanced braces, it is useful to insert them pairwise. You can do this by typing
C-c {.

TeX-insert-braces [Command]|
(C-c {) Make a pair of braces and position the cursor to type inside of them. If there
is an active region, put braces around it and leave point after the closing brace.

When writing complex math formulas in IATEX documents, you sometimes need to adjust
the size of braces with pairs of macros like ‘\left’-‘\right’, ‘\bigl’-‘\bigr’ and so on. You
can avoid unbalanced pairs with the help of TeX-insert-macro, bound to C-c C-m or C-c
RET (see Section 2.6 [Completion], page 32). If you insert left size adjusting macros such
as ‘\left’, ‘\bigl’ etc. with TeX-insert-macro, it asks for left brace to use and supplies
automatically right size adjusting macros such as ‘\right’, ‘\bigr’ etc. and corresponding
right brace in addtion to the intended left macro and left brace.

The completion by TeX-insert-macro also applies when entering macros such as
“\langle’, ‘\1floor’ and ‘\lceil’, which produce the left part of the paired braces. For ex-
ample, inserting ‘\1floor’ by C-c C-mis immediately followed by the insertion of ‘\rfloor’.
In addition, if the point was located just after ‘\left’ or its friends, the corresponding
‘\right’ etc. will be inserted in front of ‘\rfloor’. In both cases, active region is honored.

As a side effect, when LaTeX-math-mode (see Section 2.5 [Mathematics|, page 31) is on,
just typing ‘(inserts not only ‘\langle’, but also ‘\rangle’.

If you do not like such auto completion at all, it can be disabled by a user option.

TeX-arg-right-insert-p [User Option]
If this option is turned off, the automatic supply of the right macros and braces is
suppressed.

When you edit IATEX documents, you can enable automatic brace pairing when typing
(, {and [.

LaTeX-electric-left-right-brace [User Option]
If this option is on, just typing (, { or [immediately adds the corresponding right
brace ‘)’ ‘}” or ‘1’. The point is left after the opening brace. If there is an active
region, braces are put around it.

They recognize the preceeding backslash or size adjusting macros such as ‘\left’,
“\bigl’ etc., so the following completions will occur:

e (when typing single left brace)
C->07
>y
>0
e (when typing left brace just after a backslash)
— NC >\’
AL > \{\¥
AL -> N[\’

Chapter 2: Editing the Document Source 24

e (when typing just after ‘\left’ or ‘\bigl’)
— \left(-> ‘\left(\right)’
— “\bigl[’ -> ‘\bigl[\bigr]’
e (when typing just after ‘\Bigl\’)
— \Bigl\{’ -> ‘\Bigl\{\Bigr\}’
This auto completion feature may be a bit annoying when editing an already existing
IATEX document. In that case, use C-u 1 or C-q before typing (, { or [. Then no

completion is done and just a single left brace is inserted. In fact, with optional prefix
arg, just that many open braces are inserted without any completion.

2.2 Inserting Font Specifiers

Perhaps the most used keyboard commands of AUCTEX are the short-cuts available for
easy insertion of font changing macros.

If you give an argument (that is, type C-u) to the font command, the innermost font will
be replaced, i.e. the font in the TEX group around point will be changed. The following
table shows the available commands, with x indicating the position where the text will be
inserted.

C-c C-f C-b

Insert bold face ‘\textbf{x} text.
C-c C-f C-1

Insert italics ‘\textit{x}’ text.
C-c C-f C-e

Insert emphasized ‘\emph{x}’ text.
C-c C-f C-s

Insert slanted ‘\textsl{x}’ text.
C-c C-f C-r

Insert roman \textrm{x} text.
C-c C-f C-f

Insert sans serif ‘\textsf{x}’ text.
C-c C-f C-t

Insert typewriter ‘\texttt{x} text.
C-c C-f C-c

Insert SMALL CAPS ‘\textsc{x}’ text.
C-c C-f C-d

Delete the innermost font specification containing point.

TeX-font replace what [Command]|
(C-c C-f) Insert template for font change command.

If replace is not nil, replace current font. what determines the font to use, as specified
by TeX-font-list.

Chapter 2: Editing the Document Source 25

TeX-font-list [User Option]
List of fonts used by TeX-font.

Each entry is a list with three elements. The first element is the key to activate the
font. The second element is the string to insert before point, and the third element
is the string to insert after point. An optional fourth element means always replace
if not nil.

LaTeX-font-list [User Option]
List of fonts used by TeX-font in LaTeX mode. It has the same structure as
TeX-font-list.

2.3 Inserting chapters, sections, etc.

Insertion of sectioning macros, that is ‘\chapter’, ‘\section’, ‘\subsection’, etc. and
accompanying ‘\label’’s may be eased by using C-c C-s. This command is highly cus-
tomizable, the following describes the default behavior.

When invoking you will be asked for a section macro to insert. An appropriate default is
automatically selected by AUCTEX, that is either: at the top of the document; the top level
sectioning for that document style, and any other place: The same as the last occurring
sectioning command.

Next, you will be asked for the actual name of that section, and last you will be asked for
a label to be associated with that section. The label will be prefixed by the value specified
in LaTeX-section-hook.

LaTeX-section arg [Command]|
(C-c C-s) Insert a sectioning command.

Determine the type of section to be inserted, by the argument arg.
e If arg is nil or missing, use the current level.
o If arg is a list (selected by C-u), go downward one level.
e If arg is negative, go up that many levels.
e If arg is positive or zero, use absolute level:
+ 0: part
: chapter
: section
: subsection

: subsubsection

T W N

: paragraph

+ + o+ o+ o+ o+

6 : subparagraph
The following variables can be set to customize the function.

LaTeX-section-hook
Hooks to be run when inserting a section.

LaTeX-section-label
Prefix to all section references.

Chapter 2: Editing the Document Source 26

The precise behavior of LaTeX-section is defined by the contents of LaTeX-section-
hook.

LaTeX-section-hook [User Option]
List of hooks to run when a new section is inserted.

The following variables are set before the hooks are run

level Numeric section level, default set by prefix arg to LaTeX-section.
name Name of the sectioning command, derived from level.

title The title of the section, default to an empty string.

toc Entry for the table of contents list, default nil.

done-mark

Position of point afterwards, default nil meaning after the inserted text.

A number of hooks are already defined. Most likely, you will be able to get the desired
functionality by choosing from these hooks.

LaTeX-section-heading
Query the user about the name of the sectioning command. Modifies
level and name.

LaTeX-section-title
Query the user about the title of the section. Modifies title.

LaTeX-section-toc
Query the user for the toc entry. Modifies toc.

LaTeX-section-section
Insert IATEX section command according to name, title, and toc. If toc is
nil, no toc entry is inserted. If toc or title are empty strings, done-mark
will be placed at the point they should be inserted.

LaTeX-section-label
Insert a label after the section command. Controlled by the variable
LaTeX-section-label.

To get a full featured LaTeX-section command, insert

(setq LaTeX-section-hook

> (LaTeX-section-heading
LaTeX-section-title
LaTeX-section-toc
LaTeX-section-section
LaTeX-section-label))

in your .emacs file.

The behavior of LaTeX-section-label is determined by the variable LaTeX-section-
label.

Chapter 2: Editing the Document Source 27

LaTeX-section-label [User Option]
Default prefix when asking for a label.

If it is a string, it is used unchanged for all kinds of sections. If it is nil, no label is
inserted. If it is a list, the list is searched for a member whose car is equal to the
name of the sectioning command being inserted. The cdr is then used as the prefix.
If the name is not found, or if the cdr is nil, no label is inserted.

)

By default, chapters have a prefix of ‘cha:’ while sections and subsections have a
prefix of ‘sec:’. Labels are not automatically inserted for other types of sections.

2.4 Inserting Environment Templates

A large apparatus is available that supports insertions of environments, that is ‘\begin{}’
— “\end{}’ pairs.

AUCTEX is aware of most of the actual environments available in a specific document.
This is achieved by examining your ‘\documentclass’ command, and consulting a precom-
piled list of environments available in a large number of styles.

Most of these are described further in the following sections, and you may easily specify
more. See Section 2.4.5 [Customizing Environments|, page 31.

You insert an environment with C-c C-e, and select an environment type. Depending on
the environment, AUCTEX may ask more questions about the optional parts of the selected
environment type. With C-u C-c C-e you will change the current environment.

LaTeX-environment arg [Command]
(C-c C-e) AUCTEX will prompt you for an environment to insert. At this prompt,
you may press TAB or SPC to complete a partially written name, and/or to get a list
of available environments. After selection of a specific environment AUCTEX may
prompt you for further specifications.

If the optional argument arg is not-nil (i.e. you have given a prefix argument), the
current environment is modified and no new environment is inserted.

AUCTEX helps you adding labels to environments which use them, such as ‘equation’,
‘figure’, ‘table’, etc. .. When you insert one of the supported environments with C-c C-e,
you will be automatically prompted for a label. You can select the prefix to be used for
such environments with the LaTeX-label-alist variable.

LaTeX-label-alist [User Option]
List the prefixes to be used for the label of each supported environment.

This is an alist whose car is the environment name, and the cdr either the prefix or
a symbol referring to one.

If the name is not found, or if the cdr is nil, no label is automatically inserted for that
environment.

If you want to automatically insert a label for a environment but with an empty
prefix, use the empty string "" as the cdr of the corresponding entry.

As a default selection, AUCTEX will suggest the environment last inserted or, as the
first choice the value of the variable LaTeX-default-environment.

Chapter 2: Editing the Document Source 28

LaTeX-default-environment [User Option]
Default environment to insert when invoking ‘LaTeX-environment’ first time. When
the current environment is ‘document’, it is overriden by LaTeX-default-document-
environment.

LaTeX-default-document-environment [Variable]
Default environment when invoking ‘LaTeX-environment’ and the current environ-
ment is ‘document’. It is intended to be used in IATEX class style files. For example,
in beamer.el it is set to frame, in letter.el to letter, and in slides.el to slide.

If the document is empty, or the cursor is placed at the top of the document,
AUCTEX will default to insert a ‘document’ environment prompting also for the insertion
of ‘\documentclass’ and ‘\usepackage’ macros. You will be prompted for a new package
until you enter nothing. If you do not want to insert any ‘\usepackage’ at all, just press
RET at the first ‘Packages’ prompt.

AUCTEX distinguishes normal and expert environments. By default, it will offer com-
pletion only for normal environments. This behavior is controlled by the user option
TeX-complete-expert-commands.

TeX-complete-expert-commands [User Option]
Complete macros and environments marked as expert commands.

Possible values are nil, t, or a list of style names.

nil Don’t complete expert commands (default).
t Always complete expert commands.
(STYLES ...)

Only complete expert commands of STYLES.

You can close the current environment with C-c J, but we suggest that you use C-c C-e
to insert complete environments instead.

LaTeX-close-environment [Command]|
(C-c]) Insert an ‘\end’ that matches the current environment.

AUCTEX offers keyboard shortcuts for moving point to the beginning and to the end of
the current environment.

LaTeX-find-matching-begin [Command|
(C-M-a) Move point to the ‘\begin’ of the current environment.
If this command is called inside a comment and LaTeX-syntactic-comments is en-
abled, try to find the environment in commented regions with the same comment
prefix.

LaTeX-find-matching-end [Command]
(C-M-e) Move point to the ‘\end’ of the current environment.
If this command is called inside a comment and LaTeX-syntactic-comments is en-
abled, try to find the environment in commented regions with the same comment
prefix.

Chapter 2: Editing the Document Source 29

2.4.1 Equations

When inserting equation-like environments, the ‘\label’ will have a default prefix, which
is controlled by the following variables:

LaTeX-equation-label [User Option]
Prefix to use for ‘equation’ labels.

LaTeX-egnarray-label [User Option]
Prefix to use for ‘eqnarray’ labels.

LaTeX-amsmath-label [User Option]
Prefix to use for amsmath equation labels. Amsmath equations include ‘align’,
‘alignat’, ‘xalignat’, ‘aligned’, ‘flalign’ and ‘gather’.

2.4.2 Floats

Figures and tables (i.e., floats) may also be inserted using AUCTEX. After choosing either
‘figure’ or ‘table’ in the environment list described above, you will be prompted for a number
of additional things.

float position
This is the optional argument of float environments that controls how they
are placed in the final document. In IATEX this is a sequence of the letters
‘htbp’ as described in the IATEX manual. The value will default to the value of
LaTeX-float.

caption This is the caption of the float. The default is to insert the caption at the
bottom of the float. You can specify floats where the caption should be placed
at the top with LaTeX-top-caption-1list.

short caption
If the specified caption is greater than a specific length, then a short caption
is prompted for and it is inserted as an optional argument to the ‘\caption’
macro. The length that a caption needs to be before prompting for a short
version is controlled by LaTeX-short-caption-prompt-length.

label The label of this float. The label will have a default prefix, which is controlled
by the variables LaTeX-figure-label and LaTeX-table-label.

Moreover, you will be asked if you want the contents of the float environment to be
horizontally centered. Upon a positive answer a ‘\centering’ macro will be inserted at the
beginning of the float environment.

LaTeX-float [User Option]
Default placement for floats.

LaTeX-figure-label [User Option]
Prefix to use for figure labels.

LaTeX-table-label [User Option]
Prefix to use for table labels.

Chapter 2: Editing the Document Source 30

LaTeX-top-caption-list [User Option]
List of float environments with top caption.

LaTeX-short-caption-prompt-length [User Option]
Number of chars a caption should be before prompting for a short caption.

2.4.3 Itemize-like Environments

In an itemize-like environment, nodes (i.e., ‘\item’s) may be inserted using C-c LFD.

LaTeX-insert-item [Command]
(C-c LFD) Close the current item, move to the next line and insert an appropriate
“\item’ for the current environment. That is, ‘itemize’ and ‘enumerate’ will have
‘\item ’ inserted, while ‘description’ will have ‘\item[]’ inserted.

TeX-arg-item-label-p [User Option]
If non-nil, you will always be asked for optional label in items. Otherwise, you will
be asked only in description environments.

2.4.4 Tabular-like Environments

When inserting Tabular-like environments, that is, ‘tabular’ ‘array’ etc., you will be
prompted for a template for that environment. Related variables:

LaTeX-default-format [User Option]
Default format string for array and tabular environments.

LaTeX-default-width [User Option]
Default width for minipage and tabular* environments.

LaTeX-default-position [User Option]
Default position string for array and tabular environments. If nil, act like the empty
string is given, but don’t prompt for a position.

AUCTEX calculates the number of columns from the format string and inserts the suit-
able number of ampersands.

You can use C-c LFD (LaTeX-insert-item) to terminate rows in these environments. It
supplies line break macro ‘\\’ and inserts the suitable number of ampersands on the next
line. AUCTEX also supports the ‘*{num}{cols}’ notation (which may contain another ‘*’-
expression) in the format string when calculating the number of ampersands. Please note
that ‘num’ and ‘cols’ must be enclosed in braces; expressions like ‘*21’ are not recognized
correctly by the algorithm.

LaTeX-insert-item [Command]|
(C-c LFD) Close the current row with ‘\\’, move to the next line and insert an appro-
priate number of ampersands for the current environment.

Similar supports are provided for various amsmath environments such as ‘align’,
‘gather’, ‘alignat’, ‘matrix’ etc. Try typing C-c LFD in these environments. It recog-
nizes the current environment and does the appropriate job depending on the context.

Chapter 2: Editing the Document Source 31

2.4.5 Customizing Environments

See Section 5.6.3 [Adding Environments|, page 85, for how to customize the list of known
environments.

2.5 Entering Mathematics

TEX is written by a mathematician, and has always contained good support for formatting
mathematical text. AUCTEX supports this tradition, by offering a special minor mode for
entering text with many mathematical symbols. You can enter this mode by typing C-c ~.

LaTeX-math-mode [Command]
(C-c ™) Toggle LaTeX Math mode. This is a minor mode rebinding the key
LaTeX-math-abbrev-prefix to allow easy typing of mathematical symbols. ¢ will
read a character from the keyboard, and insert the symbol as specified in LaTeX-math-
default and LaTeX-math-list. If given a prefix argument, the symbol will be sur-
rounded by dollar signs.

You can use another prefix key (instead of ¢) by setting the variable LaTeX-math-
abbrev-prefix.

To enable LaTeX Math mode by default, add the following in your .emacs file:
(add-hook ’LaTeX-mode-hook ’LaTeX-math-mode)

LaTeX-math-abbrev-prefix [User Option]

A string containing the prefix of LaTeX-math-mode commands; This value defaults to
4

The string has to be a key or key sequence in a format understood by the kbd macro.
This corresponds to the syntax usually used in the manuals for Emacs Emacs Lisp.

The variable LaTeX-math-1list allows you to add your own mappings.

LaTeX-math-list [User Option]
A list containing user-defined keys and commands to be used in LaTeX Math mode.
Each entry should be a list of two to four elements.

First, the key to be used after LaTeX-math-abbrev-prefix for macro insertion. If it
is nil, the symbol has no associated keystroke (it is available in the menu, though).

Second, a string representing the name of the macro (without a leading backslash.)

Third, a string representing the name of a submenu the command should be added
to. Use a list of strings in case of nested menus.

Fourth, the position of a Unicode character to be displayed in the menu alongside the
macro name. This is an integer value.

LaTeX-math-menu-unicode [User Option]
Whether the LaTeX menu should try using Unicode for effect. Your Emacs built
must be able to display include Unicode characters in menus for this feature.

AUCTEX’s reference card tex-ref .tex includes a list of all math mode commands.

AUCTEX can help you write subscripts and superscripts in math constructs by au-
tomatically inserting a pair of braces after typing _ or ~ respectively and putting point

Chapter 2: Editing the Document Source 32

between the braces. In order to enable this feature, set the variable TeX-electric-sub-
and-superscript to a non-nil value.

TeX-electric-sub-and-superscript [User Option]
If non-nil, insert braces after typing ~ and _ in math mode.

You can automatically turn off input methods, used to input non-ascii characters, when
you begin to enter math constructs.

TeX-math-input-method-off-regexp [User Option]
Input method matching this regular expression is turned off when §$ is typed to begin
math mode or a math environment is inserted by C-c C-e (LaTeX-environment).

2.6 Completion

Emacs lisp programmers probably know the 1isp-complete-symbol command which was
bound to M-TAB until completion-at-point became the new standard completion facility (see
below). Users of the wonderful ispell mode know and love the ispell-complete-word
command from that package. Similarly, AUCTEX has a TeX-complete-symbol command,
by default bound to M-TAB which is equivalent to M-C-i. Using TeX-complete-symbol
makes it easier to type and remember the names of long IATFX macros.

In order to use TeX-complete-symbol, you should write a backslash and the start of the
macro. Typing M-TAB will now complete as much of the macro, as it unambiguously can.
For example, if you type ‘“\renewc’ and then M-TAB, it will expand to ‘‘\renewcommand’.
But there’s more: if point is just after ‘\begin{’, then TeX-complete-symbol will complete
IATEX environments, etc. This is controlled by TeX-complete-list.

TeX-complete-symbol [Command]
(M-TAB) Complete TEX symbol before point.

TeX-complete-list [Variable]
List of ways to complete the preceding text.

Fach entry is a list with the following elements:

1. Regexp matching the preceding text or a predicate of arity 0 which returns non-
nil and sets ‘match-data’ appropriately if it is applicable.

2. A number indicating the subgroup in the regexp containing the text.
3. A function returning an alist of possible completions.

4. Text to append after a succesful completion.

Or alternatively:
1. Regexp matching the preceding text.

2. Function to do the actual completion.

More recent Emacs versions have a new completion mechanism. Modes may define and
register custom completion-at-point functions and when the user invokes completion-at-
point (usually bound to M-TAB), all such registered functions are consulted for checking for
possible completions. Modern completion Uls like company-mode support this completion-
at-point facility.

Chapter 2: Editing the Document Source 33

TeX--completion-at-point [Function]
AUCTEX’s completion-at-point function which is automatically added to
completion-at-point-functions in TEX and IATEX buffers.

It offers the same completion candidates as would TeX-complete-symbol (and
is also controlled by TeX-complete-list) except that it doesn’t fall back on
ispell-complete-word which would be awkward with completion Uls like company-
mode.

A more direct way to insert a macro is with TeX-insert-macro, bound to C-c C-m
which is equivalent to C-c RET. It has the advantage over completion that it knows about
the argument of most standard IATEX macros, and will prompt for them. It also knows
about the type of the arguments, so it will for example give completion for the argument
to ‘\include’. Some examples are listed below.

TeX-insert-macro [Command]
(C-c C-m or C-c RET) Prompt (with completion) for the name of a TEX macro, and
if AUCTEX knows the macro, prompt for each argument.

As a default selection, AUCTEX will suggest the macro last inserted or, as the first choice
the value of the variable TeX-default-macro.

TeX-insert-macro-default-style [User Option]
Specifies whether TeX-insert-macro will ask for all optional arguments.

If set to the symbol show-optional-args, TeX-insert-macro asks for optional ar-
guments of TEX marcos, unless the previous optional argument has been rejected.
If set to show-all-optional-args, TeX-insert-macro asks for all optional argu-
ments. mandatory-args-only, TeX-insert-macro asks only for mandatory argu-
ments. When TeX-insert-macro is called with prefix argument (C-u), it’s the other
way round.

Note that for some macros, there are special mechanisms, e.g.
LaTeX-includegraphics-options-alist and TeX-arg-cite-note-p.

TeX-default-macro [User Option]
Default macro to insert when invoking TeX-insert-macro first time.

A faster alternative is to bind the function TeX-electric-macro to ‘\’. This can be
done by setting the variable TeX-electric-escape

TeX-electric-escape [User Option]
If this is non-nil when AUCTEX is loaded, the TEX escape character ‘\” will be bound

to TeX-electric—-macro

The difference between TeX-insert-macro and TeX-electric-macro is that space will
complete and exit from the minibuffer in TeX-electric-macro. Use TAB if you merely want
to complete.

TeX-electric-macro [Command]
Prompt (with completion) for the name of a TEX macro, and if AUCTEX knows the
macro, prompt for each argument. Space will complete and exit.

Chapter 2: Editing the Document Source 34

By default AUCTEX will put an empty set braces ‘{}’ after a macro with no arguments to
stop it from eating the next whitespace. This can be stopped by entering LaTeX-math-mode,
see Section 2.5 [Mathematics|, page 31, or by setting TeX-insert-braces to nil.

TeX-insert-braces [User Option]
If non-nil, append a empty pair of braces after inserting a macro.

TeX-insert-braces-alist [User Option]
Control the insertion of a pair of braces after a macro on a per macro basis.

This variable is an alist. Each element is a cons cell, whose car is the macro name, and
the cdr is non-nil or nil, depending on whether a pair of braces should be, respectively,
appended or not to the macro.

If a macro has an element in this variable, TeX-parse-macro will use its value to
decided what to do, whatever the value of the variable TeX-insert-braces.

Completions work because AUCTEX can analyze TEX files, and store symbols in Emacs
Lisp files for later retrieval. See Section 5.5 [Automatic], page 78, for more information.

AUCTEX distinguishes normal and expert macros. By default, it will offer comple-
tion only for normal commands. This behavior can be controlled using the user option
TeX-complete-expert-commands.

TeX-complete-expert-commands [User Option]
Complete macros and environments marked as expert commands.

Possible values are nil, t, or a list of style names.

nil Don’t complete expert commands (default).
t Always complete expert commands.
(STYLES ...)

Only complete expert commands of STYLES.

AUCTEX will also make completion for many macro arguments, for example existing
labels when you enter a ‘\ref’ macro with TeX-insert-macro or TeX-electric-macro,
and BibTEX entries when you enter a ‘\cite’ macro. For this kind of completion to work,
parsing must be enabled as described in see Section 5.3 [Parsing Files|, page 71. For
‘\cite’ you must also make sure that the BibTEX files have been saved at least once after
you enabled automatic parsing on save, and that the basename of the BibTEX file does not
conflict with the basename of one of TEX files.

2.7 Marking Environments, Sections, or Texinfo Nodes

You can mark the current environment by typing C-c ., or the current section by typing
C-c *.

In Texinfo documents you can type M-C-h to mark the current node.

When the region is set, the point is moved to its beginning and the mark to its end.

Chapter 2: Editing the Document Source 35

2.7.1 LaTeX Commands for Marking Environments and Sections

LaTeX-mark-section [Command]
(C-c *) Set mark at end of current logical section, and point at top.

With a non-nil prefix argument, mark only the region from the current section start to
the next sectioning command. Thereby subsections are not being marked. Otherwise,
any included subsections are also marked along with current section.

LaTeX-mark-environment [Command]
(C-c .) Set mark to the end of the current environment and point to the matching
beginning.

If a prefix argument is given, mark the respective number of enclosing environments.
The command will not work properly if there are unbalanced begin-end pairs in
comments and verbatim environments.

2.7.2 Texinfo Commands for Marking Environments and Sections

Texinfo-mark-section [Command]
(C-c *) Mark the current section, with inclusion of any containing node.

The current section is detected as starting by any of the structuring commands
matched by the regular expression in the variable outline-regexp which in turn
is a regular expression matching any element of the variable texinfo-section-list.

With a non-nil prefix argument, mark only the region from the current section start to
the next sectioning command. Thereby subsections are not being marked. Otherwise,
any included subsections are also marked

Note that when the current section is starting immediately after a node command,
then the node command is also marked as part of the section.

Texinfo-mark-environment [Command]|
(C-c .) Set mark to the end of the current environment and point to the matching
beginning.

If a prefix argument is given, mark the respective number of enclosing environments.
The command will not work properly if there are unbalanced begin-end pairs in
comments and verbatim environments.

Texinfo-mark-node [Command]|
(M-C-h) Mark the current node. This is the node in which point is located. It is start-
ing at the previous occurrence of the keyword @node and ending at next occurrence
of the keywords @node or @bye.

2.8 Commenting

It is often necessary to comment out temporarily a region of TEX or IATEX code. This
can be done with the commands C-c ; and C-c /. C-c ; will comment out all lines in the
current region, while C-c 7 will comment out the current paragraph. Type C-c ; again to
uncomment all lines of a commented region, or C-c 7 again to uncomment all comment
lines around point. These commands will insert or remove a single ‘%’ respectively.

Chapter 2: Editing the Document Source 36

TeX-comment-or-uncomment-region [Command]
(C-c ;) Add or remove ‘%’ from the beginning of each line in the current region. Un-
commenting works only if the region encloses solely commented lines. If AUCTEX
should not try to guess if the region should be commented or uncommented the com-
mands TeX-comment-region and TeX-uncomment-region can be used to explicitly
comment or uncomment the region in concern.

TeX-comment-or-uncomment-paragraph [Command]|
(C-c %) Add or remove ‘%’ from the beginning of each line in the current paragraph.
When removing ‘%’ characters the paragraph is considered to consist of all preceding
and succeeding lines starting with a ‘%’, until the first non-comment line.

2.9 Indenting

Indentation means the addition of whitespace at the beginning of lines to reflect special
syntactical constructs. This makes it easier to see the structure of the document, and to
catch errors such as a missing closing brace. Thus, the indentation is done for precisely the
same reasons that you would indent ordinary computer programs.

Indentation is done by IATEX environments and by TEX groups, that is the body of
an environment is indented by the value of LaTeX-indent-level (default 2). Also, items
of an ‘itemize-like’ environment are indented by the value of LaTeX-item-indent, default
—2. (Items are identified with the help of LaTeX-item-regexp.) If more environments are
nested, they are indented ‘accumulated’ just like most programming languages usually are
seen indented in nested constructs.

You can explicitely indent single lines, usually by pressing TAB, or marked regions by
calling indent-region on it. If you have auto-fill-mode enabled and a line is broken
while you type it, Emacs automatically cares about the indentation in the following line.
If you want to have a similar behavior upon typing RET, you can customize the variable
TeX-newline-function and change the default of newline which does no indentation to
newline-and-indent which indents the new line or reindent-then-newline-and-indent
which indents both the current and the new line.

There are certain IATEX environments which should be indented in a special way,
like ‘tabular’ or ‘verbatim’. Those environments may be specified in the variable
LaTeX-indent-environment-1list together with their special indentation functions. Tak-
ing the ‘verbatim’ environment as an example you can see that current-indentation is
used as the indentation function. This will stop AUCTEX from doing any indentation in
the environment if you hit TAB for example.

There are environments in LaTeX-indent-environment-1list which do not bring a spe-
cial indentation function with them. This is due to the fact that first the respective functions
are not implemented yet and second that filling will be disabled for the specified environ-
ments. This shall prevent the source code from being messed up by accidently filling those
environments with the standard filling routine. If you think that providing special filling
routines for such environments would be an appropriate and challenging task for you, you
are invited to contribute. (See Section 2.10 [Filling], page 38, for further information about
the filling functionality)

The check for the indentation function may be enabled or disabled by customizing the
variable LaTeX-indent-environment-check.

Chapter 2: Editing the Document Source 37

As a side note with regard to formatting special environments: Newer Emacsen include
align.el and therefore provide some support for formatting ‘tabular’ and ‘tabbing’ en-
vironments with the function align-current which will nicely align columns in the source
code.

AUCTEX is able to format commented parts of your code just as any other part. This
means IATEX environments and TEX groups in comments will be indented syntactically
correct if the variable LaTeX-syntactic-comments is set to t. If you disable it, comments
will be filled like normal text and no syntactic indentation will be done.

Following you will find a list of most commands and variables related to indenting with
a small summary in each case:

TAB LaTeX-indent-1line will indent the current line.

LFD newline-and-indent inserts a new line (much like RET) and moves the cursor
to an appropriate position by the left margin.

Most keyboards nowadays lack a linefeed key and C-j may be tedious to type.
Therefore you can customize AUCTEX to perform indentation upon typing RET
as well. The respective option is called TeX-newline-function.

C-j Alias for LFD

LaTeX-indent-environment-1list [User Option]
List of environments with special indentation. The second element in each entry is
the function to calculate the indentation level in columns.

The filling code currently cannot handle tabular-like environments which will be com-
pletely messed-up if you try to format them. This is why most of these environments
are included in this customization option without a special indentation function. This
will prevent that they get filled.

LaTeX-indent-level [User Option]
Number of spaces to add to the indentation for each ‘\begin’ not matched by a ‘\end’.

LaTeX-item-indent [User Option]
Number of spaces to add to the indentation for ‘\item’’s in list environments.

TeX-brace-indent-level [User Option]
Number of spaces to add to the indentation for each ‘{’ not matched by a ‘}’.

LaTeX-syntactic-comments [User Option]
If non-nil comments will be filled and indented according to IATEX syntax. Otherwise
they will be filled like normal text.

TeX-newline-function [User Option]
Used to specify the function which is called when RET is pressed. This will normally
be newline which simply inserts a new line. In case you want to have AUCTEX
do indentation as well when you press RET, use the built-in functions newline-and-
indent or reindent-then-newline-and-indent. The former inserts a new line and
indents the following line, i.e. it moves the cursor to the right position and therefore
acts as if you pressed LFD. The latter function additionally indents the current line.
If you choose ‘Other’, you can specify your own fancy function to be called when RET
is pressed.

Chapter 2: Editing the Document Source 38

AUCTEX treats by default ‘\[...\]” math mode as a regular environment and indents
it accordingly. If you do not like such behavior you only need to remove \|I\[and \[\]
from LaTeX-begin-regexp and LaTeX-end-regexp variables respectively.

2.10 Filling

Filling deals with the insertion of line breaks to prevent lines from becoming wider than what
is specified in fill-column. The linebreaks will be inserted automatically if auto-fill-
mode is enabled. In this case the source is not only filled but also indented automatically
as you write it.

auto-fill-mode can be enabled for AUCTEX by calling turn-on-auto-£ill in one of
the hooks AUCTEX is running. See Section 5.1 [Modes and Hooks], page 69. As an example,

if you want to enable auto-fill-mode in LaTeX-mode, put the following into your init file:
(add-hook ’LaTeX-mode-hook ’turn-on-auto-fill)

You can manually fill explicitely marked regions, paragraphs, environments, complete
sections, or the whole buffer. (Note that manual filling in AUCTEX will indent the start of
the region to be filled in contrast to many other Emacs modes.)

There are some syntactical constructs which are handled specially with regard to filling.
These are so-called code comments and paragraph commands.

Code comments are comments preceded by code or text in the same line. Upon filling
a region, code comments themselves will not get filled. Filling is done from the start of
the region to the line with the code comment and continues after it. In order to prevent
overfull lines in the source code, a linebreak will be inserted before the last non-comment
word by default. This can be changed by customizing LaTeX-fill-break-before-code-
comments. If you have overfull lines with code comments you can fill those explicitely by
calling LaTeX-fill-paragraph or pressing M-q with the cursor positioned on them. This
will add linebreaks in the comment and indent subsequent comment lines to the column of
the comment in the first line of the code comment. In this special case M-q only acts on the
current line and not on the whole paragraph.

Lines with ‘\par’ are treated similarly to code comments, i.e. ‘\par’ will be treated
as paragraph boundary which should not be followed by other code or text. But it is not
treated as a real paragraph boundary like an empty line where filling a paragraph would
stop.

Paragraph commands like ‘\section’ or ‘\noindent’ (the list of commands is defined by
LaTeX-paragraph-commands) are often to be placed in their own line(s). This means they
should not be consecuted with any preceding or following adjacent lines of text. AUCTEX
will prevent this from happening if you do not put any text except another macro after
the end of the last brace of the respective macro. If there is other text after the macro,
AUCTEX regards this as a sign that the macro is part of the following paragraph.

Here are some examples:

\begin{quote}
text text text text

\begin{quote}\label{foo}
text text text text

Chapter 2: Editing the Document Source 39

If you press M-q on the first line in both examples, nothing will change. But if you write

\begin{quote} text
text text text text

and press M-q, you will get
\begin{quote} text text text text text

Besides code comments and paragraph commands, another speciality of filling in
AUCTEX involves commented lines. You should be aware that these comments are treated
as islands in the rest of the IATEX code if syntactic filling is enabled. This means, for exam-
ple, if you try to fill an environment with LaTeX-fill-environment and have the cursor
placed on a commented line which does not have a surrounding environment inside the
comment, AUCTEX will report an error.

The relevant commands and variables with regard to filling are:

C-cC-q C-p

LaTeX-fill-paragraph will fill and indent the current paragraph.
M-q Alias for C-c C-q C-p
C-c C-q C-e

LaTeX-fill-environment will fill and indent the current environment. This
may e.g. be the ‘document’ environment, in which case the entire document
will be formatted.

C-c C-q C-s
LaTeX-fill-section will fill and indent the current logical sectional unit.

C-c C-q C-r
LaTeX-fill-region will fill and indent the current region.

LaTeX-fill-break-at-separators [User Option]
List of separators before or after which respectively linebreaks will be inserted if they
do not fit into one line. The separators can be curly braces, brackets, switches for
inline math (‘$’, ‘\ (", ‘\)’) and switches for display math (‘\[’, ‘\1’). Such formatting
can be useful to make macros and math more visible or to prevent overfull lines in
the IATEX source in case a package for displaying formatted TEX output inside the
Emacs buffer, like preview-latex, is used.

LaTeX-fill-break-before-code-comments [User Option]
Code comments are comments preceded by some other text in the same line. When
a paragraph containing such a comment is to be filled, the comment start will be
seen as a border after which no line breaks will be inserted in the same line. If the
option LaTeX-fill-break-before-code-comments is enabled (which is the default)
and the comment does not fit into the line, a line break will be inserted before the
last non-comment word to minimize the chance that the line becomes overfull.

LaTeX-fill-excluded-macros [User Option]
A list of macro names (without leading backslash) for whose arguments filling should
be disabled. Typically, you will want to add macros here which have long, multi-line

40

arguments. An example is \pgfplotstabletypeset from the pgfplotstable package
which is used as shown in the following listing:

\pgfplotstabletypeset [skip first n=4]1{}
XYZ Format,
Version 1.234
Date 2010-09-01
@author Mustermann
ABC
123
456

41

3 Controlling Screen Display

It is often desirable to get visual help of what markup code in a text actually does without
having to decipher it explicitly. For this purpose Emacs and AUCTEX provide font locking
(also known as syntax highlighting) which visually sets off markup code like macros or
environments by using different colors or fonts. For example text to be typeset in italics
can be displayed with an italic font in the editor as well, or labels and references get their
own distinct color.

While font locking helps you grasp the purpose of markup code and separate markup
from content, the markup code can still be distracting. AUCTEX lets you hide those parts
and show them again at request with its built-in support for hiding macros and environments
which we call folding here.

Besides folding of macros and environments, AUCTEX provides support for Emacs’ out-
line mode which lets you narrow the buffer content to certain sections of your text by hiding
the parts not belonging to these sections.

Moreover, you can focus in a specific portion of the code by narrowing the buffer to the
desired region. AUCTEX provides also functions to narrow the buffer to the current group
and to INTEX environments.

AUCTEX also provides some WYSIWYG features.

First, you can customize font-latex-fontify-script to enable special formatting of
~ superscripts and _ subscripts (see Section 3.1 [Font Locking], page 41).

Secondly, AUCTEX with GNU Emacs 25 or later can display certain math macros using
Unicode characters, e.g., \alpha as . This is called prettification and is lightweight and
reasonable robust (see Section 3.5 [Prettifying], page 52).

A more accurate approach is provided by preview-latex, a subsystem of AUCTEX, see
Section “Introduction” in The preview-latex Manual. This system uses IATEX to generate
images that are then displayed in your buffer. It is extremely accurate but can be fragile
with some packages (like older pgf versions).

Please note that you can use prettification and preview-latex together.

3.1 Font Locking

Font locking is supposed to improve readability of the source code by highlighting certain
keywords with different colors or fonts. It thereby lets you recognize the function of markup
code to a certain extent without having to read the markup command. For general infor-
mation on controlling font locking with Emacs’ Font Lock mode, see Section “Font Lock
Mode” in GNU Emacs Manual.

TeX-install-font-lock [User Option]
Once font locking is enabled globally or for the major modes provided by AUCTEX,
the font locking patterns and functionality of font-latex are activated by default. You
can switch to a different font locking scheme or disable font locking in AUCTREX by
customizing the variable TeX-install-font-lock.

Besides font-latex AUCTEX ships with a scheme which is derived from Emacs’ default
IATEX mode and activated by choosing tex-font-setup. Be aware that this scheme is

Chapter 3: Controlling Screen Display 42

not coupled with AUCTEX’s style system and not the focus of development. Therefore
and due to font-latex being much more feature-rich the following explanations will only
cover font-latex.

In case you want to hook in your own fontification scheme, you can choose other and
insert the name of the function which sets up your font locking patterns. If you want
to disable fontification in AUCTEX completely, choose ignore.

font-latex provides many options for customization which are accessible with M-x
customize-group RET font-latex RET. For this description the various options are ex-
plained in conceptional groups.

3.1.1 Fontification of macros

Highlighting of macros can be customized by adapting keyword lists which can be found in
the customization group font-latex-keywords.

Three types of macros can be handled differently with respect to fontification:

1. Commands of the form ‘\foo[bar]{baz}’ which consist of the macro itself, optional
arguments in square brackets and mandatory arguments in curly braces. For the com-
mand itself the face font-lock-keyword-face will be used and for the optional argu-
ments the face font-lock-variable-name-face. The face applied to the mandatory
argument depends on the macro class represented by the respective built-in variables.

2. Declaration macros of the form ‘{\foo text}’ which consist of the macro which may
be enclosed in a TEX group together with text to be affected by the macro. In case a
TEX group is present, the macro will get the face font-lock-keyword-face and the
text will get the face configured for the respective macro class. If no TEX group is
present, the latter face will be applied to the macro itself.

3. Simple macros of the form ‘\foo’ which do not have any arguments or groupings. The
respective face will be applied to the macro itself.

Customization variables for ‘\foo [bar]{baz}’ type macros allow both the macro name
and the sequence of arguments to be specified. The latter is done with a string which can
contain the characters

7 indicating the existence of a starred variant for the macro,
‘r for optional arguments in brackets,
L for mandatory arguments in braces,
A\’ for mandatory arguments consisting of a single macro and

as a prefix indicating that two alternatives are following.

For example the specifier for ‘\documentclass’ would be ‘[{’ because the macro has one
optional followed by one mandatory argument. The specifier for ‘\newcommand’ would be
“* | {\[[{’ because there is a starred variant, the mandatory argument following the macro
name can be a macro or a TEX group which can be followed by two optional arguments and
the last token is a mandatory argument in braces.

Customization variables for the ‘{\foo text}’ and ‘\foo’ types are simple lists of strings
where each entry is a macro name (without the leading backslash).

Chapter 3: Controlling Screen Display 43

General macro classes

font-latex provides keyword lists for different macro classes which are described in the fol-
lowing table:

font-latex-match-function-keywords
Keywords for macros defining or related to functions, like ‘\newcommand’.
Type: \macrol[...]{...}
Face: font-lock-function-name-face

font-latex-match-reference-keywords
Keywords for macros defining or related to references, like ‘\ref’.
Type: ‘\macro[...]1{...F
Face: font-lock-constant-face

font-latex-match-textual-keywords
Keywords for macros specifying textual content, like ‘\caption’.
Type: \macrol[...]J{...}
Face: font-lock-type-face

font-latex-match-variable-keywords
Keywords for macros defining or related to variables, like ‘\setlength’.
Type: \macrol[...]1{...}
Face: font-lock-variable-name-face

font-latex-match-warning-keywords
Keywords for important macros, e.g. affecting line or page break, like
“\clearpage’.
Type: ‘\macro’
Face: font-latex-warning-face

Sectioning commands

Sectioning commands are macros like ‘\chapter’ or ‘\section’. For these commands
there are two fontification schemes which may be selected by customizing the variable
font-latex-fontify-sectioning.

font-latex-fontify-sectioning [User Option]
Per default sectioning commands will be shown in a larger, proportional font, which
corresponds to a number for this variable. The font size varies with the section-
ing level, e.g. ‘\part’ (font-latex-sectioning-O-face) has a larger font than
‘\paragraph’ (font-latex-sectioning-5-face). Typically, values from 1.05 to 1.3
for font-latex-fontify-sectioning give best results, depending on your font setup.
If you rather like to use the base font and a different color, set the variable to the
symbol ‘color’. In this case the face font-lock-type-face will be used to fontify
the argument of the sectioning commands.

You can make font-latex aware of your own sectioning commands be adding them to the
keyword lists: font-latex-match-sectioning-O-keywords (font-latex-sectioning-
O-face) ... font-latex-match-sectioning-5-keywords (font-latex-sectioning-5-
face).

Chapter 3: Controlling Screen Display 44

Related to sectioning there is special support for slide titles which may be fontified with
the face font-latex-slide-title-face. You can add macros which should appear in this
face by customizing the variable font-latex-match-slide-title-keywords.

Commands for changing fonts

IATEX provides various macros for changing fonts or font attributes. For example, you can
select an italic font with ‘\textit{...} or bold with ‘\textbf{...} . An alternative way
to specify these fonts is to use special macros in TEX groups, like ‘{\itshape ...}’ for
italics and ‘{\bfseries ...} for bold. As mentioned above, we call the former variants
commands and the latter declarations.

Besides the macros for changing fonts provided by IXTEX there is an infinite number of
other macros—either defined by yourself for logical markup or defined by macro packages—
which affect the font in the typeset text. While IATEX’s built-in macros and macros of
packages known by AUCTEX are already handled by font-latex, different keyword lists per
type style and macro type are provided for entering your own macros which are listed in
the table below.

font-latex-match-bold-command-keywords
Keywords for commands specifying a bold type style.
Face: font-latex-bold-face

font-latex-match-italic-command-keywords
Keywords for commands specifying an italic font.
Face: font-latex-italic-face

font-latex-match-math-command-keywords
Keywords for commands specifying a math font.
Face: font-latex-math-face

font-latex-match-type-command-keywords
Keywords for commands specifying a typewriter font.
Face: font-lock-type-face

font-latex-match-bold-declaration-keywords
Keywords for declarations specifying a bold type style.
Face: font-latex-bold-face

font-latex-match-italic-declaration-keywords
Keywords for declarations specifying an italic font.
Face: font-latex-italic-face

font-latex-match-type-declaration-keywords
Keywords for declarations specifying a typewriter font.
Face: font-latex-type-face

Deactivating defaults of built-in keyword classes

font-latex ships with predefined lists of keywords for the classes described above. You can
disable these defaults per class by customizing the variable font-latex-deactivated-
keyword-classes. This is a list of strings for keyword classes to be deactivated. Valid
entries are "warning", "variable", "biblatexnoarg", "biblatex", "reference", "function" ,

Chapter 3: Controlling Screen Display 45

"sectioning-0", "sectioning-1", "sectioning-2", "sectioning-3", "sectioning-4", "sectioning-
5", "slide-title", "textual", "bold-command", "italic-command", "math-command", "type-
command", "bold-declaration", "italic-declaration", "type-declaration".
You can also get rid of certain keywords only. For example if you want to remove
highlighting of footnotes as references you can put the following stanza into your init file:
(eval-after-load "font-latex"
’ (setq-default
font-latex-match-reference-keywords-local
(remove (TeX-assoc-string "footnote"
font-latex-match-reference-keywords-local)
font-latex-match-reference-keywords-local)))
But note that this means fiddling with font-latex’s internals and is not guaranteed to
work in future versions of font-latex.

User-defined keyword classes

In case the customization options explained above do not suffice for your needs, you can
specify your own keyword classes by customizing the variable font-latex-user-keyword-
classes.

font-latex-user-keyword-classes [User Option]
Every keyword class consists of four parts, a name, a list of keywords, a face and a
specifier for the type of macros to be highlighted.

When adding new entries, you have to use unique values for the class names, i.e. they
must not clash with names of the built-in keyword classes or other names given by
you. Additionally the names must not contain spaces.

The list of keywords defines which commands and declarations should be covered by
the keyword class. A keyword can either be a simple command name omitting the
leading backslash or a list consisting of the command name and a string specifying
the sequence of arguments for the command.

The face argument can either be an existing face or face attributes made by you.
(The latter option is not available on XEmacs.)

There are three alternatives for the type of keywords—“Command with arguments”,
“Declaration inside TEX group” and “Command without arguments”—which corre-
spond with the macro types explained above.

3.1.2 Fontification of quotes

Text in quotation marks is displayed with the face font-latex-string-face. Besides the
various forms of opening and closing double and single quotation marks, so-called guillemets
(<<, >>) can be used for quoting. Because there are two styles of using them—French style:
<< text >>; German style: >>text<<—you can customize the variable font-latex-quotes to
tell font-latex which type you are using if the correct value cannot be derived from document
properties.

font-latex-quotes [User Option]
The default value of font-latex-quotes is ‘auto’ which means that font-latex will
try to derive the correct type of quotation mark matching from document properties
like the language option supplied to the babel IATEX package.

Chapter 3: Controlling Screen Display 46

If the automatic detection fails for you and you mostly use one specific style you can
set it to a specific language-dependent value as well. Set the value to ‘german’ if you
are using >>German quotes<< and to ‘french’ if you are using << French quotes >>.
font-latex will recognize the different ways these quotes can be given in your source
code, i.e. (‘"< ">7)) (<<’ ‘>>7) and the respective 8-bit variants.

If you set font-latex-quotes to nil, quoted content will not be fontified.

3.1.3 Fontification of mathematical constructs

In IXTEX mathematics can be indicated by a variety of different methods: toggles (like dollar
signs), macros and environments. Math constructs known by font-latex are displayed with
the face font-latex-math-face. Support for dollar signs and shorthands like ‘\(...\)’
or ‘\[...\]’ is built-in and not customizable. Support for other math macros and envi-
ronments can be adapted by customizing the variables font-latex-match-math-command-
keywords and font-latex-math-environments respectively.

In order to make math constructs more readable, font-latex displays subscript and super-
script parts in a smaller font and raised or lowered respectively. This fontification feature can
be controlled with the variables font-latex-fontify-script and font-latex-script-
display.

font-latex-fontify-script [User Option]
If non-nil, fontify subscript and superscript strings. Concretely, this means that the
scripts are raised or lowered.

Another possiblity is setting this variable to the symbol multi-level. In this case,
in a formula z°{y~z}, y is raised above and smaller than z, and z is raised above
and smaller than y. With many script levels, the text might become too small to be
readable. (See font-latex-fontify-script-max-level below.)

Lastly, you can set this variable to invisible whose behavior is like multi-level,
and in addition the super-/subscript characters ~ and _ are not displayed.

Note that this feature is not available on XEmacs, for which it is disabled per default.
In GNU Emacs raising and lowering is not enabled for versions 21.3 and before due
to it working not properly.

font-latex-fontify-script-max-level [User Option]
Maximum scriptification level for which script faces are applied.

The faces font-latex-superscript-face and font-latex-subscript-face define
custom :height values < 1.0. Therefore, scripts are displayed with a slightly smaller
font than normal math text. If font-latex-fontify-script is multi-level or
invisible, the font size becomes too small to be readable after a few levels. This
option allows to specify the maximum level after which the size of the script text
wont be shrunken anymore.

For example, in the expression z°{y~{z"a-b}}, = has scriptification level 0, y has level
1, z has level 2, and both a and b have scriptification level 3.

If font-latex-fontify-script-max-level was 2, then z, a, and b would have the
same font size. If it was 3 or more, then a and b were smaller than z just in the same
way as z is smaller than y and y is smaller than z.

Chapter 3: Controlling Screen Display 47

(e~

The script characters and ‘_’ themselves are also fontified with an own face named
font-latex-script-char-face.

font-latex-script-display [User Option]
Display specification for subscript and superscript content. The car is used for sub-
script, the cdr is used for superscript. The feature is implemented using so-called
display properties. For information on what exactly to specify for the values, see
Section “Other Display Specifications” in GNU Emacs Lisp Reference Manual.

3.1.4 Verbatim macros and environments

Usually it is not desirable to have content to be typeset verbatim highlighted according to
IATEX syntax. Therefore this content will be fontified uniformly with the face font-latex—
verbatim-face.

font-latex differentiates three different types of verbatim constructs for fontifica-
tion. Macros with special characters like | as delimiters, macros with braces, and
environments. Which macros and environments are recognized is controlled by the
variables LaTeX-verbatim—-macros-with-delims, LaTeX-verbatim-macros-with-braces,
and LaTeX-verbatim-environments respectively.

3.1.5 Faces used by font-latex

In case you want to change the colors and fonts used by font-latex please refer to the
faces mentioned in the explanations above and use M-x customize-face RET <face> RET.
All faces defined by font-latex are accessible through a customization group by typing M-x
customize-group RET font-latex-highlighting-faces RET.

3.1.6 Known fontification problems

In certain cases the fontification machinery fails to interpret buffer contents correctly. This
can lead to color bleed, i.e. large parts of a buffer get fontified with an inappropriate face.
A typical situation for this to happen is the use of a dollar sign (‘$’) in a verbatim macro or
environment. If font-latex is not aware of the verbatim construct, it assumes the dollar sign
to be a toggle for mathematics and fontifies the following buffer content with the respective
face until it finds a closing dollar sign or till the end of the buffer.

As a remedy you can make the verbatim construct known to font-latex, see Section 3.1.4
[Verbatim content|, page 47. If this is not possible, you can insert a commented dollar sign
(‘%$’) at the next suitable end of line as a quick workaround.

3.2 Folding Macros and Environments

A popular complaint about markup languages like TEX and IATEX is that there is too much
clutter in the source text and that one cannot focus well on the content. There are macros
where you are only interested in the content they are enclosing, like font specifiers where the
content might already be fontified in a special way by font locking. Or macros the content
of which you only want to see when actually editing it, like footnotes or citations. Similarly
you might find certain environments or comments distracting when trying to concentrate
on the body of your document.

With AUCTEX’s folding functionality you can collapse those items and replace them by
a fixed string, the content of one of their arguments, or a mixture of both. If you want

Chapter 3: Controlling Screen Display 48

to make the original text visible again in order to view or edit it, move point sideways
onto the placeholder (also called display string) or left-click with the mouse pointer on
it. (The latter is currently only supported on Emacs.) The macro or environment will
unfold automatically, stay open as long as point is inside of it and collapse again once you

move point out of it. (Note that folding of environments currently does not work in every
AUCTEX mode.)

In order to use this feature, you have to activate TeX-fold-mode which will activate the
auto-reveal feature and the necessary commands to hide and show macros and environments.
You can activate the mode in a certain buffer by typing the command M-x TeX-fold-mode
RET or using the keyboard shortcut C-c C-o C-f. If you want to use it every time you edit
a INTEX document, add it to a hook:

(add-hook ’LaTeX-mode-hook (lambda ()
(TeX-fold-mode 1)))

If it should be activated in all AUCTEX modes, use TeX-mode-hook instead of
LaTeX-mode-hook.

Once the mode is active there are several commands available to hide and show macros,
environments and comments:

TeX-fold-buffer [Command]|
(C-c C-o C-b) Hide all foldable items in the current buffer according to the setting
of TeX-fold-type-list.

If you want to have this done automatically every time you open a file, add it to a
hook and make sure the function is called after font locking is set up for the buffer.
The following code should accomplish this:

(add-hook ’find-file-hook ’TeX-fold-buffer t)

The command can be used any time to refresh the whole buffer and fold any new
macros and environments which were inserted after the last invocation of the com-
mand.

TeX-fold-type-list [User Option]
List of symbols determining the item classes to consider for folding. This can be
macros, environments and comments. Per default only macros and environments are

folded.

TeX-fold-force-fontify [User Option]
In order for all folded content to get the right faces, the whole buffer has to be fontified
before folding is carried out. TeX-fold-buffer therefore will force fontification of
unfontified regions. As this will prolong the time folding takes, you can prevent
forced fontification by customizing the variable TeX-fold-force-fontify.

TeX-fold-auto [User Option]
By default, a macro inserted with TeX-insert-macro (C-c C-m) will not be folded.
Set this variable to a non-nil value to aumatically fold macros as soon as they are
inserted.

Chapter 3: Controlling Screen Display 49

TeX-fold-preserve-comments [User Option]
By default items found in comments will be folded. If your comments often contain
unfinished code this might lead to problems. Give this variable a non-nil value and
foldable items in your comments will be left alone.

TeX-fold-unfold-around-mark [User Option]
When this variable is non-nil and there is an active regione, text around the mark
will be kept unfolded.

TeX-fold-region [Command]|
(C-c C-o C-r) Hide all configured macros in the marked region.

TeX-fold-paragraph [Command]|
(C-c C-o C-p) Hide all configured macros in the paragraph containing point.

TeX-fold-macro [Command]|
(C-c C-o C-m) Hide the macro on which point currently is located. If the name of the
macro is found in TeX-fold-macro-spec-list, the respective display string will be
shown instead. If it is not found, the name of the macro in sqare brackets or the de-
fault string for unspecified macros (TeX-fold-unspec-macro-display-string) will
be shown, depending on the value of the variable TeX-fold-unspec-use-name.

TeX-fold-env [Command]
(C-c C-o C-e) Hide the environment on which point currently is located. The be-
havior regarding the display string is analogous to TeX-fold-macro and determined
by the variables TeX-fold-env-spec-list and TeX-fold-unspec-env-display-
string respectively.

TeX-fold-math [Command]
Hide the math macro on which point currently is located. If the name of the macro
is found in TeX-fold-math-spec-list, the respective display string will be shown
instead. If it is not found, the name of the macro in sqare brackets or the default string
for unspecified macros (TeX-fold-unspec-macro-display-string) will be shown,
depending on the value of the variable TeX-fold-unspec-use-name.

TeX-fold-comment [Command]|
(C-c C-o C-c) Hide the comment point is located on.

TeX-fold-clearout-buffer [Command]
(C-c C-o b) Permanently unfold all macros and environments in the current buffer.

TeX-fold-clearout-region [Command]|
(C-c C-o r) Permanently unfold all macros and environments in the marked region.

TeX-fold-clearout-paragraph [Command]
(C-c C-o p) Permanently unfold all macros and environments in the paragraph con-
taining point.

TeX-fold-clearout-item [Command]|
(C-c C-o0 i) Permanently show the macro or environment on which point currently is
located. In contrast to temporarily opening the macro when point is moved sideways
onto it, the macro will be permanently unfolded and will not collapse again once point
is leaving it.

Chapter 3: Controlling Screen Display 50

TeX-fold-dwim [Command]
(C-c C-o C-o) Hide or show items according to the current context. If there is folded
content, unfold it. If there is a marked region, fold all configured content in this
region. If there is no folded content but a macro or environment, fold it.

In case you want to use a different prefix than C-c C-o for these commands you can
customize the variable TeX-fold-command-prefix. (Note that this will not change the key
binding for activating the mode.)

The commands above will only take macros or environments into consideration which
are specified in the variables TeX-fold-macro-spec-list or TeX-fold-env-spec-list
respectively.

TeX-fold-macro-spec-list [User Option]
List of replacement specifiers and macros to fold. The specifier can be a string, an
integer or a function symbol.

If you specify a string, it will be used as a display replacement for the whole macro.
Numbers in braces, brackets, parens or angle brackets will be replaced by the re-
spective macro argument. For example ‘{1}’ will be replaced by the first mandatory
argument of the macro. One can also define alternatives within the specifier which
are used if an argument is not found. Alternatives are separated by ‘| |’. They are
most useful with optional arguments. As an example, the default specifier for ‘\item’
is ‘[1]:||*’ which means that if there is an optional argument, its value is shown
followed by a colon. If there is no optional argument, only an asterisk is used as the
display string.

If you specify a number as the first element, the content of the respective mandatory
argument of a IATEX macro will be used as the placeholder.

If the first element is a function symbol, the function will be called with all mandatory
arguments of the macro and the result of the function call will be used as a replacement
for the macro.

The placeholder is made by copying the text from the buffer together with its prop-
erties, i.e. its face as well. If fontification has not happened when this is done
(e.g. because of lazy font locking) the intended fontification will not show up. As a
workaround you can leave Emacs idle a few seconds and wait for stealth font locking to
finish before you fold the buffer. Or you just re-fold the buffer with TeX-fold-buffer
when you notice a wrong fontification.

TeX-fold-env-spec-list [User Option]
List of display strings or argument numbers and environments to fold. Argu-
ment numbers refer to the ‘\begin’ statement. That means if you have e.g.
‘\begin{tabularx}{\linewidth}{XXX} ... \end{tabularx}’ and specify 3 as the
argument number, the resulting display string will be “XXX”.

TeX-fold-math-spec-list [User Option]
List of display strings and math macros to fold.

The variables TeX-fold-macro-spec-list, TeX-fold-env-spec-list, and TeX-fold-
math-spec-list apply to any AUCTEX mode. If you want to make settings which are only

Chapter 3: Controlling Screen Display 51

applied to IATEX mode, you can use the mode-specific variables LaTeX-fold-macro-spec-
list, LaTeX-fold-env-spec-list, and LaTeX-fold-math-spec-list

TeX-fold-unspec-macro-display-string [User Option]
Default display string for macros which are not specified in TeX-fold-macro-spec-
list.

TeX-fold-unspec-env-display-string [User Option]
Default display string for environments which are not specified in TeX-fold-env-
spec-list.

TeX-fold-unspec-use-name [User Option]

If non-nil the name of the macro or environment surrounded by square brackets is
used as display string, otherwise the defaults specified in TeX-fold-unspec-macro-
display-string or TeX-fold-unspec-env-display-string respectively.

When you hover with the mouse pointer over folded content, its original text will be
shown in a tooltip or the echo area depending on Tooltip mode being activate. In order to
avoid exorbitantly big tooltips and to cater for the limited space in the echo area the content
will be cropped after a certain amount of characters defined by the variable TeX-fold-help-
echo-max-length.

TeX-fold-help-echo-max-length [User Option]
Maximum length of original text displayed in a tooltip or the echo area for folded
content. Set it to zero in order to disable this feature.

3.3 Outlining the Document

AUCTEX supports the standard outline minor mode using IATEX /ConTEXt sectioning com-
mands as header lines. See Section “Outline Mode” in GNU Emacs Manual.

You can add your own headings by setting the variable TeX-outline-extra.

TeX-outline-extra [Variable]
List of extra TEX outline levels.

Each element is a list with two entries. The first entry is the regular expression
matching a header, and the second is the level of the header. A ‘~’ is automatically
prepended to the regular expressions in the list, so they must match text at the
beginning of the line.

See LaTeX-section-1list or ConTeXt-INTERFACE-section-list for existing header
levels.

The following example add ‘\item’ and ‘\bibliography’ headers, with ‘\bibliography’
at the same outline level as ‘\section’, and ‘\item’ being below ‘\subparagraph’.

(setq TeX-outline-extra
»CCU L NI A\\\\\\ (bib\\) 7item\\b" 7)
("\\\\bibliography\\b" 2)))
You may want to check out the unbundled out-xtra package for even better outline
support. It is available from your favorite emacs lisp archive.

Chapter 3: Controlling Screen Display 52

3.4 Narrowing

Sometimes you want to focus your attention to a limited region of the code. You can do
that by restricting the text addressable by editing commands and hiding the rest of the
buffer with the narrowing functions, see Section “Narrowing” in GNU Emacs Manual. In
addition, AUCTeX provides a couple of other commands to narrow the buffer to a group,
i.e. a region enclosed in a pair of curly braces, and to IATEX environments.

TeX-narrow-to-group [Command]
(C-x n g) Make text outside current group invisible.

LaTeX-narrow-to-environment count [Command]|
(C-x n e) Make text outside current environment invisible. With optional argument
count keep visible that number of enclosing environmens.

Like other standard narrowing functions, the above commands are disabled. Attempting
to use them asks for confirmation and gives you the option of enabling them; if you enable
the commands, confirmation will no longer be required for them.

3.5 Prettifying

Emacs 25 is able to prettify symbols in programming language buffers, see Section “Misc
for Programs” in GNU Emacs Manual. The canonical example is to display (lambda ()
...)as (O ...) in Lisp buffers.

AUCTEX can use this feature in order to display certain math macros and greek letters
using their Unicode representation, too. For example, the TEX code \alpha \times \beta
will be displayed as . When point is on one of the characters, it’ll be unprettified auto-
matically, meaning you see the verbatim text again. For this behaviour however you need
to set prettify-symbols-unprettify-at-point to t or right-edge which will unprettify
the symbol when point moves into or near it.

To enable prettification in AUCTEX, simply add prettify-symbols-mode to TeX-mode-
hook. If you enabled prettification globally with global-prettify-symbols-mode, then it’s

automatically enabled in AUCTEX, too.

You can also add custom symbol unicode-character pairs for prettification by adding
to tex--prettify-symbols-alist. Note that this variable is part of Emacs’ stock
tex-mode.el and used by that and AUCTEX.

93

4 Starting Processors, Viewers and Other
Programs

The most powerful features of AUCTEX may be those allowing you to run TEX, KTEX,
ConTEXt and other external commands like BibTEX and makeindex from within Emacs,
viewing and printing the results, and moreover allowing you to debug your documents.

AUCTEX comes with a special tool bar for TEX and IATEX which provides buttons for
the most important commands. You can enable or disable it by customizing the options
plain-TeX-enable-toolbar and LaTeX-enable-toolbar in the TeX-tool-bar customiza-
tion group.

4.1 Executing Commands

Formatting the document with TpX, IXTEX or ConTEXt, viewing with a previewer, printing
the document, running BibTEX, making an index, or checking the document with lacheck
or chktex all require running an external command.

4.1.1 Starting a Command on a Document or Region

There are two ways to run an external command, you can either run it on the current doc-
ument with TeX-command-master, or on the current region with TeX-command-region.
A special case of running TEX on a region is TeX-command-buffer which differs from
TeX-command-master if the current buffer is not its own master file.

TeX-command-master [Command]|
(C-c C-c) Query the user for a command, and run it on the master file associated
with the current buffer. The name of the master file is controlled by the variable
TeX-master. The available commands are controlled by the variable TeX-command-
list.

TeX-command-region [Command]
(C-c C-r) Query the user for a command, and run it on the contents of the selected
region. The region contents are written into the region file, after extracting the header
and trailer from the master file. If mark is inactive (which can happen with Transient
Mark mode), use the old region. See also the command TeX-pin-region about how
to fix a region.

The name of the region file is controlled by the variable TeX-region. The name of the
master file is controlled by the variable TeX-master. The header is all text up to the
line matching the regular expression TeX-header-end. The trailer is all text from the
line matching the regular expression TeX-trailer-start. The available commands
are controlled by the variable TeX-command-list.

TeX-command-buffer [Command]
(C-c C-b) Query the user for a command, and apply it to the contents of the current
buffer. The buffer contents are written into the region file, after extracting the header
and trailer from the master file. The command is then actually run on the region file.
See above for details.

LaTeX-command-section [Command]
(C-c C-z) Query the user for a command, and apply it to the current section (or part,
chapter, subsection, paragraph, or subparagraph). What makes the current section

Chapter 4: Starting Processors, Viewers and Other Programs 54

is determined by LaTeX-command-section-level which can be enlarged/shrunken
using LaTeX-command-section-change-level (C-c M-z). The given numeric pre-
fix arg is added to the current value of LaTeX-command-section-level. By de-
fault, LaTeX-command-section-level is initialized with the current document’s
LaTeX-largest-level. The buffer contents are written into the region file, after
extracting the header and trailer from the master file. The command is then actually
run on the region file. See TeX-command-region for details.

It is also possible to compile automatically the whole document until it is ready with a
single command: TeX-command-run-all.

TeX-command-run-all [Command]|
(C-c C-a) Compile the current document until an error occurs or it is finished. If

compilation finishes successfully, run the viewer at the end.

Here are some relevant variables.

TeX-region [User Option]
The name of the file for temporarily storing the text when formatting the current
region.

TeX-header-end [User Option]

A regular expression matching the end of the header. By default, this is
‘“\begin{document}’ in IATEX mode and ‘/**end of header’ in TEX mode.

TeX-trailer-start [User Option]
A regular expression matching the start of the trailer. By default, this is
‘\end{document}’ in IATEX mode and ‘\bye’ in TEX mode.

If you want to change the values of TeX-header-end and TeX-trailer-start you can
do this for all files by setting the variables in a mode hook or per file by specifying them as
file variables (see Section “File Variables” in The Emacs Editor).

TeX-pin-region [Command]|
(C-c C-t C-r) If you don’t have a mode like Transient Mark mode active, where
marks get disabled automatically, the region would need to get properly set before
each call to TeX-command-region. If you fix the current region with C-c C-t C-r,
then it will get used for more commands even though mark and point may change.
An explicitly activated mark, however, will always define a new region when calling
TeX-command-region.

AUCTEX will allow one process for each document, plus one process for the region file
to be active at the same time. Thus, if you are editing n different documents, you can
have n plus one processes running at the same time. If the last process you started was on
the region, the commands described in Section 4.3 [Debugging], page 65, and Section 4.5
[Control], page 68, will work on that process, otherwise they will work on the process
associated with the current document.

Chapter 4: Starting Processors, Viewers and Other Programs 55

4.1.2 Selecting and Executing a Command

Once you started the command selection with C-c C-¢, C-c C-r or C-c C-b you will be
prompted for the type of command. AUCTEX will try to guess which command is appro-
priate in the given situation and propose it as default. Usually this is a processor like ‘TeX’
or ‘LaTeX’ if the document was changed or a viewer if the document was just typeset. Other
commands can be selected in the minibuffer with completion support by typing TAB.

The available commands are defined by the variable TeX-command-list. Per default
it includes commands for typesetting the document (e.g. ‘LaTeX’), for viewing the out-
put (‘View’), for printing (‘Print’), for generating an index (‘Index’) or for spell checking
(‘Spell’) to name but a few. You can also add your own commands by adding entries
to TeX-command-list. Refer to its doc string for information about its syntax. You
might also want to look at TeX-expand-list to learn about the expanders you can use
in TeX-command-1list.

Note that the default of the variable occasionally changes. Therefore it is advisable to
add to the list rather than overwriting it. You can do this with a call to add-to-1list in
your init file. For example, if you wanted to add a command for running a program called
‘foo’ on the master or region file, you could do this with the following form.

(eval-after-load "tex"
> (add-to-list ’TeX-command-list
>("Foo" "foo %s" TeX-run-command t t :help "Run foo") t))
As mentioned before, AUCTEX will try to guess what command you want to invoke.

If you want to use another command than ‘TeX’, ‘LaTeX’ or whatever processor AUCTEX
thinks is appropriate for the current mode, set the variable TeX-command-default. You
can do this for all files by setting it in a mode hook or per file by specifying it as a file
variable (see Section “File Variables” in The Emacs Editor).

TeX-command-default [User Option]
The default command to run in this buffer. Must be an entry in TeX-command-1list.

In case you use biblatex in a document, when automatic parsing is enabled AUCTEX
checks the value of ‘backend’ option given to biblatex at load time to decide whether to
use BibTEX or Biber for bibliography processing. Should AUCTEX fail to detect the right
backend, you can use the file local LaTeX-biblatex-use-Biber variable.

LaTeX-biblatex-use-Biber [Variable]
If this boolean variable is set as file local, it tells to AUCTEX whether to use Biber with
biblatex. In this case, the autodetection of the biblatex backend will be overridden.
You may want to set locally this variable if automatic parsing is not enabled.

After confirming a command to execute, AUCTEX will try to save any buffers related to
the document, and check if the document needs to be reformatted. If the variable TeX-save-
query is non-nil, AUCTEX will query before saving each file. By default AUCTEX will check
emacs buffers associated with files in the current directory, in one of the TeX-macro-private
directories, and in the TeX-macro-global directories. You can change this by setting the
variable TeX-check-path.

TeX-check-path [User Option]
Directory path to search for dependencies.

Chapter 4: Starting Processors, Viewers and Other Programs 56

If nil, just check the current file. Used when checking if any files have changed.

When performing spell checking on a document or a region (invoked through AUCTEX’s
‘Spell’ command or M-x ispell RET), you want the spell checking program to skip certain
macro arguments and environments, most notably the arguments of referencing macros
and the contents of verbatim environments. The skipped parts are controlled by variable
ispell-tex-skip-alists provided by ispell.el. AUCTEX has a library which can be
added to this variable depending on the value of TeX-ispell-extend-skip-list which is
set to t by default.

TeX-ispell-extend-skip-list [User Option]
This boolean option controls whether AUCTEX activates its extension for skipping
certain macro arguments and environments when spell checking.

When non-nil, AUCTEX loads the file tex-ispell.el and adds its content to
ispell-tex-skip-alists. This library can and will never be complete, but the
interface can be used to add selected and private macro names within your init file
or on a file local basis.

ispell-tex-skip-alists has the following structure:

(defvar ispell-tex-skip-alists
>((;; First list

("\\\\addcontentsline" ispell-tex-arg-end 2)
("\\\\\\ ([aA]1ph\\ |arabic\\)" ispell-tex-arg-end)
("\\\\makebox" ispell-tex-arg-end 0)
("\\\\documentclass" . "\\\\begin{document}"))

(;; Second list
("\\(figure\\|table\\)*?" ispell-tex-arg-end 0)
("list" ispell-tex-arg-end 2)
("verbatim*7" . "\\\\end{verbatim*7}")))
"xLists of regions to be skipped in TeX mode.
First list is used raw.
Second list has key placed inside \\begin{}.")

FEach item is an alist and the structure of it is described in ispell-skip-region-
alist:
(defvar ispell-skip-region-alist
(o))
"Alist expressing beginning and end of regions not to spell check.
The alist key must be a regular expression.
Valid forms include:
(KEY) - just skip the key.
(KEY . REGEXP) - skip to the end of REGEXP.
REGEXP may be string or symbol.
(KEY REGEXP) - skip to end of REGEXP. REGEXP must be a string.
(KEY FUNCTION ARGS) - FUNCTION called with ARGS
returns end of region.")

Let’s go through the first list of ispell-tex-skip-alists line by line
("\\\\addcontentsline" ispell-tex-arg-end 2)

Chapter 4: Starting Processors, Viewers and Other Programs 57

KEY is the string "\\\\addcontentsline", FUNCTION is ispell-tex-arg-end called
with ARGS, here 2. ispell-tex-arg-end is a function provided by ispell.el which
skips as many subsequent optional arguments in square brackets as it sees and then
skips ARGS number of mandatory arguments in braces. Omitting ARGS means skip
1 mandatory argument. In practice, when you have something like this in your
document:

\addcontentsline{toc}{chapter}{Some text}

The first two arguments are left out and ‘Some text’ will be spell checked. For the
next line

("\\\\\\([aA]1lph\\|arabic\\)" ispell-tex-arg-end)
the name of the counter as argument is skipped. Next line is
("\\\\makebox" ispell-tex-arg-end 0)
where only optional arguments are skipped, the first mandatory argument is checked,
e.g.
\makebox [Opt] [1]{Some text}
Finally, the next line
("\\\\documentclass" . "\\\\begin{document}"))

ensures that the entire preamble of a document is discarded. Second list works the
same; it is more convenient for environments since KEY is wrapped inside \begin{}.

AUCTEX provides two functions to add items to car and cdr of ispell-tex-arg-end,
namely TeX-ispell-skip-setcar and TeX-ispell-skip-setcdr. The argument of
these functions is exactly as in ispell-tex-skip-alists. Additions can be done via
init file, e.g.:

(eval-after-load "tex-ispell"
> (progn
(TeX-ispell-skip-setcar
> (("\\\\mymacro" ispell-tex-arg-end)))
(TeX-ispell-skip-setcdr
> (("myverbatim" . "\\\\end{myverbatim}")))))

Another possibility is to use file local additions at the end of your TEX file, e.g.:

%h% Local Variables:

%h% mode: latex

%%h% TeX-master: t

%k eval: (TeX-ispell-skip-setcar ’ (("\\\\mymacro" . "{[-0-9]+}")))
%%% End:

Finally, AUCTEX provides a function called TeX-ispell-tex-arg-end which sees
more arguments than ispell-tex-arg-end. Refer to its doc string for more infor-
mation.

AUCTEX also provides a facility to skip the argument of in-line verbatim macros like
‘\Verb’ from fancyvrb.sty or ‘\mintinline’ from minted.sty. Characters delimiting the
verbatim text are stored in TeX-ispell-verb-delimiters.

Chapter 4: Starting Processors, Viewers and Other Programs 58

TeX-ispell-verb-delimiters [User Option]
String with delimiters recognized for in-line verbatim macros. This variable is initial-
ized to ‘! |#~\"*/+~=’. Since this string is used to build a character alternative inside
a regular expression, special characters ‘=" and ‘=’ should come last. Other characters
like opening brace ‘{’, asterisk ‘*’ or at sign ‘@ should be avoided as they are not
recognized by font-latex.el.

4.1.3 Options for TEX Processors

There are some options you can customize affecting which processors are invoked or the
way this is done and which output they produce as a result. These options control if DVT or
PDF output should be produced, if TEX should be started in interactive or nonstop mode, if
source specials or a SyncTEX file should be produced for making inverse and forward search
possible or which TEX engine should be used instead of regular TEX, like PDFTEX, Omega
or XeTEX, and the style error messages are printed with.

TeX-PDF-mode [Command]
(C-c C-t C-p) This command toggles the PDF mode of AUCTEX, a buffer-local minor
mode which is enabled by default. You can customize TeX-PDF-mode to give it a

different default or set it as a file local variable on a per-document basis. This option
usually results in calling either PDFTEX or ordinary TEX.

TeX-DVI-via-PDFTeX [User Option]
If this is set, DVI will also be produced by calling PDFTEX, setting \pdfoutput=0.
This makes it possible to use PDFTEX features like character protrusion even when
producing DVI files. Contemporary TEX distributions do this anyway, so that you
need not enable the option within AUCTEX.

TeX-interactive-mode [Command]
(C-c C-t C-1i) This command toggles the interactive mode of AUCTEX, a global minor
mode. You can customize TeX-interactive-mode to give it a different default. In
interactive mode, TEX will pause with an error prompt when errors are encountered
and wait for the user to type something.

TeX-source-correlate-mode [Command]
(C-c C-t C-s) Toggles support for forward and inverse search. Forward search refers
to jumping to the place in the previewed document corresponding to where point
is located in the document source and inverse search to the other way round. See
Section 4.2.2 [I/O Correlation], page 63.

You can permanently activate TeX-source-correlate-mode by customizing the vari-
able TeX-source-correlate-mode. There is a bunch of customization options for the
mode, use M-x customize-group RET TeX-view RET to find out more.

AUCTEX is aware of three different means to do I/O correlation: source specials
(only DVI output), the pdfsync IATEX package (only PDF output) and SyncTgX.
The choice between source specials and SyncTEX can be controlled with the variable
TeX-source-correlate-method.

Should you use source specials it has to be stressed very strongly however, that source
specials can cause differences in page breaks and spacing, can seriously interfere with

Chapter 4: Starting Processors, Viewers and Other Programs 59

various packages and should thus never be used for the final version of a document. In
particular, fine-tuning the page breaks should be done with source specials switched
off.

Sometimes you are requested, by journal rules or packages, to compile the document
into DVI output. Thus, if you want a PDF document in the end you can either use XeTEX
engine, see below for information about how to set engines, or compile the document with
tex and then convert to PDF with dvips—ps2pdf before viewing it. In addition, current
Japanese TEX engines cannot generate PDF directly so they rely on DVI-to-PDF converters.
Usually dvipdfmx command is used for this purpose. You can use the TeX-PDF-from-DVI
variable to let AUCTEX know you want to generate the final PDF by converting a DVI file.

TeX-PDF-from-DVI [User Option]
This option controls if and how to produce a PDF file by converting a DVI file.

When TeX-PDF-mode is non-nil, if TeX-PDF-from-DVI is non-nil too the document is
compiled to DVI instead of PDF. When the document is ready, C-c C-c will suggest
to run the converter to PDF or an intermediate format.

If non-nil, TeX-PDF-from-DVI should be the name of the command, as a string, used to
convert the DVI file to PDF or to an intermediate format. Values currently supported
are:

e "Dvips": the DVI file is converted to PS with dvips. After successfully running
it, ps2pdf will be the default command to convert the PS file to PDF.

e "Dvipdfmx": the DVI file is converted to PDF with dvipdfmx.

When the PDF file is finally ready, the next suggested command will be to open the
viewer.

This option can also be set as a file local variable, in order to use this conversion on
a per-document basis.

Recall the whole sequence of C-c C-c commands can be replace by the single C-c
C-a.

AUCTEX also allows you to easily select different TEX engines for processing, either by
using the entries in the ‘TeXing Options’ submenu below the ‘Command’ menu or by calling
the function TeX-engine-set. These eventually set the variable TeX-engine which you can
also modify directly.

TeX-engine [User Option]
This variable allows you to choose which TEX engine should be used for typesetting
the document, i.e. the executables which will be used when you invoke the ‘TeX’ or
‘LaTeX’ commands. The value should be one of the symbols defined in TeX-engine-
alist-builtin or TeX-engine-alist. The symbols ‘default’, ‘xetex’, ‘luatex’
and ‘omega’ are available from the built-in list.

Note that TeX-engine is buffer-local, so setting the variable directly or via the above
mentioned menu or function will not take effect in other buffers. If you want to activate
an engine for all AUCTEX modes, set TeX-engine in your init file, e.g. by using M-x
customize-variable <RET>. If you want to activate it for a certain AUCTEX mode only,

Chapter 4: Starting Processors, Viewers and Other Programs 60

set the variable in the respective mode hook. If you want to activate it for certain files, set
it through file variables (see Section “File Variables” in The Emacs Editor).

Should you need to change the executable names related to the different engine set-
tings, there are some variables you can tweak. Those are TeX-command, LaTeX-command,
TeX-Omega-command, LaTeX-Omega-command, ConTeXt-engine and ConTeXt-Omega-
engine. The rest of the executables is defined directly in TeX-engine-alist-builtin.
If you want to override an entry from that, add an entry to TeX-engine-alist that starts
with the same symbol as that the entry in the built-in list and specify the executables you
want to use instead. You can also add entries to TeX-engine-alist in order to add support
for engines not covered per default.

TeX-engine-alist [User Option]
Alist of TeX engines and associated commands. Each entry is a list with a maximum
of five elements. The first element is a symbol used to identify the engine. The second
is a string describing the engine. The third is the command to be used for plain TeX.
The fourth is the command to be used for LaTeX. The fifth is the command to be used
for the ‘~-engine’ parameter of ConTeXt’s ‘texexec’ program. Each command can
either be a variable or a string. An empty string or nil means there is no command
available.

In some systems, Emacs cannot inherit the PATH environment variable from the shell
and thus AUCTEX may not be able to run TEX commands. Before running them, AUCTEX
checks if it able to find those commands and will warn you in case it fails. You can skip
this test by changing the option TeX-check-TeX.

TeX-check-TeX [User Option]
If non-nil, AUCTEX will check if it is able to find a working TEX distribution before
running TEX, IWTEX, ConTEXt, etc. It actually checks if can run TeX-command com-
mand or the shell returns a command not found error. The error code returned by
the shell in this case can be set in TeX-check-TeX-command-not-found option.

Some IATEX packages requires the document to be compiled with a specific engine.
Notable examples are fontspec and polyglossia packages, which require LuaTEX and XeTEX
engines. If you try to compile a document which loads one of such packages and the set
engine is not one of those allowed you will be asked to select a different engine before
running the IATEX command. If you do not want to be warned by AUCTEX in these cases,
customize the option TeX-check-engine.

TeX-check-engine [User Option]
This boolean option controls whether AUCTEX should check the correct engine has
been set before running IATEX commands.

As shown above, AUCTEX handles in a special way most of the main options that can be
given to the TEX processors. When you need to pass to the TEX processor arbitrary options
not handled by AUCTEX, you can use the file local variable TeX-command-extra-options.

TeX-command-extra-options [User Option]
String with the extra options to be given to the TeX processor. For example, if you
need to enable the shell escape feature to compile a document, add the following line
to the list of local variables of the source file:

Chapter 4: Starting Processors, Viewers and Other Programs 61

%%h% TeX-command-extra-options: "-shell-escape"

By default this option is not safe as a file-local variable because a specially crafted
document compiled with shell escape enabled can be used for malicious purposes.

You can customize AUCTEX to show the processor output as it is produced.

TeX-show-compilation [User Option]
If non-nil, the output of TEX compilation is shown in another window.

You can instruct TEX to print error messages in the form file:line:error which is similar
to the way many compilers format them.

TeX-file-line-error [User Option]
If non-nil, TEX will produce file:line:error style error messages.

ConTEXt users can choose between Mark IT and Mark IV versions. This is controlled by
ConTeXt-Mark-version option.

ConTeXt-Mark-version [User Option]
This variables specifies which version of Mark should be used. Values currently sup-
ported are "II", the default, and "IV". It can be set globally using customization
interface or on a per-file basis, by specifying it as a file variable.

4.2 Viewing the Formatted Output

AUCTEX allows you to start external programs for previewing the formatted output of your
document.

4.2.1 Starting Viewers

Viewers are normally invoked by pressing C-c C-c once the document is formatted, which
will propose the View command, or by activating the respective entry in the Command
menu. Alternatively you can type C-c C-v which calls the function TeX-view.

TeX-view [Command]|
(C-c C-v) Start a viewer without confirmation. The viewer is started either on a
region or the master file, depending on the last command issued. This is especially
useful for jumping to the location corresponding to point in the viewer when using
TeX-source-correlate-mode.

AUCTEX will try to guess which type of viewer (DVI, PostScript or PDF) has to be used
and what options are to be passed over to it. This decision is based on the output files
present in the working directory as well as the class and style options used in the document.
For example, if there is a DVI file in your working directory, a DVI viewer will be invoked.
In case of a PDF file it will be a PDF viewer. If you specified a special paper format like
‘abpaper’ or use the ‘landscape’ option, this will be passed to the viewer by the appropriate
options. Especially some DVI viewers depend on this kind of information in order to display
your document correctly. In case you are using ‘pstricks’ or ‘psfrag’ in your document,
a DVI viewer cannot display the contents correctly and a PostScript viewer will be invoked
instead.

Chapter 4: Starting Processors, Viewers and Other Programs 62

The association between the tests for the conditions mentioned above and the viewers is
made in the variable TeX-view-program-selection. Therefore this variable is the starting
point for customization if you want to use other viewers than the ones suggested by default.

TeX-view-program-selection [User Option]
This is a list of predicates and viewers which is evaluated from front to back in order to
find out which viewer to call under the given conditions. In the first element of each list
item you can reference one or more predicates defined in TeX-view-predicate-list
or TeX-view-predicate-list-builtin. In the second element you can reference
a viewer defined in TeX-view-program-list or TeX-view-program-list-builtin.
The viewer of the first item with a positively evaluated predicate is selected.

So TeX-view-program-selection only contains references to the actual implemen-
tations of predicates and viewer commands respectively which can be found elsewhere.
AUCTEX comes with a set of preconfigured predicates and viewer commands which are
stored in the variables TeX-view-predicate-list-builtin and TeX-view-program-list-
builtin respectively. If you are not satisfied with those and want to overwrite one of them
or add your own definitions, you can do so via the variables TeX-view-predicate-list
and TeX-view-program-list.

TeX-view-predicate-list [User Option]
This is a list of predicates for viewer selection and invocation. The first element of
each list item is a symbol and the second element a Lisp form to be evaluated. The
form should return nil if the predicate is not fulfilled.

A built-in predicate from TeX-view-predicate-list-builtin can be overwritten by
defining a new predicate with the same symbol.

TeX-view-program-list [User Option]
This is a list of viewer specifications each consisting of a symbolic name and either a
command line or a function to be invoked when the viewer is called. If a command
line is used, parts of it can be conditionalized by prefixing them with predicates from
TeX-view-predicate-list or TeX-view-predicate-list-builtin. (See the doc
string for the exact format to use.) The command line can also contain placeholders
as defined in TeX-expand-list and TeX-expand-list-builtin which are expanded
before the viewer is called.

The third element of each item is a string, or a list of strings, with the name of the
executable, or executables, needed to open the output file in the viewer. Placeholders
defined in TeX-expand-list and TeX-expand-list-builtin can be used here. This
element is optional and is used to check whether the viewer is actually available on
the system.

A built-in viewer spec from TeX-view-program-list-builtin can be overwritten by
defining a new viewer spec with the same name.

After the viewer is called via either the View command or the key stroke C-c C-v, the
window system focus goes and stays on the viewer. If you prefer that the focus is pulled back
to Emacs immediately after that and you are using evince-compatible viewer, customize the
option TeX-view-enince-keep-focus.

Chapter 4: Starting Processors, Viewers and Other Programs 63

TeX-view-evince-keep-focus [User Option]
When this option is non-nil and the viewer is compatible with evince, the focus is
pulled back to Emacs immediately after the viewer is invoked or refreshed from within

AUCTEX.

Note that the viewer selection and invocation as described above will only work if certain
default settings in AUCTEX are intact. For one, the whole viewer selection machinery
will only be triggered if there is no ‘%4V’ expander in TeX-expand-list. So if you have
trouble with the viewer invocation you might check if there is an older customization of the
variable in place. In addition, the use of a function in TeX-view-program-1list only works
if the View command in TeX-command-1list makes use of the hook TeX-run-discard-or-
function.

Note also that the implementation described above replaces an older one which was
less flexible. This old implementation works with the variables TeX-output-view-style
and TeX-view-style which are used to associate file types and style options with viewers.
If desired you can reactivate it by using the placeholder ‘%vv’ for the View command in
TeX-command-list. Note however, that it is bound to be removed from AUCTEX once the
new implementation proved to be satisfactory. For the time being, find a short description
of the mentioned customization options below.

TeX-output-view-style [User Option]
List of output file extensions, style options and view options. Each item of the list
consists of three elements. If the first element (a regular expression) matches the
output file extension, and the second element (a regular expression) matches the
name of one of the style options, any occurrence of the string %V in a command in
TeX-command-1ist will be replaced with the third element.

TeX-view-style [User Option]
List of style options and view options. This is the predecessor of TeX-output-view-
style which does not provide the possibility to specify output file extensions. It is
used as a fallback in case none of the alternatives specified in TeX-output-view-style
match. In case none of the entries in TeX-view-style match either, no suggestion
for a viewer is made.

4.2.2 Forward and Inverse Search

Forward and inverse search refer to the correlation between the document source in the
editor and the typeset document in the viewer. Forward search allows you to jump to the
place in the previewed document corresponding to a certain line in the document source
and inverse search vice versa.

AUCTEX supports three methods for forward and inverse search: source specials (only
DVI output), the pdfsync IATEX package (only PDF output) and SyncTgX (any type of
output). If you want to make use of forward and inverse searching with source specials or
SyncTEX, switch on TeX-source-correlate-mode. See Section 4.1.3 [Processor Options],
page 58, on how to do that. The use of the pdfsync package is detected automatically if
document parsing is enabled. Customize the variable TeX-source-correlate-method to
select the method to use.

Chapter 4: Starting Processors, Viewers and Other Programs 64

TeX-source-correlate-method [User Option]
Method to wuse for enabling forward and inverse search. This can be

‘source-specials’ if source specials should be used, ‘synctex’ if SyncTeX should
be used, or ‘auto’ if AUCTEX should decide.

When the variable is set to ‘auto’, AUCTEX will always use SyncTeX if your latex
processor supports it, source specials otherwise. You must make sure your viewer
supports the same method.

It is also possible to specify a different method depending on the output, either DVI
or PDF, by setting the variable to an alist of the kind

((dvi . <source-specials or synctex>)
(pdf . <source-specials or synctex>))

in which the CDR of each entry is a symbol specifying the method to be used in the
corresponding mode. The default value of the variable is

((dvi . source-specials)
(pdf . synctex))

which is compatible with the majority of viewers.

Forward search happens automatically upon calling the viewer, e.g. by typing C-c C-v
(TeX-view). This will open the viewer or bring it to front and display the output page
corresponding to the position of point in the source file. AUCTEX will automatically pass
the necessary command line options to the viewer for this to happen.

Upon opening the viewer you will be asked if you want to start a server process (Gnuserv
or Emacs server) which is necessary for inverse search. This happens only if there is no server
running already. You can customize the variable TeX-source-correlate-start-server
to inhibit the question and always or never start the server respectively.

TeX-source-correlate-start-server [User Option]
If TeX-source-correlate-mode is active and a viewer is invoked, the default behavior
is to ask if a server process should be started. Set this variable to t if the question
should be inhibited and the server should always be started. Set it to nil if the server
should never be started. Inverse search will not be available in the latter case.

Inverse search, i.e. jumping to the part of your document source in Emacs corresponding
to a certain position in the viewer, is triggered from the viewer, typically by a mouse click.
Refer to the documentation of your viewer to find out how it has to be configured and what
you have to do exactly. In xdvi you normally have to use C-down-mouse-1.

Note that inverse search with the Evince PDF viewer or its MATE fork Atril might
fail in raising the Emacs frame after updating point in your document’s buffer. There is
simply no way to raise the Emacs frame reliably accross different operating systems and
different window managers with their different focus stealing policies. If the Emacs frame
is not raised after performing an inverse search from Evince or Atril, you can customize the
following option.

TeX-raise-frame-function [User Option]
A function that will be called after performing an inverse search from Evince or Atril
in order to raise the current Emacs frame.

Chapter 4: Starting Processors, Viewers and Other Programs 65

If your Emacs frame is already raised in that situation, just leave this variable set
to its default value raise-frame. Otherwise, here are some alternative settings that
work for some users.

;3 Alternative 1: For some users, ‘x-focus-frame’ works. Note
;; that this function requires Emacs 24+.
(setq TeX-raise-frame-function #’x-focus-frame)

;; Alternative 2: Under GNOME 3.20 (and probably others), it
;; seems some focus stealing prevention policy prohibits that
;; some window gets the focus immediately after the user has
;3 clicked in some other window. Here waiting a bit before
;; 1lssuing the request seems to work.
(setq TeX-raise-frame-function

(lambda ()
(run-at-time 0.5 nil #’x-focus-frame)))

;; Alternative 3: Use the external wmctrl tool in order to
;; force Emacs into the focus.
(setq TeX-raise-frame-function
(lambda ()
(call-process
"wmctrl" nil nil nil "-i" "-R"
(frame-parameter (selected-frame) outer-window-id))))

4.3 Catching the errors

Once you’ve formatted your document you may ‘debug’ it, i.e. browse through the errors
(La)TEX reported. If you have GNU Emacs 24 or later, you may also have a look at a nicely
formatted list of all errors and warnings reported by the compiler.

TeX-next-error arg reparse [Command]
(C-c) Go to the next error reported by TEX. The view will be split in two, with the
cursor placed as close as possible to the error in the top view. In the bottom view,
the error message will be displayed along with some explanatory text.

An optional numeric arg, positive or negative, specifies how many error messages
to move. A negative arg means to move back to previous error messages, see also
TeX-previous-error.

The optional reparse argument makes AUCTEX reparse the error message buffer and
start the debugging from the first error. This can also be achieved by calling the
function with a prefix argument (C-u).

TeX-previous-error arg [Command]
(M-g p) Go to the previous error reported by TEX. An optional numeric arg specifies
how many error messages to move backward. This is like calling TeX-next-error
with a negative argument.

The command TeX-previous-error works only if AUCTEX can parse the whole TEX
log buffer. This is controlled by the TeX-parse-all-errors variable.

Chapter 4: Starting Processors, Viewers and Other Programs 66

TeX-parse-all-errors [User Option]
If t, AUCTEX automatically parses the whole output log buffer right after running
a TEpX command, in order to collect all warnings and errors. This makes it possible
to navigate back and forth between the error messages using TeX-next-error and
TeX-previous-error. This is the default. If nil, AUCTEX does not parse the whole
output log buffer and TeX-previous-error cannot be used.

As default, AUCTEX will display a special help buffer containing the error reported by
TEX along with the documentation. There is however an ‘expert’ option, which allows you
to display the real TEX output.

TeX-display-help [User Option]
If t AUCTEX will automatically display a help text whenever an error is encountered
using TeX-next-error (C-c ‘). If nil a terse information about the error is displayed
in the echo area. If expert AUCTEX will display the output buffer with the raw TEX
output.

4.3.1 Controlling warnings to be reported

Normally AUCTEX will only report real errors, but you may as well ask it to report ‘bad
boxes’ and warnings as well.

TeX-toggle-debug-bad-boxes [Command]
(C-c C-t C-b) Toggle whether AUCTEX should stop at bad boxes (i.e. overfull and
underfull boxes) as well as normal errors. The boolean option TeX-debug-bad-boxes
is set accordingly.

TeX-toggle-debug-warnings [Command]|
(C-c C-t C-w) Toggle whether AUCTEX should stop at warnings as well as normal
errors. The boolean option TeX-debug-warnings is set accordingly.

While many users desire to have warnings reported after compilation, there are certain
warnings that are considered unimportant and users want to ignore them. For a more
fine-grained control of what kinds of warnings should be shown after compilation, AUCTEX
provides other options.

TeX-ignore-warnings [User Option]
Controls which warnings are to be ignored.
It can be a regexp matching the message of the warnings to be ignored.

More advanced users can set also this option to a symbol with the name of a custom
function taking as arguments all the information of the warning listed in TeX-error-
list variable, except the last one about whether to ignore the warning. See the code
of TeX-warning function and the documentation of TeX-error-1list for more details.

TeX-toggle-suppress-ignored-warnings [Command]|
(C-c C-t C-x) Toggle whether AUCTEX should actually hide the ignored warnings
specified with TeX-ignore-warnings. The boolean option TeX-suppress-ignored-
warnings is set accordingly. If this is nil, all warnings are shown, even those matched
by TeX-ignore-warnings, otherwise these are hidden.

Note that TeX-debug-warnings takes the precedence: if it is nil, all warnings are
hidden in any case.

Chapter 4: Starting Processors, Viewers and Other Programs 67

4.3.2 List of all errors and warnings

When the option TeX-parse-all-errors is non-nil, you will be also able to open an
overview of all errors and warnings reported by the TeX compiler. This feature requires
tabulated-list-mode, shipped with GNU Emacs 24 or later.

TeX-error-overview [Command]|
Show an overview of the errors and warnings occurred in the last TeX run.

In this window you can visit the error on which point is on by pressing RET, and
visit the next or previous issue by pressing n or p respectively. A prefix argument to
these keys specifies how many errors to move forward or backward. You can visit an
error also by clicking on its message. Jump to error point in the source code with
j, and use 1 see the error in the log buffer. In addition, you can toggle visibility of
bad boxes, generic warnings, and ignored warnings with b, w, and x, respectively (see
Section 4.3.1 [Ignoring warnings|, page 66, for details). Press q to quit the overview.

TeX-error-overview-open-after-TeX-run [User Option]
When this boolean variable is non-nil, the error overview will be automatically opened
after running TeX if there are errors or warnings to show.

The error overview is opened in a new window of the current frame by default, but you
can change this behavior by customizing the option TeX-error-overview-setup.

TeX-error-overview-setup [User Option]
Controls the frame setup of the error overview. The possible value is:
separate-frame; with a nil value the current frame is used instead.

The parameters of the separate frame can be set with the TeX-error-overview-
frame-parameters option.

If the display does not support multi frame, the current frame will be used regardless
of the value of this variable.

4.4 Checking for problems

Running TEX or IATEX will only find regular errors in the document, not examples of bad
style. Furthermore, description of the errors may often be confusing. The utilities lacheck
and chktex can be used to find style errors, such as forgetting to escape the space after
an abbreviation or using ‘...’ instead of ‘\l1dots’ and other similar problems. You start
lacheck with C-c C-c Check RET and chktex with C-c C-c ChkTeX RET. The result will be
a list of errors in the ‘*compilation*’ buffer. You can go through the errors with C-x ¢
(next-error, see Section “Compilation” in The Emacs Editor), which will move point to
the location of the next error.

Each of the two wutilities will find some errors the other doesn’t, but
chktex is more configurable, allowing you to create your own errors. You
may need to install the programs before using them. You can get lacheck
from <URL:ftp://ftp.ctan.org/tex-archive/support/lacheck/> and chktex from
<URL:ftp://ftp.ctan.org/tex-archive/support/chktex/>.

Chapter 4: Starting Processors, Viewers and Other Programs 68

4.5 Controlling the output

A number of commands are available for controlling the output of an application running

under AUCTEX

TeX-kill-job [Command]|
(C-c C-k) Kill currently running external application. This may be either of TEX,
IATEX, previewer, BibTEX, etc.

TeX-recenter-output-buffer [Command]|
(C-c C-1) Recenter the output buffer so that the bottom line is visible.

TeX-home-buffer [Command]|
(C-c ~) Go to the ‘master’ file in the document associated with the current buffer, or
if already there, to the file where the current process was started.

4.6 Cleaning intermediate and output files

TeX-clean [Command]
Remove generated intermediate files. In case a prefix argument is given, remove
output files as well.

Canonical access to the function is provided by the ‘Clean’ and ‘Clean All’ entries
in TeX-command-1ist, invokable with C-c C-c or the Command menu.

The patterns governing which files to remove can be adapted separately for each
AUCTEX mode by means
of the variables plain-TeX-clean-intermediate-suffixes, plain-TeX-clean-
output-suffixes, LaTeX-clean-intermediate-suffixes, LaTeX-clean-output-
suffixes, docTeX-clean-intermediate-suffixes, docTeX-clean-output-
suffixes, Texinfo-clean-intermediate-suffixes, Texinfo-clean-output-
suffixes, ConTeXt-clean-intermediate-suffixes and ConTeXt-clean-output-
suffixes.

TeX-clean-confirm [User Option]
Control if deletion of intermediate and output files has to be confirmed before it is
actually done. If non-nil, ask before deleting files.

4.7 Documentation about macros and packages

TeX-documentation-texdoc [Command]
(C-c ?) Get documentation about the packages installed on your system, using
‘texdoc’ to find the manuals. The function will prompt for the name of packages. If
point is on a word, this will be suggested as default.

If the command is called with a prefix argument, you will be shown a list of manuals
of the given package among to choose.

The command can be invoked by the key binding mentioned above as well as the
‘Find Documentation. ..’ entry in the mode menu.

69

5 Customization and Extension

5.1 Modes and Hooks

AUCTEX supports a wide variety of derivatives and extensions of TEX. Besides plain TEX
those are IATEX, AMS-TEX, ConTEXt, Texinfo and docTEX. For each of them there is a
separate major mode in AUCTEX and each major mode runs text-mode-hook, TeX-mode-
hook as well as a hook special to the mode in this order. The following table provides an
overview of the respective mode functions and hooks.

Type Mode function Hook

Plain TEX plain-TeX-mode plain-TeX-mode-hook
IATEX LaTeX-mode LaTeX-mode-hook
AMS-TEX ams-tex-mode AmS-TeX-mode-hook
ConTEXt ConTeXt-mode ConTeXt-mode-hook
Texinfo Texinfo-mode Texinfo-mode-hook
DocTEX docTeX-mode docTeX-mode-hook

If you need to make a customization via a hook which is only relevant for one of the modes
listed above, put it into the respective mode hook, if it is relevant for any AUCTEX mode,
add it to TeX-mode-hook and if it is relevant for all text modes, append it to text-mode-
hook.

Other useful hooks are listed below.

TeX-after-compilation-finished-hook [Variable]
Hook which is run after the TEX/IATEX processor has successfully finished compiling
your document. (See Chapter 4 [Processing], page 53, for finding out how to compile
your document). Each function in the hook is run with the compiled output document
as its argument.

This is useful for automatically refreshing the viewer after re-compilation especially
when using Emacs viewers such as DocView or PDF Tools. The function TeX-revert-
document-buffer can be added to the hook for this purpose.

5.2 Multifile Documents

You may wish to spread a document over many files (as you are likely to do if there are
multiple authors, or if you have not yet discovered the power of the outline commands
(see Section 3.3 [Outline], page 51)). This can be done by having a “master” file in which
you include the various files with the TEX macro ‘\input’ or the IATEX macro ‘\include’.
These files may also include other files themselves. However, to format the document you
must run the commands on the top level master file.

When you, for example, ask AUCTEX to run a command on the master file, it has no
way of knowing the name of the master file. By default, it will assume that the current file
is the master file. If you insert the following in your .emacs file AUCTEX will use a more
advanced algorithm.

(setq-default TeX-master nil) ; Query for master file.

Chapter 5: Customization and Extension 70

If AUCTEX finds the line indicating the end of the header in a master file (TeX-header-
end), it can figure out for itself that this is a master file. Otherwise, it will ask for the
name of the master file associated with the buffer. To avoid asking you again, AUCTEX
will automatically insert the name of the master file as a file variable (see Section “File
Variables” in The Emacs Editor). You can also insert the file variable yourself, by putting
the following text at the end of your files.

%%% Local Variables:
%%% TeX-master: "master"
%%% End:

You should always set this variable to the name of the top level document. If you always
use the same name for your top level documents, you can set TeX-master in your .emacs
file.

(setq-default TeX-master "master") ; All master files called "master".

TeX-master [User Option]
The master file associated with the current buffer. If the file being edited is actually
included from another file, then you can tell AUCTEX the name of the master file by
setting this variable. If there are multiple levels of nesting, specify the top level file.

If this variable is nil, AUCTEX will query you for the name.
If the variable is t, then AUCTEX will assume the file is a master file itself.

If the variable is shared, then AUCTEX will query for the name, but will not change
the file.

If the variable is dwim, AUCTEX will try to avoid querying by attempting to “do what
I mean”; and then change the file.

TeX-one-master [User Option]
Regular expression matching ordinary TEX files.

You should set this variable to match the name of all files, for which it is a good idea
to append a TeX-master file variable entry automatically. When AUCTEX adds the
name of the master file as a file variable, it does not need to ask next time you edit
the file.

If you dislike AUCTEX automatically modifying your files, you can set this variable
to ‘"<none>"’. By default, AUCTEX will modify any file with an extension of ‘. tex’.

TeX-master-file-ask [Command]|
(C-c _) Query for the name of a master file and add the respective File Variables
(see Section “File Variables” in The Emacs Editor) to the file for setting this variable
permanently.

AUCTEX will not ask for a master file when it encounters existing files. This function
shall give you the possibility to insert the variable manually.

AUCTEX keeps track of macros, environments, labels, and style files that are used in a
given document. For this to work with multifile documents, AUCTEX has to have a place
to put the information about the files in the document. This is done by having an auto
subdirectory placed in the directory where your document is located. Each time you save a
file, AUCTEX will write information about the file into the auto directory. When you load a

Chapter 5: Customization and Extension 71

file, AUCTEX will read the information in the auto directory about the file you loaded and
the master file specified by TeX-master. Since the master file (perhaps indirectly) includes
all other files in the document, AUCTEX will get information from all files in the document.
This means that you will get from each file, for example, completion for all labels defined
anywhere in the document.

AUCTEX will create the auto directory automatically if TeX-auto-save is non-nil.
Without it, the files in the document will not know anything about each other, except
for the name of the master file. See Section 5.5.3 [Automatic Local|, page 79.

TeX-save-document [Command]|
(C-c C-d) Save all buffers known to belong to the current document.

TeX-save-query [User Option]
If non-nil, then query the user before saving each file with TeX-save-document.

5.3 Automatic Parsing of TEX Files

AUCTEX depends heavily on being able to extract information from the buffers by parsing
them. Since parsing the buffer can be somewhat slow, the parsing is initially disabled. You
are encouraged to enable them by adding the following lines to your .emacs file.

(setq TeX-parse-self t) ; Enable parse on load.

(setq TeX-auto-save t) ; Enable parse on save.

The latter command will make AUCTEX store the parsed information in an auto sub-
directory in the directory each time the TEX files are stored, see Section 5.5.3 [Automatic
Local], page 79. If AUCTEX finds the pre-parsed information when loading a file, it will
not need to reparse the buffer. The information in the auto directory is also useful for
multifile documents, see Section 5.2 [Multifile], page 69, since it allows each file to access
the parsed information from all the other files in the document. This is done by first reading
the information from the master file, and then recursively the information from each file
stored in the master file.

The variables can also be done on a per file basis, by changing the file local variables.

%%%h Local Variables:

%Wl TeX-parse-self: t
%)% TeX-auto-save: t

%hts End:

Even when you have disabled the automatic parsing, you can force the generation of
style information by pressing C-c C-n. This is often the best choice, as you will be able to
decide when it is necessary to reparse the file.

TeX-parse-self [User Option]
Parse file after loading it if no style hook is found for it.

TeX-auto-save [User Option]
Automatically save style information when saving the buffer.

TeX-normal-mode arg [Command]
(C-c C-n) Remove all information about this buffer, and apply the style hooks again.
Save buffer first including style information. With optional argument, also reload the
style hooks.

Chapter 5: Customization and Extension 72

When AUCTEX saves your buffer, it can optionally convert all tabs in your buffer into
spaces. Tabs confuse AUCTEX’s error message parsing and so should generally be avoided.
However, tabs are significant in some environments, and so by default AUCTEX does not
remove them. To convert tabs to spaces when saving a buffer, insert the following in your
.emacs file:

(setq TeX-auto-untabify t)

TeX-auto-untabify [User Option]
Automatically remove all tabs from a file before saving it.

Instead of disabling the parsing entirely, you can also speed it significantly up by limiting
the information it will search for (and store) when parsing the buffer. You can do this
by setting the default values for the buffer local variables TeX-auto-regexp-list and
TeX-auto-parse-length in your .emacs file.

;3 Only parse LaTeX class and package information.

(setq-default TeX-auto-regexp-list ’LaTeX-auto-minimal-regexp-list)
;; The class and package information is usually near the beginning.
(setq-default TeX-auto-parse-length 2000)

This example will speed the parsing up significantly, but AUCTEX will no longer be
able to provide completion for labels, macros, environments, or bibitems specified in the
document, nor will it know what files belong to the document.

These variables can also be specified on a per file basis, by changing the file local variables.

%%% Local Variables:

%kl TeX-auto-regexp-list: TeX-auto-full-regexp-list
%%% TeX-auto-parse-length: 999999

%ohte End:

TeX-auto-regexp-list [User Option]
List of regular expressions used for parsing the current file.

TeX-auto-parse-length [User Option]
Maximal length of TEX file that will be parsed.

The pre-specified lists of regexps are defined below. You can use these before loading
AUCTEX by quoting them, as in the example above.

TeX-auto-empty-regexp-list [Constant|
Parse nothing

LaTeX-auto-minimal-regexp-list [Constant|
Only parse IATEX class and packages.

LaTeX-auto-label-regexp-list [Constant|
Only parse IATEX labels.

LaTeX-auto-index-regexp-list [Constant|
Only parse IATEX index and glossary entries.

LaTeX-auto-class-regexp-list [Constant|
Only parse macros in IATEX classes and packages.

Chapter 5: Customization and Extension 73

LaTeX-auto-pagestyle-regexp-list [Constant|
Only parse IATEX pagestyles.

LaTeX-auto-counter-regexp-list [Constant|
Only parse IATEX counters.

LaTeX-auto-length-regexp-list [Constant]
Only parse IATEX lengths.

LaTeX-auto-savebox-regexp-list [Constant|
Only parse IATEX saveboxes.

LaTeX-auto-regexp-list [Constant|
Parse common IATEX commands.

plain-TeX-auto-regexp-list [Constant|
Parse common plain TEX commands.

TeX-auto-full-regexp-list [Constant|
Parse all TEX and IATEX commands that AUCTEX can use.

5.4 Language Support

TEX and Emacs are usable for European (Latin, Cyrillic, Greek) based languages. Some
IATEX and EmacsLisp packages are available for easy typesetting and editing documents in
European languages.

For CJK (Chinese, Japanese, and Korean) languages, Emacs or XEmacs with MULE
(MULtilingual Enhancement to GNU Emacs) support is required. MULE is part of Emacs
by default since Emacs 20. XEmacs has to be configured with the ‘~-with-mule’ option.
Special versions of TEX are needed for CJK languages: CTEX and ChinaTgX for Chinese,
ASCII pTEX and NTT jTEX for Japanese, HIATEX and kTEX for Korean. The CJK-IATEX
package is required for supporting multiple CJK scripts within a single document.

Note that Unicode is not fully supported in Emacs 21 and XEmacs 21. CJK characters
are not usable. Please use the MULE-UCS EmacsLisp package or Emacs 22 and later if you
need CJK.

5.4.1 Using AUCTEX with European Languages
5.4.1.1 Typing and Displaying Non-ASCII Characters

First you will need a way to write non-ASCII characters. You can either use macros, or
teach TEX about the ISO character sets. I prefer the latter, it has the advantage that the
usual standard emacs word movement and case change commands will work.

With IATEX2e, just add ‘\usepackage[latinl]{inputenc}’. Other languages than
Western European ones will probably have other encoding needs.

To be able to display non-ASCII characters you will need an appropriate font and a
version of GNU Emacs capable of displaying 8-bit characters (e.g. Emacs 21). The manner
in which this is supported differs between Emacsen, so you need to take a look at your
respective documentation.

Chapter 5: Customization and Extension 74

A compromise is to use an European character set when editing the file, and convert to
TEX macros when reading and writing the files.

iso-cvt.el
Much like iso-tex.el but is bundled with Emacs 19.23 and later.

x-compose.el
Similar package bundled with new versions of XEmacs.

X-Symbol a much more complete package for both Emacs and XEmacs that can also
handle a lot of mathematical characters and input methods.

5.4.1.2 Style Files for Different Languages

AUCTEX supports style files for several languages. Each style file may modify AUCTEX
to better support the language, and will run a language specific hook that will allow
you to for example change ispell dictionary, or run code to change the keyboard remap-
ping. The following will for example choose a Danish dictionary for documents including
‘\usepackage [danish] {babel}’. This requires parsing to be enabled, see Section 5.3 [Pars-
ing Files|, page 71.
(add-hook ’TeX-language-dk-hook
(lambda () (ispell-change-dictionary "danish")))

The following style files are recognized:

bulgarian
Runs style hook TeX-language-bg-hook. Gives ‘"’ word syntax, makes the "
key insert a literal ‘"’. Typing " twice will insert insert ‘"¢’ or ‘"’’ depending
on context. Typing - twice will insert ‘"=, three times ‘--’.

czech Runs style hook TeX-language-cz-hook. Pressing " will insert ‘\uv{” and ‘}’
depending on context.

danish Runs style hook TeX-language-dk-hook. Pressing " will insert ‘"¢’ and ‘"’
depending on context. Typing - twice will insert ‘"=’, i.e. a hyphen string
allowing hyphenation in the composing words.

dutch Runs style hook TeX-language-nl-hook.

english

australian

canadian

newzealand
Runs style hook TeX-language-en-hook.

frenchb

francais Runs style hook TeX-language-fr-hook. Pressing " will insert ‘\\og’ and
‘“\\fg’ depending on context. Note that the language name for customizing
TeX-quote-language-alist is ‘french’.

german
ngerman Runs style hook TeX-language-de-hook. Gives ‘"’ word syntax, makes the "
key insert a literal ‘"’. Pressing the key twice will give you opening or closing
German quotes (‘" ¢’ or ‘"?’). Typing - twice will insert ‘"=’, three times ‘--’.

in?

Chapter 5: Customization and Extension 75

icelandic
Runs style hook TeX-language-is-hook. Gives ‘"’ word syntax, makes the "
key insert a literal ‘"’. Typing " twice will insert insert ‘"¢’ or ‘"’’ depending
on context. Typing - twice will insert ‘"=, three times ‘--’.

italian Runs style hook TeX-language-it-hook. Pressing " will insert ‘"<’ and ‘">’
depending on context.

‘in?

polish Runs style hook TeX-language-pl-hook. Gives ‘"’ word syntax and makes the
" key insert a literal ‘"’. Pressing " twice will insert ‘"’ or ‘"’’ depending on
context.

polski Runs style hook TeX-language-pl-hook. Makes the " key insert a literal ‘"’.
Pressing " twice will insert ‘,,’ or ‘>?’ depending on context.

slovak Runs style hook TeX-language-sk-hook. Pressing " will insert ‘\uv{’ and ‘}’
depending on context.

swedish Runs style hook TeX-language-sv-hook. Pressing " will insert **’’. Typing -
twice will insert ‘"=’, three times ‘--’.
Replacement of language-specific hyphen strings like ‘"=’ with dashes does not require to

type - three times in a row. You can put point after the hypen string anytime and trigger
the replacement by typing -.

In case you are not satisfied with the suggested behavior of quote and hyphen in-
sertion you can change it by customizing the variables TeX-quote-language-alist and
LaTeX-babel-hyphen-language-alist respectively.

TeX-quote-language-alist [User Option]
Used for overriding the default language-specific quote insertion behavior. This is an
alist where each element is a list consisting of four items. The first item is the name
of the language in concern as a string. See the list of supported languages above. The
second item is the opening quotation mark. The third item is the closing quotation
mark. Opening and closing quotation marks can be specified directly as strings or as
functions returning a string. The fourth item is a boolean controlling quote insertion.
It should be non-nil if if the special quotes should only be used after inserting a literal
‘"’ character first, i.e. on second key press.

LaTeX-babel-hyphen-language-alist [User Option]
Used for overriding the behavior of hyphen insertion for specific languages. Every
element in this alist is a list of three items. The first item should specify the affected
language as a string. The second item denotes the hyphen string to be used as a
string. The third item, a boolean, controls the behavior of hyphen insertion and
should be non-nil if the special hyphen should be inserted after inserting a literal ‘=’
character, i.e. on second key press.

The defaults of hyphen insertion are defined by the variables LaTeX-babel-hyphen and
LaTeX-babel-hyphen-after-hyphen respectively.

LaTeX-babel-hyphen [User Option]
String to be used when typing -. This usually is a hyphen alternative or hyphenation
aid provided by ‘babel’ and the related language style files, like ‘"=, ‘"~ or ‘"-’,

Set it to an empty string or nil in order to disable language-specific hyphen insertion.

Chapter 5: Customization and Extension 76

LaTeX-babel-hyphen-after-hyphen [User Option]
Control insertion of hyphen strings. If non-nil insert normal hyphen on first key
press and swap it with the language-specific hyphen string specified in the variable
LaTeX-babel-hyphen on second key press. If nil do it the other way round.

5.4.2 Using AUCTEX with Japanese TEX

To write Japanese text with AUCTEX, you need the versions of TEX and Emacs that support
Japanese. AUCTEX supports three Japanese TEX engines by default: NTT jTEX, ASCII
pTEX and upTEX. On XEmacs, AUCTEX needs MULE (MULtilingual Enhancement to
GNU Emacs) feature to deal with Japanese text.

To
use the Japanese TEX engines, activate japanese-plain-tex-mode or japanese-latex-—
mode. If it doesn’t work, send mail to Masayuki Ataka ‘<masayuki.ataka@gmail.com>’ or
Tkumi Keita ‘<ikumikeita@jcom.home.ne.jp>’, who currently concern with stuff related
to Japanese in AUCTEX. None of the primary AUCTEX maintainers understand Japanese,
so they cannot help you.

It is recommended to enable TeX-parse-self for typical Japanese IATEX users. When
enabled, japanese-latex-mode selects the suitable Japanese TEX engine automatically
based on the class file name (such as jbook, jsarticle and tjreport) and its option. see
Section 5.3 [Parsing Files], page 71.

It is important to select the suitable Japanese TEX engine because the selected engine
determines the command name such as ‘platex’ and ‘uptex’ to typeset the document. If
you find that wrong command is used, check the value of TeX-engine on that buffer. If
the value does not suit the current document, change the value by the ‘TeXing Options’
submenu below the ‘Command’ menu. see Section 4.1.3 [Processor Options], page 58.

To make the selected engine to persist across Emacs sessions, there are two ways from
which you can choose one according to your needs:
1. If you use a specific engine (almost) exclusively, customize the option japanese-TeX-
engine-default.

japanese-TeX-engine-default [User Option]
The default TeX engine in Japanese TEX mode.

The default value is ‘ptex’.
2. If you want to set the engine on a per file basis, use the file local variables to set
TeX-engine.
Here is a sample code to set TeX-engine to ‘uptex’

%% Local Variables:

%%% mode: japanese-latex
%%/, TeX-engine: uptex
%%/ End:

In the both cases above, the valid value is one of ‘ptex’, ‘jtex’ and ‘uptex’.

You can override the command names associated with the above three engines or define
your own engine by customizing TeX-engine-alist. See Section 4.1.3 [Processor Options],
page 58.

Chapter 5: Customization and Extension 77

It is sometimes necessary to use an engine which differs from the one AUCTEX selects
automatically. For example, even when you want to use j-article document class delib-
erately with ASCII pIATEX, AUCTEX selects NTT JIATEX command if TeX-parse-self is
enabled, because j-article originally belongs to NTT jIATEX. In such cases, use the file
local variable method above to select the engine you intend to use.

If you usually use AUCTEX in Japanese, setting the following variables is useful.

TeX-default-mode [User Option]
Mode to enter for a new file when it cannot be determined whether the file is plain

TEX or IATEX or what.
If you want to enter Japanese IAXTEX mode whenever this may happen, set the variable
like this:

(setq TeX-default-mode ’japanese-latex-mode)

japanese-LaTeX-default-style [User Option]
The default style/class when creating a new Japanese IATEX document.

The default value is ‘" jarticle"’.

It is recommended also for Japanese users to customize the option TeX-PDF-from-DVI
to "Dvipdfmx". See Section 4.1.3 [Processor Options|, page 58,

There are three customize options with regard to the encoding of Japanese text.

japanese-TeX-use-kanji-opt-flag [User Option]
If non-nil, AUCTEX adds -kanji option to the typesetting command when
TeX-engine is ‘ptex’.

Usually AUCTEX guesses the right coding systems for input to and output from the
Japanese TEX process, but you can override them by the following two customize options.

TeX-japanese-process—input-coding-system [User Option]
If non-nil, used for encoding input to Japanese TEX process. When nil, AUCTEX
tries to choose suitable coding system.

TeX-japanese-process-output-coding-system [User Option]
If non-nil, used for decoding output from Japanese TEX process. When nil, AUCTEX
tries to choose suitable coding system.

The former customize options japanese-TeX-command-default and japanese-LaTeX-
command-default are obsolete. Use japanese-TeX-engine-default instead. If you need
to customize the executable file name such as ‘"latex"’, the options for them, or both,
customize TeX-engine-alist.

Also, the option japanese-TeX-command-list is considered as semi-obsolete. It still
functions as before, but in theory, it is not required anymore in normal use.

The following two additional font commands are available in IATEX mode buffer.

C-c C-f g Insert gothic face font command ‘\textbf{x} or ‘\mathbf{x} depending on
the context.

C-c C-f m Insert mincho font command ‘\textmc{x}’ or ‘\mathmc{x}’ depending on the
context.

Chapter 5: Customization and Extension 78

Although they are meaningful only with ‘ptex’ and ‘uptex’ engines, it won’t matter in
buffers with other engines.

See tex-jp.el for more information.

5.5 Automatic Customization

Since AUCTEX is so highly customizable, it makes sense that it is able to customize it-
self. The automatic customization consists of scanning TEX files and extracting symbols,
environments, and things like that.

The automatic customization is done on three different levels. The global level is the
level shared by all users at your site, and consists of scanning the standard TEX style files,
and any extra styles added locally for all users on the site. The private level deals with
those style files you have written for your own use, and use in different documents. You
may have a ~/1ib/TeX/ directory where you store useful style files for your own use. The
local level is for a specific directory, and deals with writing customization for the files for
your normal TEX documents.

If compared with the environment variable TEXINPUTS, the global level corresponds to
the directories built into TEX. The private level corresponds to the directories you add
yourself, except for ., which is the local level.

By default AUCTEX will search for customization files in all the global, private, and local
style directories, but you can also set the path directly. This is useful if you for example
want to add another person’s style hooks to your path. Please note that all matching files
found in TeX-style-path are loaded, and all hooks defined in the files will be executed.

TeX-style-path [User Option]
List of directories to search for AUCTEX style files.

By default, when AUCTEX searches a directory for files, it will recursively search through
subdirectories.

TeX-file-recurse [User Option]
Whether to search TEX directories recursively: nil means do not recurse, a positive
integer means go that far deep in the directory hierarchy, t means recurse indefinitely.

By default, AUCTEX will ignore files named ., .., SCCS, RCS, and CVS.

TeX-ignore-file [User Option]
Regular expression matching file names to ignore.
These files or directories will not be considered when searching for TEX files in a
directory.

5.5.1 Automatic Customization for the Site

Assuming that the automatic customization at the global level was done when AUCTEX was
installed, your choice is now: will you use it? If you use it, you will benefit by having access
to all the symbols and environments available for completion purposes. The drawback is
slower load time when you edit a new file and perhaps too many confusing symbols when
you try to do a completion.

You can disable the automatic generated global style hooks by setting the variable
TeX-auto-global to nil.

Chapter 5: Customization and Extension 79

TeX-macro-global [User Option]
Directories containing the site’s TEX style files.

TeX-style-global [User Option]
Directory containing hand generated TEX information.

These correspond to TEX macros shared by all users of a site.

TeX-auto-global [User Option]
Directory containing automatically generated information.

For storing automatic extracted information about the TEX macros shared by all users
of a site.

5.5.2 Automatic Customization for a User

You should specify where you store your private TEX macros, so AUCTEX can extract
their information. The extracted information will go to the directories listed in TeX-auto-
private

Use M-x TeX-auto-generate RET to extract the information.

TeX-macro-private [User Option]
Directories where you store your personal TEX macros. The value defaults to the
directories listed in the ‘TEXINPUTS’ and ‘BIBINPUTS’ environment variables or to the
respective directories in $TEXMFHOME if no results can be obtained from the environ-
ment variables.

TeX-auto-private [User Option]
List of directories containing automatically generated AUCTEX style files. These
correspond to the personal TEX macros.

TeX-auto-generate TEX AUTO [Command]|
(M-x TeX-auto-generate RET) Generate style hook for TEX and store it in AUTO.
If TEX is a directory, generate style hooks for all files in the directory.

TeX-style-private [User Option]
List of directories containing hand generated AUCTEX style files. These correspond
to the personal TEX macros.

5.5.3 Automatic Customization for a Directory

AUCTEX can update the style information about a file each time you save it, and it will do
this if the directory TeX-auto-local exists. TeX-auto-local is by default set to ‘"auto"’,
so simply creating an auto directory will enable automatic saving of style information.

The advantage of doing this is that macros, labels, etc. defined in any file in a multifile
document will be known in all the files in the document. The disadvantage is that saving
will be slower. To disable, set TeX-auto-local to nil.

TeX-style-local [User Option]
Directory containing hand generated TEX information.

These correspond to TEX macros found in the current directory.

Chapter 5: Customization and Extension 80

TeX-auto-local [User Option]
Directory containing automatically generated TEX information.

These correspond to TEX macros found in the current directory.

5.6 Writing Your Own Style Support

See Section 5.5 [Automatic], page 78, for a discussion about automatically generated global,
private, and local style files. The hand generated style files are equivalent, except that they
by default are found in style directories instead of auto directories.

If you write some useful support for a public TEX style file, please send it to us.

5.6.1 A Simple Style File
Here is a simple example of a style file.

;53 book.el - Special code for book style.

(TeX-add-style-hook
"book"
(lambda O
(LaTeX-largest-level-set "chapter"))
LaTeX-dialect)

The example is from the AUCTEX sources and is loaded for any IATEX document using
the book document class (or style before IATEX2e). The file specifies that the largest kind
of section in such a document is chapter. The interesting thing to notice is that the style
file defines an (anonymous) function, and adds it to the list of loaded style hooks by calling
TeX-add-style-hook.

The first time the user indirectly tries to access some style-specific information, such as
the largest sectioning command available, the style hooks for all files d